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Abstract

Transactional memory (TM) is a scalable and concurrent
way to build atomic sections. One aspect of TM that re-
mains unclear is how side-effecting operations – that is,
those which cannot be transparently undone by a TM sys-
tem – should be handled. This uncertainty poses a signifi-
cant barrier to the general applicability and acceptance of
TM. Further, the absence of transactional workloads makes
it difficult to study this aspect

In this paper, we characterize the usage of I/O, and in
particular system calls, within critical sections in two large
applications, exploring both the actions performed and the
characteristics of the critical sections in which they are per-
formed. Shared memory programs employing critical sec-
tions are the closest approximation available to transac-
tional workloads, so using this characterization, we attempt
to reason about how the behavior we observed relates to
the previous proposals for handling side-effecting opera-
tions within transactions. We find that the large majority of
syscalls performed within critical sections can be handled
with a range of existing techniques in a way transparent
to the application developer. We also find that while side-
effecting critical sections are rare, they tend to be quite long-
lasting, and that many of these critical sections perform their
first syscall (and thus become side-effecting) relatively early
in their execution. Finally, we show that while these long-
lived, side-effecting critical sections tend to execute concur-
rently with many critical sections on other threads, we ob-
serve little concurrency between side-effecting critical sec-
tions.

1. Introduction

Transactional Memory (TM) is a language- and system-
level technique for concurrent programming. Transactions
– atomic regions optimistically executed concurrently – are
generally thought to be easier to program than locks, reduc-
ing exposure to deadlock, permitting easier composition of
code regions, and simplifying atomic semantics. For these
and other reasons, there are numerous recent proposals for

both software- and hardware-based TM systems. [2,6,8–11,
14,18,19]

TM, however, only provides clean semantics for specula-
tively accessing cacheable shared-memory storage locations,
not side-effects such as I/O. Side-effects, simply defined as
effects on logical system state which the TM system pro-
vides neither conflict detection nor rollback, are difficult to
handle speculatively because they can violate isolation and
atomicity. For example, when a transaction which has writ-
ten to a file is aborted, the file has still been written to.

Interesting programs necessarily have side-effects, such as
I/O and system calls. The interaction of these side-effects
and TM must be considered if a code region containing side-
effects requires isolated access to program state. In our anal-
ysis of two large multi-threaded programs, we have found
that it is not uncommon for side-effecting actions to be con-
tained in (lock-based) critical sections, and, at least for the
bulk of the critical sections we analyzed by hand, the lock
was providing isolated access to data, not just ensuring mu-
tual exclusion.

To provide isolated access to a data structure in the presence
of side-effecting operations, we have two choices: 1) we can
retain the use of locks to protect any data that are accessed by
a critical section containing a side-effect; these locks would
need to be acquired by any code that accessed those data,
even strongly-atomic transactional code, or 2) we can enable
TM atomic regions to include side-effects, at least for the
commonly occurring cases. The second approach has the
potential to provide an overall simpler approach to ensuring
isolated data access in the presence of side-effects.

While previous work has proposed a number of mechanisms
for handling I/O [3,6,8,13,15,16,20], the paucity of signif-
icant TM workloads prevents us from evaluating these pro-
posals in any meaningful way. The goal of this paper is to try
to understand how TM programmers will use side-effecting
operations and, therefore, how support for them should be
architected in TM systems. To shed light on this subject –
in the absence of compelling TM workloads – we character-
ize the use of side-effecting operations, specifically syscalls,



in two existing, conventionally synchronized, multithreaded
workloads. In particular, we characterize and classify the
kinds of side-effecting operations seen in our workloads,
what minimum protection they require, and the character-
istics of the critical sections that contain them.

We first provide a view of transactional actions drawn from
transactional databases (Section 2), and present a survey of
proposed techniques for handling side-effects in transactions
(Section 3). Then, on the supposition that contemporary crit-
ical sections will provide a lower bound (in size and com-
position) to the transactions of the future, we examine two
large multithreaded workloads – MySQL and Firefox – to
characterize the syscalls occurring in their critical sections.
We find that most of the syscalls can be encapsulated so that
programmers need not be aware of them. Finally, we char-
acterize the critical sections invoking these syscalls them-
selves, describing some of their structure and examining the
impact of syscalling transactions upon the whole program,
with a view towards the amount of concurrency that may be
lost by forcing syscalling critical sections to execute serially.
(Section 5).

2. Types of Actions

Transactional memory has strong roots in the earlier research
in transactional databases, which share many properties with
TM. When considering how TM might handle side-effecting
actions in atomic regions, it is useful to consider a taxonomy
for transactional actions presented by Gray and Reuter [5]:

Protected actionsare those which can be completely com-
pensated for by the transactional memory system. Provid-
ing both failure atomicity and isolation, these are operations
which affect only CPU state and memory.

Unprotected actionsare those for which the TM system can-
not compensate, but for which the programmer may provide
compensation code. With correct compensation code, these
actions provide atomicity and may, though do not necessar-
ily, provide isolation. Filesystem operations may be consid-
eredunprotected. It is important to note that the selection
of adequate compensation code, and indeed what constitutes
such code, is left to the discretion of the programmer.

Real actionsare those for which there is no adequate com-
pensation. Gray and Reuter’s canonical example is “launch
missile,” but more prosaically, printing a document, deleting
a file, or even sending a message across a network may be
consideredreal actions. Typically,real actions may only be
executed when a transaction is known to be nonspeculative.
If, however, the programmer is willing to ignore a spuriously
printed document, or creates a transaction-safe network pro-
tocol, even these actions may be considered merelyunpro-
tected. In a real sense, what makes an actionreal or unpro-
tectedis merely what the programmer is willing to tolerate.

Drawing from this classification, we will use the termpro-
tection to refer to something enablingreal or unprotected
actions to be executed from within transactions: a transition
to nonspeculative execution, a deferral ofreal or unprotected
actions until the transaction is known to be nonspeculative,
or the compensation block registered by the programmer on
some piece of transactional code, to be executed if the trans-
action aborts. We call any code which consists entirely of
eitherprotectedactions orunprotectedor real actions with
protectiontransaction-safe.

3. Proposals for handling Side-Effects in
Transactions

We summarize several proposals which addressunprotected
or real actions in transactions:

• Outlaw: The most restrictive approach, used in STMs
[8], simply forbids any non-protectedactions from occur-
ring transactionally. While this approach offers simplicity
by sidestepping the issue entirely, the limitations on pro-
grammability and composition that it places are probably
unacceptable for general use.

• Defer: In some cases, it may be possible to deferunpro-
tectedor real actions until the transaction is certain to
commit [6,7] or placing them in completion actions [20].
This may be done explicitly by the programmer, as in
two-phase commit [13] or may be performed implicitly
by the compiler or TM system. While this is suitable for
some write-only actions or flushes, it is not a general so-
lution because it prohibits dependences upon the return
values ofunprotectedor real actions within a transaction,
such as checking for an error status. Moreover, program-
mers expect their code to execute in program order; an
automatic reordering could lead to unexpected effects.

• “Go Nonspeculative”: Another approach is simply to
force transactions about to performunprotectedor real
actions to “go nonspeculative” by acquiring a global
commit token [3,6]. While this technique can accommo-
date even the most irreversible ofreal actions handily, it
does have some drawbacks. Under this regime, anunpro-
tectedor real operation inside of a transaction amounts
to an implicit promise, by the programmer, that the trans-
action will complete. The TM system can be made to
guarantee that it will not abort this transaction, but this
can limit concurrency by serializing side-effecting trans-
actions, negatively affecting performance. Furthermore,
the transaction must not have an explicit abort operation
along any execution path after the firstunprotectedor
real action. Because the promise to complete was im-
plicit, and theunprotectedor real action may have been
called deep within library code, programmers may be
left uncertain of where explicit abort operations may be
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used. This in turn affects the application of language-
level techniques likeretry andorElse [8].

• Compensate:The last, and most complex, approach is
to permit the programmer to protectunprotectedcode by
associating a compensation block with theunprotected
code [7, 13, 15, 16, 20], not unlike the use ofcatch
blocks to guard possibly-excepting code. This approach
permits programmers to decide what appropriate com-
pensation is for theirunprotectedactions, allows trans-
actions withunprotectedactions to execute concurrently,
and also permits explicit aborts. However, it also intro-
duces a new source for bugs, and does not implicitly pro-
vide isolation or conflict detection onunprotectedcode.

As we will see in Section 4, no one of these techniques
clearly subsumes the others with respect to supporting all
side-effects in all possible transaction code, or even in the
workloads we studied. Outlawing side-effects in transac-
tions is problematic, as discussed in Section 1. If it is not
feasible to prohibit all side-effects in atomic regions, then
atomic side-effects must be performed in lock-based critical
sections. If, however, there is any intersection between the
data accessed in transactions and the data accessed in criti-
cal sections, then all such transactions will also have to ac-
quire the relevant locks. Deferral can only be used when no
return values from side-effecting operations are computed
upon later in the transaction. “Going nonspeculative” pre-
cludes explicit aborts (and raises difficulties with combin-
ing locks and transactions.) Compensation cannot be applied
whenever the programmer cannot provide an adequate com-
pensation block. Indeed, all are necessarily incomplete so-
lutions, for some transactional code is simply untenable –
consider the case of a transaction which performs areal ac-
tion and later issues an explicit abort.

In this paper, we are concerned with the relative suitability
of these approaches. We have the following questions:

• How common are side-effecting operations in critical
sections? In other words, how much code would simply
outlawing side-effects in transactions affect?

• What kinds of side-effecting operations are seen in crit-
ical sections? How much of it must be consideredreal
actions, and how muchunprotected?

• How often are side-effecting operations performed at the
end of critical sections? Side-effecting operations per-
formed at the end are less likely to return a value that
the transaction operates on, so they are more likely to be
deferrable.

• If “going nonspeculative” is required, how early the
transaction must do so affects how much concurrency
the transaction will permit. How are side-effecting opera-
tions distributed throughout the lifetime of side-effecting
critical sections, and how long are these critical sections?

To what degree do side-effecting critical sections overlap
with other critical sections?

• What kinds of compensation do the side-effecting opera-
tions in our workloads’ critical sections require?

4. Side-Effects in Critical Sections

For our analysis, we sought out large, complex, multi-
threaded programs in which I/O and other side-effects is
reasonably expected. After exploring a number of programs,
we selected two workloads that had non-trivial amounts
of side-effecting operations called from within critical sec-
tions: MySQL and Firefox. MySQL is a multithreaded SQL
database server; our test installation of MySQL uses the Inn-
oDB storage engine. MySQL has a main connection thread
and creates a new thread for each client connection it re-
ceives, and InnoDB was configured to permit up to 50 con-
current I/O threads. Our profiled runs used SysBench [1] first
to prepare (create and populate) a small database, and then
to access it. Firefox is a popular web browser. Our profiled
runs started Firefox up in a pre-set profile, loaded a series of
web pages, then shut it down.

4.1 I/Os and Syscalls

Having selected our workloads, we must specify what side-
effects we seek. In Section 1, we defined side-effects as
operations which affect system state in a way for which
the TM system cannot automatically extend isolation and
atomicity. TM systems guarantee isolation and atomicity to
CPU state and memory, so in non-transactional code like our
workloads, side-effecting operations are device I/O.1

In x86 code, there are three ways in which I/O may be
performed:

• The in and out instructions permit communication
directly with a port, as configured byioperm() or
iopl() .

• Some system calls can delegate to the kernel to perform
I/O work.

• Memory-mapped I/O permits the mapping of memory
spaces to devices or files.

The in andout instructions in application code are quite
uncommon in both MySQL and Firefox, and are not seen at
all inside of critical sections. Memory-mapped I/O generally
happens in kernel code, which (for reasons we shall address
shortly) should not be transactionally executed in user-level
transactions. One exception to this is X11, which among our
workloads only applies to Firefox. However, as our Firefox
delegates all its X11 rendering to a single thread we do not

1 Several techniques have been proposed which could make side-effects of
changes to CPU state or memory, by enclosing these changes in paused
regions or open nests [15,16,20].
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consider memory-mapped I/O. System calls, on the other
hand, are plentiful across all threads, as well as within criti-
cal sections – but not all actually perform I/O. All, however,
execute kernel code.

Current software transactional memory systems (STMs)
cannotexecute kernel code transactionally, and so in STMs
all syscalls are side-effecting, whether or not they actually
generate I/O. Nor is it clear that this inability is a weakness
of STMs. Zilles and Flint have argued against transactional
execution of system calls, reasoning that conflicts on kernel
data structures will not only reduce concurrency in the trans-
actional application, but will compromise performance iso-
lation, resulting in overhead for all running applications [21].

Zilles and Baugh [20] and Moravanet al. [15], observing
that it is untenable to execute syscalls transactionally, have
proposed wrapping them in nontransactional regions. These
regions, calledpaused regionsin the former paper andes-
cape actionsin the latter, are blocks of code inside trans-
actions that are not executed transactionally. Their memory
footprints do not contribute to their enclosing transaction’s,
and no automatic compensation is provided for them2. We
assume that all syscalls in transactions will be executed in
such regions, and that consequently all syscalls will be side-
effecting.

4.2 Experimental Method

We profiled our workloads using the Pin binary instrumenta-
tion tool [12] on an Intel Core 2 Duo dual-core processor.
Because these programs are pthread-based, our Pin mod-
ule trackedpthread mutex acquires and releases and
recorded I/O behavior, particularly syscalls, within these
critical sections. For the purposes of our analysis, we assume
that all of the critical sections we observed would be im-
plemented as transactions, had the application been written
for TM. We believe this is a fair assumption because, while
locks can be used for mutual exclusion as well as isolated
data access, our source inspection led us to believe that iso-
lated access to data was a motivation for the subset of critical
sections that we inspected in detail.

We measured durations using wall-clock time, using
gettimeofday() with a granularity of one microsec-
ond. When measuring time in Pin-instrumented code, it is
necessary to consider the overhead incurred by the instru-
mentation itself. When tracking durations, we discounted
time spent in instrumentation code by calculating the differ-
ence between the entrance to an instrumentation block and
its exit, and subtracting that from the recorded duration of
the instrumented critical section.

Critical sections, like transactions, may nest. For the pur-
poses of our analysis, we only consider toplevel critical sec-

2 However – as inopen nesting[16] – it is possible to register blocks of
abort (compensation) or commit code, for executing on the abort or on the
commit of the parent transaction.

tions, which we abbreviate to TCSs. Those TCSs which per-
form syscalls we abbreviate to syscalling-TCSs.

t0

t3

t2

t1

c←9

c←4 c←5

c←6

c←7

c←8

6-4=2 toplevel 
critsecs retired

c = 4

Figure 1. A syscalling-TCS Overlapping with TCSs
Right-pointing triangles are lock acquires; left-pointing

triangles are lock releases. The star marks the first syscall
in its syscalling-TCS.c is the globalTCS retire counter.

In our analysis, we found it useful to determine the degree
of concurrency, oroverlap, experienced by syscalling-TCSs.
This metric, which reflects the number of other TCSs that
retired between a syscalling-TCS’s first syscall and its re-
tirement, is gathered by a mechanism shown in Figure 1.
We employ a globaltoplevel critical section retire counter,
calledc , which every TCS increments upon retiring. In the
Figure, the syscalling-TCS on threadt0 sees four TCSs re-
tire in its lifetime. On its first syscall, it readsc , finding it
to be 4. When the critical sections on threadst1 andt2 re-
tire, they each incrementc by one; the nested critical section
on t2 is not toplevel and so does not incrementc . When
the syscalling-TCS int0 closes, and before it increments
c , it subtractsc ’s current value from the value read at its
first syscall. Correspondingly, we say that the overlap of
the syscalling critical section on threadt0 is 2. Our dual-
core processor may artificially limit the overlap we see, so
to ensure that we were seeing as much overlap as possi-
ble, we inserted nanosleeps before every I/O operation (thus
prompting the CPU to switch threads). When tracking TCS
and syscalling-TCS durations, we discounted time spent in
nanosleeps.

5. Results

We examine the syscalls made from within critical sec-
tions from two perspectives. First, we examine the syscalls
themselves, to understand what is being called and with
what frequency, and to discover what techniques can be
employed by kernel or library developers to render these
syscalls transaction-safe. Next, we examine thecontextof
the syscalls, to discover the higher-level behavior of critical
sections that contain syscalls.
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Frequency in CritsecsCategory of Syscall Syscalls Seen in Critical Sections
MySQL Firefox

Time gettimeofday , clock gettime 3.91% 70.18%

Filesystem

read* , write* , open , close , lseek , access , dup ,
mkdir , ftruncate , fsync , writev , pread* ,
pwrite* , stat , fstat , fcntl , getdents , getcwd ,
fdatasync , mmap*, munmap*, mprotect*

53.79% 28.75%

Process Memory brk , mmap*, munmap*, mprotect* 31.03% 0.32%

Process Maintenance

waitpid , clone , sched setscheduler ,
sched get priority max,
sched get priority min , rt sigaction ,
rt sigprocmask , tgkill

8.97% 0.32%

Communication
ioctl , socket , pipe , read* , write* , pread* ,
pwrite*

2.07% 0.40%

System Info sysinfo , uname 0.23% 0.03%

Table 1. Syscalls Seen in Critical SectionsSix different categories of syscall were seen in critical sections in MySQL and
Firefox; their dynamic distributions in the critical sections of each workload are shown at right. Communications syscalls,
which are most difficult to make transaction-safe, are uncommon. Syscalls marked with asterisks belong to several categories.

5.1 Syscall Sites

Previous work characterized syscalls inside critical sections
for a selection of workloads, dividing them intoread and
write operations, and determining the frequency of critical
sections performing them. [4] We delve deeper into the kinds
of syscalls seen in our workloads, determining what calls
are being made, what they are doing, and what minimum
protection they require.

In Table 1, we list the syscalls dynamically detected in crit-
ical sections in our workloads, divided into six categories:
filesystem, process memory, process maintenance, system
info, time, and communication. Some of the syscalls listed
belong to more than one category – for example,read may
be applied to a file handle as well as to a socket. Such
syscalls are marked with an asterisk. At the right side of the
table, we show the relative dynamic frequency of each cat-
egory of syscall in each workload. It is notable, in light of
the observations we make in the next section, that very few
communication syscalls are seen in either workload.

5.2 Syscall Protection – The Advantage of
Compensation Code

As we have suggested, not all of the syscalls that we ob-
served require the same treatment to become transaction-
safe. We found four “protection classes” among the syscalls
we observed:

• Null compensation: Some syscalls require no protection,
as their speculative execution does not logically change
system state. Time syscalls likegettimeofday fall in
this class, as may syscalls likepread , which reads from
a file without altering the file pointer. If side-effects are
handled by forcing transactions to become nonspecula-
tive, this class of syscalls will not require that. If side-

effects are handled by compensation code, a null com-
pensation block will be sufficient. Over 70% of the dy-
namic syscalls in Firefox critical sections fall into this
category; under 10% of MySQL’s do.

• Memory-fixup : Many syscalls’ only side effect is a
change of kernel state. For example,lseek does not af-
fect a file directly, but instead adjusts a file offset pointer
within a file handle data structure. Since kernel code
is not executed transactionally, these actions must be
considered as side-effects. If the TM system provides a
mechanism for registering compensating code, then this
work may be easily done speculatively; otherwise this
side effect will necessitate either that the transaction go
nonspeculative, or that the call be deferred until commit.

• Full compensation: Many observed syscalls perform un-
protected I/O actions, and will require “going nonspec-
ulative” or compensation code. For example, a transac-
tion with an open call which creates a file will reg-
ister a correspondingunlink , an append call might
register a correspondingtruncate 3. If the filesystem
has transactional support, then the compensation blocks
might simply force a filesystem transaction abort.

• Real actions: A small minority of the syscalls we saw
cannot be adequately compensated at the scope of the
syscall. Some process maintenance syscalls liketgkill ,
and communications syscalls likesocket , pipe , and
read s or write s to sockets or pipes cannot be exe-

3 While these compensations do not provide isolation from the rest of the
system, it is not clear that this matters in most cases. For example, a
critical section in MySQL responsible for database creation first created
a directory for the database, then attempted to create an options file inside
that directory. If the file creation failed, the directory was deleted again,
violating system-wide isolation – but the programmers were willing to
accept this result. A transactional filesystem can provide true isolation for
filesystem side-effects, if needed.
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(a) Distribution of Syscalls in syscalling-TCSs in Firefox
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(b) Distribution of Syscalls in syscalling-TCSs in MySQL
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Figure 2. Distribution of Syscalls across syscalling-TCSs
Syscalls are distributed throughout syscalling-TCSs, and are more frequent towards the end of the critical sections.

Aggregated results for all syscalling-TCSs in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative
with axis on right.

cuted speculatively without knowledge of thecontextof
the call. These syscalls are the most difficult to encapsu-
late so that programmers at higher levels of abstraction
may use them speculatively, but some possibilities ex-
ist. Buffering support in the manner of ReViveI/O may
be employed [17], but unlike that work, the amount that
may need buffering is unbounded. Alternatively, if it is
possible, compensation may be provided at a higher level
of abstraction by the application or library developer. For
example, a network program may use a transaction-safe
protocol, in which messages may be tentatively issued
and revoked later – or it might not, and this information
would not be available at the level of the system call.
In these cases, the only choice is to wait until the trans-
action is nonspeculative before executing the syscalls –
or permitting compensation code to be registered at a
higher scope. This class corresponds to the Communi-
cation category described in Table 1, as well as some
process management syscalls likeclone andtgkill .
It comprises about 7% of the syscalls in MySQL’s critical
sections, but a minuscule component of Firefox’s.

Importantly, all these categories except for the last may be
compensated for at the level of the syscall – and the last cate-
gory represents very few of the dynamic syscalls we encoun-
tered. It is clear that with adequate compensation the bulk
of dynamic syscalls can be rendered transaction-safe, and
thus speculatively executable. For the workloads we exam-
ined, written in C/C++, this could be accomplished simply
by providing compensation code in the system library (e.g.
libc); if this were done, our workloads could be transactified
with nearly all syscalls in transactions handled transparently
to the application developers.

5.3 Syscall Context

We have examined the types of syscalls executed from criti-
cal sections in our workloads; now we examine their context,
exploring the structure of critical sections which perform
syscalls. We will attempt to characterize side-effecting trans-
actions by their frequency, by the distribution of syscalls
within them, by their (temporal) length, and by the degree
of concurrency they expose.

Previous research on other applications has shown that
syscalling critical sections are dynamically very rare in mul-
tithreaded workloads [4]. We find the same: in Firefox,
only 0.71% of dynamic critical sections issue syscalls; in
MySQL, the proportion is even smaller: only 0.02%. How-
ever, further examination of these critical sections shows that
it may not be wise to dismiss them as too rare to matter.

Figure 3 shows the approximate durations, inµseconds, of
toplevel critical sections – both those which execute syscalls
(the syscalling-TCSs) and those which do not – in our work-
loads. In both workloads, we find that critical sections per-
forming syscalls tend to be much longer than those which
do not. To what degree this reflects an intrinsic quality of
atomic regions which perform syscall, and to what degree it
reflects the cost of switching into kernel mode, matters less
to us than the fact that critical sections performing syscalls
tend to be quite long. The longer transactions last, the more
chance they have to affect the performance of other transac-
tions in the same application

5.4 The Applicability of Deferral

In Figure 2, we show where, in the progress of syscalling-
TCSs in our workloads, syscalls are executed. In these
graphs, every syscall executed within a syscalling-TCS (in-
cluding syscalls indirectly called by nested children of the
syscalling-TCS) increments the bar corresponding to that
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(a) Distribution of First Syscalls in syscalling-TCSs in Firefox
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(b) Distribution of First Syscalls in syscalling-TCSs in MySQL
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Figure 4. Distribution of First Syscalls across Critical Sections
A significant fraction of first syscalls occur well before the end of the critical section. Aggregated results for all critical

sections in (a) Firefox, (b) MySQL. Bars are per-bin with axis on left; line is cumulative with axis on right.

(a) Distribution of TCS Durations in Firefox
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(b) Distribution of TCS Durations in MySQL
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Figure 3. Distribution of syscalling-TCS Durations (in
µsec)

TCSs with syscalls trend much larger than those without.
Black bars are TCSs without syscalls; grey bars are
syscalling-TCSs. Results for (a) Firefox, (b) MySQL

syscall’s position in the lifetime of its syscalling-TCS. These
graphs show that while syscalls do tend frequently to be po-
sitioned near the end of their syscalling-TCSs, they exist
in significant numbers throughout the lives of syscalling-

TCSs. This has several ramifications for the TM proposals
reviewed in Section 3. For techniques which defer syscalls
until their transaction is validated4, the earlier a syscall hap-
pens, the longer it must be deferred, and the more significant
its implicit reordering becomes – a problem both for the pro-
grammer and for the static analysis tools the compiler might
use to choose critical sections to defer. Furthermore, as an
operation may not be moved after any of its consumers, any
syscall in a TCS which produces values that are consumed
later in the TCS cannot be deferred. We analyzed syscalling-
TCSs responsible for 90% of the dynamic syscalling-TCS
instances in our benchmarks, and found that over 96% of
those in MySQL, and 100% of those in Firefox, consumed
the result of the first syscall in the TCS – suggesting that
deferral will not apply in the preponderance of cases. For
the technique of forcing transactions to “go nonspecula-
tive” prior to executing any syscall, a more serious problem
awaits.

5.5 The Overhead of “Going Nonspeculative”

In Figure 4, we show the distribution of the positions of
first syscalls within the durations of their syscalling-TCSs.
In these graphs, the first syscall executed within a syscalling-
TCS (including syscalls indirectly called by nested children
of the syscalling-TCS) increments the bar corresponding
to that syscall’s position in the lifetime of its syscalling-
TCS. The figure shows that while a significant number of
syscalling-TCSs have their first syscall near the end of their
lives – over 50% in the last 10% of Firefox syscalling-TCSs
– many execute their first syscall relatively early. If trans-
actions attempting syscalls must first “go nonspeculative”,
then from that point – the point of the first syscall – until
their commit, no other transaction may become nonspecula-
tive. This Figure shows that at least one third of syscalling-
TCSs in both workloads see their first syscall before they are

4 That is, known to be safe to commit, and correspondingly nonspeculative
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(a) Syscalling-TCS Overlap in Firefox
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(b) Syscalling-TCS Overlap in MySQL
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Figure 5. Degree of Overlap of Toplevel Syscalling Critical Sections (syscalling-TCSs) and Toplevel Critical Sections
(TCSs)

All syscalling-TCSs in (a) Firefox, (b) MySQL. This cumulative plot shows (black line) how many syscalling-TCSs (y-axis)
overlap (x-axis) or fewer TCS; (grey line) how many syscalling-TCSs (y-axis) overlap (x-axis) or fewer other syscalling-TCSs

halfway finished. As the barrier to concurrency is a prob-
lem proportional to the length of syscalling-TCSs, which, as
shown in Figure 3, tend large, this represents considerable
potential for even a relatively small number of toplevel side-
effecting transactions to impact concurrency throughout ap-
plications.

These large transactions translate to a significant degree
of overlap (described in Section 4.2.) The overlaps of
syscalling-TCSs in our workloads are shown in the black
plots in Figure 5. While a majority of syscalling-TCSs over-
lap with no other TCS – two-thirds in Firefox and half in
MySQL – a significant minority have substantial overlap.
15% of the syscalling-TCSs in Firefox overlap with 360 or
more TCSs; if the presence of a nonspeculative transaction
precludes any other transactions from committing (e.g. by
holding a “commit” token), this betokens a significant loss
of concurrency throughout both our applications.

Blundell et al. suggest that the nonspeculative transaction
(theunrestrictedtransaction in their parlance) need not block
speculative (restricted) transactions from retiring – as long
as there is only one nonspeculative transaction active at a
time, and it may never be aborted. [3] Theirrestrictedtrans-
actions are not only constrained from “going nonspecula-
tive”, but are also bounded in time and memory footprint.
However, the memory and time bounds are not strictly re-
quired; there is no reason that speculative transactions of any
size or duration might not retire even while another transac-
tion is nonspeculative, so long as the speculative transactions
do not conflict with the nonspeculative. In this case, it is in-
structive to consider, as a lower bound to syscalling-TCS
overlap, the overlap that syscalling-TCSs have with other
syscalling-TCSs. This metric, measured in the grey plots in
Figure 5, is similar to that shown in Figure 1 (Section 4.2),
except that not every retiring TCS increments the global
TCS retire counter – only retiring syscalling-TCSs may. As

only one syscalling-TCS is allowed to be nonspeculative at
a time, the overlapped critical sections in the grey plots in
Figure 5 cannot be executed concurrently under a regime in
which syscalling-TCSs “go nonspeculative” – but the loss of
concurrency is much less than that seen in the black plots in
Figure 5: over 93% of Firefox syscalling-TCSs overlap with
10 or fewer other syscalling-TCSs, and only 2% of MySQL
syscalling-TCSs overlap with any other syscalling-TCSs at
all, none with more than 4 others.

We expect these results to be a lower bound of the actual con-
currency available in transactional versions of these work-
loads. Atomic regions which, in lock-based code, would be
guarded by different locks, will, of course, when transac-
tional, not conflict (for if they did, the lock-based code would
have race conditions.) However, some atomic regions which
in lock-based code would be guarded by the same lock might
as transactions not conflict.

6. Conclusion

While transactional memory is a promising technique for
achieving concurrency in synchronized code, two of its oft-
cited advantages – composability and programmability –
are compromised by the difficulty of speculatively execut-
ing side-effecting code. In this paper, we have examined
the side-effecting operations, particularly the syscalls, per-
formed in critical sections in two large, multithreaded work-
loads. We have classified the kinds of syscalls thus per-
formed, noting that the presence of correct compensation
code and a transactional filesystem permit nearly all syscalls
to be executed speculatively. Transaction-safe system li-
braries, linked to transactional filesystems, could enable ap-
plication programmers to speculatively invoke, directly or
through composition, nearly every syscall.
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We have also examined the contexts of syscalls in criti-
cal sections in our workloads, observing that those critical
sections which do perform syscalls do so throughout their
lifetimes, and that there is a strong tendency for results of
syscalls in critical sections to be used within those critical
sections – which may limit the usefulness of deferring I/O
until the end of its enclosing transaction – and that those
lifetimes tend to be quite long compared to other critical
sections. Considering the effect that long syscalling transac-
tions might have on overall concurrency available in appli-
cations, we examined the amount of overlap syscalling crit-
ical sections have with other critical sections. We observe
that the technique of “going nonspeculative” results in sub-
stantial loss of concurrency when not applied carefully, but
that this loss can be dramatically reduced if nontransactional
transactions only preclude the retirement of other conflicting
transactions, or other transactions which perform syscalls.
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