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Abstract

Stream processors, developed for the stream programming
model, perform well on media applications. In this paper we
examine the applicability of a stream processor to scientific
computing applications. Eight scientific applications, each
having different performance characteristics, are mapped to
a stream processor. Due to the novelty of the stream program-
ming model, we show how to map programs in a traditional
language, such as FORTRAN. In a stream processor system,
the management of system resources is the programmers’
responsibility. We present several optimizations, which enable
mapped programs to exploit various aspects of the stream
processor architecture. Finally, we analyze the performance
of the stream processor and the presented optimizations on a
set of scientific computing applications. The stream programs
are from 1.67 to 32.5 times faster than the corresponding
FORTRAN programs on an Itanium 2 processor, with the
optimizations playing an important role in realizing the per-
formance improvement.

1. Introduction

Scientific computing plays an important role in the research
and industry; it features massive amounts of data, intensive
computations, and large amounts of parallelism. Currently
general purpose architecture processors cannot meet some of
the demands of the scientific computing applications, such
as large amounts of bandwidth, large amounts of processing
capability, low power and low price. Stream processors [1]-[4]
have demonstrated significant performance advantages in me-
dia applications [5]-[7]. Many researchers are are interested in
the applicability of stream processors to scientific computing
applications [4], [8]-[10]. This paper provides an experimental
evaluation of scientific computing applications on a stream
processor.

The stream processor architecture is designed to imple-
ment the stream programming model [11], which has many
differences from the architecture of a conventional system.
Although language implementations, such as streamC/kernelC
[12], Brook [13], and Sequoia [14], exploit the model’s fea-
tures well, they do so at such a comparatively low-level; it
is mainly the programmer’s responsibility to manage system
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resources. Moreover, compared to other stream applications,
such as media applications, scientific computing applications
have more complex data traces and stronger data dependence.
Therefore, writing a high-performance scientific stream pro-
gram is rather hard and important to get right.

In this paper, we use the language streamC/kernelC [12]
to map FORTRAN versions of scientific applications to the
stream processor. A general method is first given to map
applications to the stream processor; optimizations are then
proposed to improve the overall performance of the mapped
stream programs. Finally, the applicability of the stream pro-
cessor for scientific applications and the effectiveness of our
optimizations are measured through a number of experiments.
In addition, we discuss the implementation of our optimiza-
tions in a compiler.

The rest of this paper is organized as follows: Sect. 2
presents a background to stream processing; Sect. 3 describes
the general implementation of scientific computing applica-
tions on the stream processor; Sect. 4 details the optimizations
used in this paper; In Sect. 5, we evaluate the performance of a
stream processor compared to a general purpose processor and
the effect of the presented optimizations; Sect. 6 discusses the
automatic implementation of the presented optimizations in a
compiler; Finally Sect. 7 draws conclusions from this work.

2. Background

Stream Programming Model

In the stream programming model as depicted in Fig.1,
the data primitive is a stream, an ordered set of data of
an arbitrary type. Operations in the stream programming
model are expressed as operations on entire streams. These
operations include stream loads/stores from/to the memory,
stream transfers over a multi-node network, and computations
in the form of kernels.

A kernel is a computation-intensive function that performs
computations on entire streams by applying a function to each
element of the stream in sequence. Kernels operate on one or
more streams as inputs and produce one or more streams as
outputs. Kernels are restricted to only operate on local data; a
kernel’s outputs are functions only of their inputs, and kernels
may not make arbitrary memory references.
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A stream program is constructed by chaining stream opera-
tions together. Programs expressed in this model are specified
at two levels: the stream level and the kernel level. A simple
stream program that transforms a series of points from one
coordinate space to another, for example, might consist of
three stream operations specified at the stream level: a stream
load to bring the input stream of records onto the on-chip
memory, a kernel to transform those records to the new
coordinate system, and a stream save to put the output stream
of transformed points back into off-chip memory.

There are two kinds of streams: basic streams and derived
streams. A basic stream is an array of records, defined by a
size. A derived stream is a reference to a subset of the records
in a basic stream, defined by a basic stream and a start, end,
and access pattern within that stream. The start is the index
of the first record in the stream. The end is the index of the
record after the last record that could be in the stream. The
access pattern defines which records, between the start and the

end, are in the stream.
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cessing model.

Stream Architecture

The stream programming model has been shown to effi-
ciently map to stream architectures, such as Imagine [1], FT-64
[4] and Merrimac [10]. The architecture for a stream processor
is illustrated in Fig.2. Identical clusters of ALUs operate in
parallel on sequential records of streams, in a SIMD fashion.
That is, each cluster is executing the same instruction at the
same time. Instruction-Level Parallelism (ILP) in kernels is
exploited by the use of Very Long Instruction Words (VLIW),
with each very long instruction word encoding multiple in-
structions that are executed in parallel across the cluster’s
ALUs. There is a three-level memory hierarchy. Only data
in the Local Register Files (LRFs), immediately adjacent to
the arithmetic units, can be used by the clusters during each
kernel execution. The Stream Register File (SRF), an on-chip
storage, is used to read and write streams between kernels.
Off-chip memory bandwidth is used only for an application’s
inputs, outputs and intermediate streams that cannot fit in the
SRF. The memory system can concurrently support two stream
transfer requests.

Streams and Scientific Computing Applications

On the one hand, the stream programming model with its
hardware implementation, the stream processor, is a good
choice for scientific computing applications for several rea-
sons. First, the use of streams exposes the parallelism found

in scientific computing applications at three levels: Instruction
level parallelism(ILP) in kernels, Data level parallelism (DLP)
among records of streams and Task level parallelism (TLP).
The ILP is exploited by the multiple ALUs in each cluster exe-
cuting part of the VLIW concurrently, and the DLP is exploited
by the clusters operating in a SIMD fashion, and the TLP is
exploited by the multiple stream processors running one kernel
or successive kernels in a pipeline. Second, the memory wall is
significantly relieved in the stream processor. The three-level
memory hierarchy captures the reuse in scientific computing
applications well: at the top level the main memory offers
space for large, infrequently accessed data; at the intermediate
level, the SRF allows for the on-chip reuse of streams; finally
at the local and fast level, the LRFs allow for the reuse of
temporary values used by kernel computations. Furthermore,
because the kernels in the stream programming model are
restricted to operate only on local data, the kernel execution
is both fast and efficient. In addition, the high latency of
memory access is well hidden in the stream processor by
executing kernel computations and stream transfers, without
any dependences, concurrently. Simple and explicit stream
access patterns can allow for greater concurrency.

On the other hand, the stream programming model is quite
new and requires a lot of manual intervention to reuse data, to
enhance the parallelism and to organize the data. Therefore,
mapping scientific computing applications to the stream pro-
cessor and achieving good performance are quite difficult.First,
the data reuse in scientific computing applications is much
more complicated and irregular than that in other stream
applications. This brings new challenges to programmers to
preserve the reuse of data among streams and the reuse
among records within streams. Second, the more complex
control-flow of scientific computing applications makes it
difficult to improve the parallelism in their stream applications.
Third, the stream organization effects the exploitation of the
architecture’s feature directly. The stronger data dependence
and more complex data traces of scientific computing applica-
tions make it difficult to organize data as streams efficiently.
Finally, compared with other stream applications, the scientific
computing applications have larger data sizes.

3. Mapping Scientific Computing Applications to
the Stream Processor

The implementation of scientific computing stream pro-
grams can be thought of as a code transformation on programs
that consist of a series of loops that process arrays of records.
The access pattern of each loop with respect to each array
is extracted into one or more streams, and the computations
performed by each loop are encapsulated inside a kernel. The
remaining code composes the stream level program. However,
implementing more efficient stream programs requires ana-
lyzing the dataflow through and from the desired algorithm.
In reality, most applications need to be restructured to make
efficient use of the stream programming model.
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This section describes the general implementation steps
of generating stream programs and the transformations of
FORTRAN code in each step.

Selection of Code Segment to be Mapped

First of all, the parts of a program to be executed on the
stream processor should be selected. Generally, this will be the
code with intensive computations. Many scientific computing
applications are characterized by the well-known 80%-20%
rule: 80% of the CPU time is spent in 20% of the code, i.e. the
DO-loops. Therefore, we choose these intensive computations
to be executed on the stream processor.

Stream Level

The stream level program defines the high-level control- and
data-flow between kernels. When implementing a stream level
program, we should first know the data access patterns and
data dependence of the selected code. Then, with the objective
to improve the ratio of computations to memory transfers and
the parallelism across clusters, we restructure the code by the
way of data dependence analysis and loop transformations.
The transformations used to restructure the code in Fig.3(a)
are given below.

e Loop fusion. Loop fusion involves joining loops that
iterate over the same iteration space. This method can
expose expressions within the loops that can be shared.
For the stream processor architecture, this transformation
can allow for the reuse of the LRFs amongst loops and
reduce the number stream operations necessary to carry
out a computation. Loopl and Loop2 in Fig.3(a) can be
joined together because they are dependence free loops
with the same iteration space, while Loop2 and Loop3
cannot. The code transformed by loop fusion is shown in
Fig.3(b). Generally, as many loops as possible should be
fused. The opportunities to fuse loops are increased by
other loops optimizations such as loop reversal and loop
peeling [15].

o Loop replication. If the body of a block contains loops
which can be fused with loops near the conditional
statement, such as Loop3 and Loopl2 in Fig.3(b), we
should replicate the loops into the conditional block, as
shown in Fig.3(c).

« Iterative loop optimizations. The methods highlighted
above are used repeatedly to make a loop contain as
many as possible computations. The final code shown
in Fig.3(d), where we have reduced the number of loops
to two and all conditions are outside of the outermost
loops.

Stream Organization

The organization of arrays with respect to access mode
into streams decides the number of stream memory transfers,
the amount of inter-LRF communication and the utility of
the SRF; it is key in ensuring good program performance.
First, through trace analysis, arrays with the same data trace,
such as CC(LQ), TT(LQ, 1), TT(LQ, 2), TT(LQ, 3) and
TT(LQ, 4), should be organized as a stream whose record
is made up of all elements referred to by the same index
variable’s value. Therefore, the data used in a single kernel

iteration, instead of being distributed, is combined into records
at consecutive addresses in off-chip memory. This reduces
memory access overheads.

If the working set of the selected loop is beyond the SRF
capacity, strip-mining should be applied. Loop strip-mining
converts a single loop into a nested loop where the inner loop
iterates over a subset of the iteration space. The size of the
strip in the inner loop is such that the SRF capacity is not
exceeded. The strip size should also be determined with the
consideration for reserving SRF space for loop-carried stream
reuse.

A stream with both constant start and end bounds is called a
constant-bound stream, such as the stream reference a (0, 64)
and the basic stream s whose start bound is O and end
bound is the stream length. Correspondingly, a stream with
variable start or end bound is called a variable-bound stream.
When possible, references to variable-bound streams should
be avoided by replacing such references to constant-bound
streams. Avoiding referring to variable-bound streams helps
the data-flow analysis of the compiler analyze dependencies
and increase reuse.

Additionally, good stream organization can reduce inter-
LRF communication and improve the utility of the SRF, which
will be described in Sect. 4.2 and Sect. 4.3, respectively.

Kernel Level

Intensive computations on streams are organized into ker-
nels. For the code in Fig.3(d), the computations in Loop123
and Loopl2’ are written into kernels respectively.

We have mapped scientific computing applications from
FORTRAN to the stream processor. Table 1 summarizes the
transformations used in each benchmark that will be part of
our presented results.

QMR.|MVM | Laplace |Swim |MG |FFT |LUD |GEMM
Loop fusion N N v |V N
Loop replication| / N
Swipmining | v | vV | vV [V [VIVIV] V

Table 1. Transformations used in each benchmark.

4. Optimization for the Stream Programming
Model

StreamC/kernelC provides two methods, unroll and pipeline,
to optimize kernels, and two methods, doUnroll and doSoft-
warePipeline, to optimize stream level programs [16]. These
optimizations are inherited from the scalar and vector pro-
gramming models and have been widely used to improve the
performance of stream programs [9], including ours. However,
we do need some further optimizations specialized for the
stream programming model. This section proposes several
other transformations aimed at optimizing the following as-
pects: utilizing high bandwidth from the SRF to the LRFs
and vice versa, reducing inter-LRF communication, exposing
stream reuse and avoiding resource conflict during prefetching.

107



0 J=1,NY
L=J*NXD+1
DO I=1,NX
Loopt L=L+l
QD(L) = QP(L)+CAUXI*QD(L)
U(L) =U(L) +ETA1*QD(L)
ENDDO
O J=INY
L=J*NXD + 1
LQO = (J-1)*NX
DOI=1NX
L=L+1
LQ = LQO+I
QT(L) =CC(LQ)*QS(L)+TT(LQ, 1)*QS(L+M1)+
TT(LQ.2)*QS(L+M2)+TT(LQ.3)*QS(L+M3)+
TT(LQ.4)*QS(L+M4)

Loop2

ENDDO
NDDO

DO]— INY
L =J*NXD+1
DOI=1NX
L=L+1
LQ=LQ+I

IF(NPREP FQ 1) THEN
QT(L) = QT(L)*FF(LQ)
ENDDO

Loop{
ENDDO

ENDIF

(a) Example code.

0J=1,NY
L=J*NXD + 1
LQ = (-1)*NX
DO I=1,NX
L=L+l
LQ=1Q+]1
QD(L) = QP(L)+CAUXI*QD(L)
U(L) = U(L) +ETAT*QD(L)
QT(L)=CCLQ)*QS(LI+TT(LQ, )*QS(L+M 1)+
TT(LQ.2)*QS(L+AM2)+TT(LQ,3)*QS(L+M3)+
TT(LQ4/*QS(L+M4)

Loop12:

ENDDO
:NDDO
IF(NPREP.EQ.1) THEN
DOJ=1NY
L=J*NXD + |
LQ = (J-1)*NX
DO I=1,NX
L=L+l
LQ=LQ+l
QT(L) = QT(LY*FF(LQ)
ENDDO
ENDDO
ENDIF

Loop3

(b) Code after loop fusion

TR(NPREP.EQ.1) THEN
DO J=1.NY

L=J*NXD+1
LQ= (J-1)*NX
DO I=1.NX
L=L+
LQ=LQ+1
Loopl2 QD(L) = QP(L)+CAUXI*QD(L)
U(L) = U(L) +ETAT*QD(L)
QT(L)=CC(LQ)*QS(L)+ TT(LQ. )*QS(L+MI+TT(LQ,2)*QS(L+M2)+
TT(LQ.3)*QS(L+M3)+ TT(LQ4)*QS(L+M4)
ENDDO
ENDDO
DO J=LNY
L=J*NXD+1
LQ = (J-1)*NX
DO I=1.NX
Loop3 L=L+l
LQ=L1Q+1
QT(L) = QT(L)*FRLQ)
ENDDO
ENDDO
ENDIF ELSE BEGIN
DO J=LNY
L=J*NXD+1
LQ = (J-1)*NX
DO I=1.NX
L=L+l
. LQ=LQ+1
Loopl2 QD(L) = QP(L)+CAUXI*QD(L)
U(L) = U(L) +ETAT*QD(L)
QT(L)=CCLQ)*QS(L}+TT(LQ. ) *QS(LAMI+TT(LQ.2)*QS(L+M2)+
TT(LQ.3/*QS(L+M3)+ TT(LQ4)*QS(L+M4)
ENDDO
ENDDO
ENDELSE

(c) Code after loop replication

IF(NPREP.EQ.1) THEN
DO J=1.NY
L=J*NXD+ 1
LQ = (J-1)*NX
DO I=1,NX
L=0L+l
LQ=LQ+1
QD(L) = QP(L)+CAUXI*QD(L)
U(L) = U(L) +ETA1*QD(L)
QT(L)=CCLQ)*QS(L)+TT(LQ, )*QS(L+M I+ TT(LQ,2)*QS(L+M2)+
TT(LQ.3)*QS(L+M3)+ TT(LQ.4)*QS(L+M4)
QT(L) = QT(L)*FF(LQ)
0

Loop123

ENDIF ELSE BEGIN
DO J=I,NY
L=J*NXD + 1
LQ = (J-1)*NX
DO I=1.NX
L=L+l
LQ=1Q+1
QD(L) = QP(L)+CAUXI*QD(L)
U(L) = U(L) +ETA1*QD(L)
QT(L)= (.C(LQ)*QS(L)#[T(LQ D*QS(L+MI+TT(LQ.2)*QS(L+M2)+

Loop12'

(LQ3)*QS(L+M3)+ TT(LQ4)*QS(L+M4)

ENDDO
ENDDO
ENDELSE

(d) Final code

Fig. 3. Example code 1 - use of loop transformations to improve code layout for the stream processor.

4.1. Stream Splitting

The total number of streams that may be referred to within
a kernel is limited by hardware design. The Imagine stream
processor has a limit of 8 streams [2], [17]. For a kernel that
accesses less than 8 streams, stream splitting involves dividing
each stream into two or more even parts and updating the
kernel to process double or more streams at a time. Each
part of the stream acts as an new input or output stream
of the transformed kernel. As work on the streams must be
inherently parallel, stream splitting does not bring about any
data dependence violations. Note that the number of streams
accessed by the transformed kernel must obey the limit.

for(i=0; i<16; i++){
a0 = a((i*strip),(i*strip+strip));
b0 = b((i*strip),(i*strip+strip));
product(a0, b0, product);

for(i=0; i<16; i++){
a0_upper = a((i*strip),(i*strip+strip/2));
bO_upper = b((i*strip),(i*strip+strip/2))
a0_lower = a((i*strip+strip/2),(i*strip+strip));
b0_lower = b((i*strip+strip/2),(i*strip+strip));
product_new(a0_upper, b0_upper, a0_lower,

b0_lower, product);
}

}

Fig. 4. Example of stream splitting

const int N = 256;

stream<float> a((N+2)*(N+2)),b(N*N);

stream<float> a0, al, a2, a3,a4,b0;

float B[N][N];

for(int i = 0; i<N; i++){
a0=ai *N, (i+1) *N);
al =a(@+1) *N, (i+2)*N);
a2=a(i+2)*N,(i+3)*N);
a3=al*N+ 1,0+ D) *N+1);
ad=a(i*N+2,(1i+1)*N+2)
b0 =b( *N, (i+1) *N);
example(a0,al,a2,a3,a4,b0);

}

streamSave(b, B);
Fig. 5. Example code 2
The code in the top of Fig.4 computes the product of
streams a and b, with the loop having already transformed
by strip-mining. Because the kernel product has only two
stream arguments, the transformation can be applied, with the
transformed code shown in the bottom of Fig.4. The original
input streams, ag and by, are split into two even streams,
ag_upper, bo_upper, ag_lower and by_lower, respectively.
The kernel product is updated into the kernel product_new
which calculates product_upper, the product of ag_upper
and bg_upper, and product_lower, the product of ag_lower
and bg_lower, and product, the sum of product_upper and
product_lower. As the code is still below the 8 stream limit,
stream splitting can be applied to the code again (although not
shown here).
Stream splitting improves the utilization of the bandwidth
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from the SRF to LRFs and vice versa by allowing more
concurrent stream transfers. Furthermore, stream splitting has
the advantages brought by unrolling a kernel loop, such as
less loop overhead, increased opportunity to perform local
optimizations and thereby potentially increased ILP. Stream
splitting can be seen as a form of manually strip-mining the
kernel loop and fusing the mined loops.

4.2. Stream Transposition

Stream transposition involves redistributing records of a
stream among the SRF lanes to make consecutive records
on the same lane. The SRF is banked into lanes such that
each cluster contains a single lane. Records of a stream are
interleaved among lanes. A cluster gets records on other lanes
only by inter-lane communication. Fig.6 shows the distribution
of the stream ag in Fig.5 among the lanes, with neighboring
records on neighboring lanes.

a0
[[1,2,3.4,5, 6, 7, 8,9,10, 11, - = 256 |

>/ Clustero |
F—>{ Cluster 1 |
F—>{ Cluster2 |
| Cluster3 |

|—)| Cluster7 |

Fig. 6. Distribution of ag among lanes.

laned 1, 9,17,25,33,41,+

lanel[ 2,10,18,26,34.42,+

lane?] 3,11,19,27,35,43,+

laned 4,12,20,28,36 44,

ane7] 8,16,24,32,40,48,--

RN AN ¥ 5
lane(] 0.123.4,5.6.7.++33 |—{ Cluster 0 |
lanel[ 32.33,34,35,36,+,65 | —| Cluster 1 |
lane2] 64,63,66,67,68,+,97 |—»] Cluster2 |

lane3| 96,97,98,99,+,129 |—{ Cluster3 |

lane7] 224,225,226,-+-,257 |—{ Cluster7 |
Fig. 7. Distribution of aj, among lanes after being transposed.

al’
[0,1,2,3,4, 5, 6, 7, 89,10, 11,12, «=- =+ 255 |

lane([ 0.123.4,5.6.7.-+31 — Cluster 0|
lanel[ 32,33,34,35,36,++,63 |—| Cluster 1 |
lane2] 64,65,66,67,68,++,95 —{ Cluster2 |
laned] 96,97,98,99,++,127 |——{ Cluster3 |

lane7] 224,225,226,+,255 |——{ Cluster7 |

Fig. 8. Distribution of a} among lanes after being transposed.

In the original FORTRAN program of the code shown in
Fig.5, three sequential elements of array a are involved in
each iteration of the kernel loop, i.e. a(i,j), a(i + 1,7) and
a(i + 2, 7). When mapping such loops, we have two choices:

e Organize data as different streams to start and to end

at different offsets into the original data arrays, with
the stride skipping over the unneeded elements. The
stream level program in Fig.5 is generated this way. The

const int N = 256;

stream<float> a((N+2)*(N+2)),b(N*N);

stream<float> a0’, al’, a2’, b0’;

float B[N][N];

for(int i = 0; i<Nj; i++){
a0’ = a(i *N, (i+1)*N+2, N/Ncluster, N/Ncluster+2);
al’ = a((i+1)*N, (i+2)*N, N/Ncluster, N/Ncluster);
a2’ = a((i+2)*N, (i+3)*N, N/Ncluster, N/Ncluster);
b0’ =b(@*N, (i+1)*N, N/Ncluster, N/Ncluster);
example’(a0’,al’,a2’,b0’);

streamSave(b, B);

Fig. 9. Code optimized by stream transposition.

data covered by the three above array references in the
loop are organized into the streams ag, a3 and a4 in
referred order. Although the data in the records of every
stream are almost the same, just displaced, all the streams
must be loaded from off-chip memory. The increase in
memory transfers consequently makes memory accesses
the performance bottleneck of this approach.

o Organizing data covered by the three array references
in the loop as a single stream. In this way, the stream
references ag, as and a4 in Fig.5 are merged into one
stream a(y = a(i X N, (i+ 1) x N 4 2). However, during
the kernel example execution, cluster; must communicate
with cluster;y;1 and cluster;_1 to gather neighboring
records. Inter-lane communication causes clusters to stall
while waiting for the data collection and as such becomes
the performance bottleneck of this approach.

Stream transposition reorganizes the data distribution, with
adjacent records distributed on the same lane. Thus, the
optimized stream program has the same number of memory
transfers with the second choice, but does not require any inter-
LRF communication. The steps of the stream transposition for
Fig.5 are given below.

Step A. Organize all records covered by three array ref-
erences into a stream named a(, with the same order as the
array a.

Step B. Set the stride of af, be Length i eam/Netuster
and the record length be Length com/Netuster + 2, With
N uster representing the number of clusters and Length ;. pom,
representing the stream length. This means the original records
from i X Length greqm/Netuster 10 @ X Length gronm / Netuster +
Length gueam/Netuster + 2 become the ith record of the new
derived stream, distributed on cluster;. The distribution of aj,
among lanes is shown in Fig.7. Data distribution is transposed
as shown, with neighboring records distributed on the same
lane, such that cluster; gets neighboring records from the lane
of itself without any inter-lane communication.

Step C. Divide all other stream references into N .jyster
parts by setting the stride be Length y,qm/Neiuster and the
record length be Length yu,eqm /Neiuster- The distribution of af
is shown in Fig.8. As shown, data distribution of other streams
is also transposed.

Step D. Update original kernel to process the records in the
corresponding new order.

After the optimization, the final stream program, shown in
Fig.9, has few inter-cluster communication and less memory
transfers.
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4.3. Stream Reuse

Reuse among streams occurs in the SRF when a stream
reference in a stream level loop accesses the same values in
different iterations, or different stream references access the
same values. For loop-independent stream reuse, i.e. different
stream references accessing the same values in the same
iteration, the stream compiler utilizes it as producer-consumer
locality. But for loop-carried stream reuse, the utilization is no
longer straightforward.

for(int i = 0; i<N; i++){

(i+3)*N+2, N/Ncluster, N/Ncluster+2);
b0'= b(i*N, (i+1)*N, N/Ncluster, N/Ncluster);
example"(a0',al",a2",b0");

streamSave(b, B);

Fig. 10. Changed loop.

+

a
i e[ a0 [al" [ a2" ‘
a
s a0 [al” | a2’
a
2 a0’ [al" | a2 |-

Fig. 11. Relationship among the access locations of the stream
references ay), a1” and a2”.

The stream length and record length of the streams a) and
af in Fig.9 are changed to match those of the stream aj, with
the changed streams named a;” and ay”. Correspondingly, the
kernel is updated to process the correct records. Fig.10 shows
the loop in the changed code. For the stream references aj,
a1” and as”, the relationship among their accessing locations
relative to the start of their basic stream is described in Fig.11.
It is shown that the stream reference as” in iteration i, the
stream reference a;” in iteration 7+ 1 and the stream reference
af, in iteration i + 2 access the same locations. As the values
of the basic stream a are unchanged, the stream reference a;”
does not require accessing off-chip memory but accesses the
SREF to achieve the values that are used by the stream reference
as” in a previous iteration. Similarly, aj, accesses the SRF to
achieve the values that are used by the stream reference as”
in the two previous iterations.

The transformation of a stream level program, to make the
stream compiler capture loop-carried stream reuse, is discussed
below.

Step A. Replace variable-bound stream references with
constant-bound stream references. Because the compiler can
only identify the reuse supplied by constant-bound stream
references, all variable-bound stream references with constant
length should be transformed to constant-bound stream refer-
ences by copying variable-bound streams to constant-bound
streams and replacing references involved by references to
the constant-bound streams. Fig.12(a) shows the transformed
code; the function streamCopy(s,t) copies records of s to ¢.
An SRF-to-memory copy generates a save of s to memory;
a memory-to-SRF copy generates a load of s to the SRF; an
SRF-to-SRF copy generates a save of s to memory and a load
of s to the SRF buffer that holds ¢.

Step B. When the stream s; is reused as ss in the
next iteration, remove the load of s, inserting the function

for(int i = 0; i<N; i++){
stream<float> a00[N],a01[N],a02[N],b00[N];
... //definitions of a0', al", a2" and b0’
streamCopy(a0', a00);
streamCopy(al", a01);
streamCopy(a2", a02);
example"(a00,a01,a02,b00);
streamCopy(b00, b0’)

streamSave(b, B);

(a) Transformed code after step A.

streamCopy(a(0*N, 1*N+2, N/Ncluster, N/Ncluster+2), a00);
streamCopy(a(1*N, 2*N+2, N/Ncluster, N/Ncluster+2), a0l);
for(int i = 0; i<N; i++){

stream<float> a00[N],a01[N],a02[N],bOO[N];

... //definitions of a0', al", a2" and b0'

streamCopy(a2", a02);

example”(a00,a01,a02,b00);

streamCopy(b00, b0")

streamCopy(a01, a00);

streamCopy(a02, a01);

streamSave(b, B);

(b) Transformed code after step B.

streamCopy(a(0*N, 1*N+2, N/Ncluster, N/Ncluster+2), a00);
streamCopy(a(1*N, 2*N+2, N/Ncluster, N/Ncluster+2), a01);
for(int i = 0; i<N-N%3; i++){

stream<float> a00[N],a01[N],a02[N],b0O[NT];

... //definitions of a0', al", a2" and b0’

streamCopy(a2", a02);

example"(a00,a01,a02,b00);

streamCopy(b00, b0")

i=i+1;

... //definitions of a0', al", a2" and b0'

streamCopy(a2", a00);

example"(a01,a02,a00,b00);

streamCopy(b00, b0")

i=i+1;

... //definitions of a0', al", a2" and b0’

streamCopy(a2", a0l);

example"(a02,a00,a01,b00);

streamCopy(b00, b0")

}
for(int i = N-N%3; i < N; i++){

... /ldefinitions of a0', al", a2" and b0'
streamCopy(a0',a00); streamCopy(al",a01);
streamCopy(a2", a02);
example"(a00,a01,a02,b00);
streamCopy(b00, b0")

streamSave(b, B);

(c) Final code.
Fig. 12. Transformation of stream reuse.

streamCopy(s1, s2) at the end of the loop body to reuse s;
as so in the next iteration, and modify the loads of the data
referred to by s2 in the first iteration just before the loop
body. The code in Fig.12(a) is changed to that in Fig.12(b) by
inserting the function streamCopy (ag1, agp) to reuse ap; as
ago and the function streamCopy (age2, ap1) to reuse ags as
a1, removing the load of agg and ap1, and adding two stream
loads of af, and a;” just before the loop body.

Step C. Eliminate stream copies. An SRF-to-SRF stream
copy generates a stream load and a stream store, so they must
be eliminated. Since these copies implement a permutation
of values in the SRF, we can eliminate the need for copies
by unrolling to the cycle length of the permutation, with the
stream references replaced by the right streams. The final code
is shown in Fig.12(c). The first loop does not require any SRF-
to-SRF copies and the number of its iterations is a multiple of
3. The second loop, called epilogue loop, runs iterations left
out of the unrolled loop. It is straightforward to prove that the
final code calculates the desired answer.

The stream compiler can capture reuse in transformed
stream programs, thus efficiently reducing off-chip memory
transfers.
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FORTRAN programs, with records in the same row but in
different columns (such as a(s, j) and a(i, 7 + 1)) involved in
the loop body to be transformed to a kernel, have loop-carried
stream reuse. This transformation allows the compiler to reuse
streams and thereby reduce off-chip memory transfers.

4.4. Ensuring Prefetching

The concurrency of kernel computations and memory trans-
fers is the most important way of hiding memory access
latency in a stream processor. Only stream operations without
any dependence can be executed concurrently. In this way,
during the execution of a kernel, the input streams of next
kernel can be prefetched if the stream transfers do not have
any dependenceies that interfere with the kernel execution.
Explicit and simple memory access patterns, and minimal
data- and resource- dependences, produce many opportunities
for prefetching, and make it a key optimization for stream
processors. To ensure the prefetching of input streams, we
should avoid conflicts in the SRF between a kernel execution
and the stream loads of the next kernel’s inputs.

Fig.13(a) shows the time sequence graph of the first two
iterations’ execution of the code in the bottom of Fig4.
The Clusters column shows which kernels were running
at what time, and the MEMI and MEM2 columns show
the streams passing between the stream processor and its
off-chip memory. With four SRF buffers, named buffer,
buffer,, buffer, and buffers, allocated to the four input
streams ag_upper, bg_upper, ai_lower and by_lower, when
the kernel product_new of the first iteration is running, these
four buffers are used by the kernel. At the same time, the
prefetching of ag_upper and by_upper for the kernel of the
second iteration requires buffer, and buffer;. As a result,
the prefetching fails and there is no overlap between kernel
execution and stream transfers as shown in Fig.13(a).

When the prefetching fails due to an SRF conflict, our
optimization declares new SRF space to hold the data to be
prefetched, hence the name “ensuring prefetching”. For code
at the bottom of Fig.4, the ensuring prefetching transformation
unrolls the loop two times. The stream compiler will allocate
different stream buffers for the different unrolled kernels” work
sets, thus avoiding an SRF conflict. The time sequence graph
of the first two kernels’ execution is shown in Fig.13(b).
For more complex code in Fig.12(c), ensuring prefetching
declares an extra constant-bound stream to hold the stream to
be prefetched and replaces all stream references involved by
references to this stream. In addition, the approach of software
pipelining [16] can be used in the transformed code to overlap
the last kernel execution with the prefetching of the streams
for the first kernel in the next iteration.

5. Evaluation

In order to evaluate the performance of scientific computing
applications on the stream processor, we perform tests on
eight typical scientific application kernels as specified in

Clusters

Mem]1 Mem?2 Clusters Mem]1 Mem2
Toad]Toad =g I
a0 || b0
o0ad | | Toad
e
1 _new i=1 1
oad | [Toad
oad | [Toad
i=2|| _new

\

ouwm

our

product
_new

Prefeching for next iteration

Fig. 13. Execution time sequence graph without (a) and with (b) the
ensuring prefetching optimization.

Table 2, each having different performance characteristics.
QMRCGSTAB, denoted as QMR., is a solver of large non-
symmetric linear systems in subspace iteration method [18],
and MVM calculates multiplication of two band matrices.
The row max(computation density) is used to evaluate the
relationship between computations and memory transfers. It
is quantified with the number of the computations per word
transfer, assuming that each element is loaded from off-chip
memory at most once.

Number of clusters 8
Operating frequency 1GHz
Capacity of the LRFs 9.6KB
Capacity of the SRF 128KB
Bandwidth of the LRFs 1088GB/s
Bandwidth of the SRF 64GB/s
Bandwidth of chip-off DRAM| 4GB/s

Table 3. Baseline parameter of Isim.

Operating frequency 1.6GHz
Capacity of Level 1 Data/Instruction Cache| 16KB
Capacity of Level 2 Data/Instruction Cache| 256KB
Capacity of Level 3 Data/Instruction Cache| 6MB
Bandwidth of chip-off DRAM 6.4GB/s

Table 4. Properties of the Itanium 2 processor.

In our experiments, we use Isim, a cycle-accurate simulator
for the Imagine stream processor [2], [17], to get the per-
formance of the stream programs. The baseline configuration
of the simulated stream processor and its memory system is
detailed in Table 3, and is used for all experiments unless noted
otherwise. For comparison, the original FORTRAN programs
are compiled by Intel’s compiler ifort with -O3 optimization,
and then executed on a single-core Itanium 2 server, whose
properties is shown in Table 4. If the data size of the program
is small, we eliminate the extra overheads (such as system
calls) by means of executing them multiple times and getting
the average time as the final result. .

5.1. Overall Performance

The performance of scientific stream programs with all
available optimizations is presented first to evaluate the stream
processor’s applicability to scientific computing. Fig.14 shows
the speedup yielded by Isim over the Itanium 2. All ap-
plications get better performance on Isim, which indicates
stream processors can be successfully applied to scientific
computation. FFT enjoys the highest speedup, due to its data
access pattern in the butterfly and bit-reverse transformations
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QMR. MVM Laplace Swim MG FFT | LUD GEMM
Source — — NCSA | Spec2000 NPB HPCC| BLAS BLAS
Prob. Size 800 x 800[832 x 832(1024 x 1024(512 x 512[128 x 128 x 128| 4096 (128 x 128512 x 512
max(comp. density)| 1.85 1.5 2.5 3.67 3.67 44 56 341

Table 2. Specifications of eight scientific kernel benchmarks.

that are specially supported by the stream processor. Other
computation-intensive applications, i.e. LUD, and GEMM,
get larger speedups, due to the increased number of ALUs
in the stream processor. Memory-intensive applications, i.e.
QMRCGSTAB, MVM, Laplace, Swim and MG, also get
better performance on Isim, mainly due to the stream reuse
in the SRF and the overlap of kernel execution with memory
transfers.

Fig.15 presents the applications’ performance on Isim in
GFLOPS. Memory-intensive programs, i.e. QMR., MVM,
Laplace, Swim and MG, gain 5.3%~13.0% of the Isim peak
performance, and compute-intensive programs, i.e. FFT, LUD
and GEMM, gain 10.4%~44.3% of the Isim peak perfor-
mance.

One key to achieving high performance on the stream
processor is making kernel execution and memory transfers
occur concurrently. Fig.16 demonstrates the distribution of
kernel execution time and memory access time. The difference
between their sum and 1 equals the overlapping time of the
kernel execution with memory transfers. Memory-intensive
programs, i.e. QMR., MVM, Laplace, Swim and MG, attain
good concurrency. In particular, the kernel execution time and
memory access time of Laplace are almost evenly distributed,
indicating perfect concurrency. But computation-intensive pro-
grams, i.e. FFT, LUD and GEMM, yield little concurrency.
This is because there are few stream transfers in the kernel
execution, except for the initial input and a final output.

Fig.16 also shows the time taken for applications to execute
kernels and to access memory, respectively. It still takes
memory-intensive applications much time to access memory.
However, due to the reuse of streams and the concurrent
memory accesses, memory access delays become less. In par-
ticular, Laplace is now bounded by both computing resources
and memory access performance. Surprisingly, computation-
intensive applications are now somewhat subject to memory
access performance. An abundance of ALUs in the stream
processor execute the computations quickly and memory ac-
cess becomes a performance bottle neck. The initial input and
final output of FFT, for example, take so much time that the
performance of FFT is bounded by the time to access memory.

A second key to performance is to reuse the streams in
the SRF. Fig.17 shows the computation density with the
computations per word transfer, indicating the degree of stream
reuse. In fact, except for LUD and GEMM, all applications
nearly achieve the max computation density(see Table 2).
For example, Laplace which calculates the difference of an
element with its 4 adjacent elements in 2-dimensions, could
get at most 2.5 computations per word transfer and at least 0.83
computation per word transfer; its stream program achieves the
upper bound. As the reuse in LUD and GEMM is exploited
over strips, some reuse does not exist in the innermost loop

in these applications.

Scientific applications also map well to the bandwidth
hierarchy. Achieved bandwidths for the benchmarks are shown
in Fig.18. The difference between the data bandwidths required
at two adjacent levels of the hierarchy is at least an order of
magnitude. This indicates that the bandwidth hierarchy effec-
tively captures the locality exhibited by these applications.

5.2. Effect of Optimizations

In this section we discuss the effect of the optimizations we
present on the application performance. We quantify this goal
by comparing application results without corresponding opti-
mization to results presented in Sect. 5.1. Table 5 summarizes
the optimizations applicable to each benchmark.

QMR.[MVM|Laplace|SwimMG|FFT|LUD|GEMM
Stream Splitting V4 Vv v/
Stream transposition| / [ / 4
Stream Reuse vV |V V4 vV [VIVIVI] V
Ensuring Prefetching 4 Vv

Table 5. Optimizations available for each benchmark.

Stream Splitting

We first demonstrate the effectiveness and importance of
the stream splitting optimization presented in Sect. 4.1. As
this optimization improves the kernel locality and ILP, and
accelerates stream access, we quantify this optimization by
kernel execution time and stream access time with and without
this optimization. Fig.19(a) and Fig.19(b) show the kernel
execution time and stream access time. These results show that
stream splitting does improve the kernel execution and stream
access although it does not reduce any operations or memory
transfers. Fig.19(c) shows the program performance speedup,
which demonstrates the effectiveness of the optimization.
Stream splitting has little impact on other aspects of the stream
processor, such as the transfers of three hierarchies. Therefore,
these parameters are not shown here.

Stream transposition

We now demonstrate the effectiveness of the stream trans-
position transformation that reorganizes streams to reduce off-
chip memory transfers. Fig.20(a) clearly illustrates the ability
of the stream transposition transformation to reduce memory
transfers. Fig.20(b) shows the effectiveness of the optimization
on the computation density, indicating the ability to capture the
stream reuse. Fig.20(c) demonstrates marginal speed-up, due
to the reduction of memory transfers.

Stream Reuse

As a stream processor reduces memory transfers only by
capturing the reuse among streams in the SRF, the stream
reuse transformation is important. We evaluate the impact
of the stream reuse transformation on program performance.
All the selected benchmarks benefit from this optimization.
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Fig.21(a) shows the reduction of memory transfers. For the
computation-intensive applications FFT and LUD, each input
stream of the kernel is the whole or part of an output
stream of the kernel in the previous iteration. Without the
optimization, the stream compiler cannot identify the reuse,
all output streams are written back to off-chip memory and
each kernel must wait until its input streams are loaded from
off-chip memory. Stream reuse removes the appearance of
variable-bound streams, thus making the stream compiler able
to identify reuse. Fig.21(b) depicts the effectiveness of the
optimization on the computation density, indicating the reuse
among streams is exploited well. Fig.21(c) demonstrates the
speedup attained with this optimization. The application Swim
yields the lowest speedup. This is because the reduced memory
transfers were already overlapped with kernel execution.

Ensuring Prefetching

We evaluate the effectiveness of the ensuring prefetching
transformation that improves the concurrency of kernel exe-
cution and memory transfers by exchanging computing time
for SRF consumption. Fig.22 shows the speedup attained with
ensuring prefetching, thus demonstrating its effectiveness in
exposing concurrency. In spite of performance improvements,

the stream programming model expose low-level features of
the architecture, programmers have to manually adjust stream
programs to make them exploit the stream architecture’s
characteristics well. The implementation in the compiler of
the before-mentioned optimizations will relieve programmers
of this burden greatly and this is the focus of our research.
We consider here the implementation of the optimizations in
the compiler.

o Stream Splitting can be implemented in the compiler as
follows. For a loop to be transformed to a kernel, if the
number of streams that will be the kernel’s arguments
is less than 8, the iteration space of the loop is divided
into two or more even parts, each part becoming a new
loop. Then all generated loops are merged into one large
loop and the new loop is mapped to a corresponding
stream program. As the dependencies of the original
program are not violated prior to mapping to the stream
program, the transformation is safe; however, pipelining
may be required to handle loop carried dependencies.
Note that the final generated kernel has at most 8 stream
arguments due to the number of clusters within the
Imagine processor.

o The stream transposition optimization can be applied
automatically as follows. When FORTRAN programs
are being mapped, the compiler identifies when adjacent
records of an array are referred to in the loop to be
transformed. Then the compiler reorganizes the kernel’s
streams and updates the kernel as described in Sect. 4.2.

« Automatically capturing the reuse of streams on the SRF
can be implemented as follows. The compiler identifies
the stream reuse first, with the aid of data dependence
analysis. Then, the code is transformed as described in
Sect. 4.3 to capture the reuse. The transformation done
by this optimization has some similarity to the classic
scalar replacement [19] transformation.

o For the ensuring prefetching transformation, the compiler
evaluates the conditions when the SRF conflict disturbs
the prefetching, and then declares new SRF buffers for
the streams to be prefetched into.
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7. Conclusion

This paper has presented an experimental evaluation of
scientific computing applications on a stream processor. Eight
different scientific applications were used for the exper-
iments, each having different performance characteristics.
These tests show that both memory-intensive applications and
computation-intensive applications achieve good performance
on the stream processor. The stream programs yield a speedup
from 1.67 to 32.5 over corresponding FORTRAN programs
run on an Itanium processor. The results indicate the ap-
plicability of scientific computing applications to the stream
processor.

Several optimizations are presented to exploit aspects of
the stream processor: exploiting the bandwidth, reducing inter-
LRF communication, minimizing memory transfers, and ex-
posing the concurrency between kernel execution and memory
transfers. These optimizations deliver significant performance
improvements. In addition, we discuss how to optimize appli-
cations automatically in a compiler with our methods.
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