
Next-Generation Performance Counters:
Towards Monitoring Over Thousand Concurrent Events

Valentina Salapura †, Karthik Ganesan�, Alan Gara †, Michael Gschwind †,
James C. Sexton † and Robert E. Walkup †

†IBM Thomas J. Watson Research Center
Yorktown Heights, NY

� University of Texas at Austin
Austin, TX

Abstract

We present a novel performance monitor architecture,
implemented in the Blue Gene/PTM supercomputer. This
performance monitor supports the tracking of a large num-
ber of concurrent events by using a hybrid counter architec-
ture. The counters have their low order data implemented in
registers which are concurrently updated, while the high or-
der counter data is maintained in a dense SRAM array that
is updated from the registers on a regular basis. The per-
formance monitoring architecture includes support for per-
event thresholding and fast event notification, using a two-
phase interrupt-arming and triggering protocol. A first im-
plementation provides 256 concurrent 64b counters which
offers an up to 64x increase in counter number compared to
performance monitors typically found in microprocessors
today, and thereby dramatically expands the capabilities of
counter-based performance tuning.

1 Introduction

Traditionally, the architecture and design of performance
monitors have not been prime considerations in overall pro-
cessor design, since they do not directly impact processor
performance. Most current processors support only a very
limited number of performance counters, because of the
cost in area, wiring resources and power dissipation.

The implementation expense has made it unattractive to
provide a robust performance monitor functionality on com-
modity processors. Most parts will never be used for perfor-
mance tuning, yet this capability adds cost to all shipping
parts. The broad cost will benefit only a few development
systems.

However, for large high-performance computing sys-
tems, performance statistics and feedback on program hot

spots and bottlenecks are of paramount importance. As per-
formance monitor design can have a direct impact on the
overall effectiveness of such a computer system, the invest-
ment in performance counter design is justified by the per-
formance gain enabled by them.

As all installed high-performance supercomputer sys-
tems are used both as development and production systems,
feedback derived from performance monitoring will typi-
cally increase the overall system efficiency.

In the future, we can see that the importance of per-
formance monitors will increase, in response to the emer-
gence of control techniques that dynamically re-tune sys-
tem behavior, to both increase performance and decrease
power [6, 8].

This paper gives the first disclosure of a novel hybrid
counter array architecture based on SRAM arrays and dis-
crete counters, as implemented in the Blue Gene/PTM Com-
pute chip. The ability to track a large number of events
concurrently is a new capability for computer systems that
will give programmers and performance analysts better in-
sights into the performance of applications on the system. It
will offer actionable information to assist with application
tuning. The quantitative information that can be obtained
on the effectiveness of various computer sub-systems will
guide design decisions for future systems.

This paper is organized as follows: we give an overview
of the state of the art of performance monitoring in micro-
processors in Section 2, and give an overview of the Blue
Gene/P architecture in Section 3. We introduce our hybrid
architecture is Section 4, and discuss interrupt generation
in Section 5. Section 6 describes the configurations of the
counters, and Section 7 its software front-end. We give an
example for counter usage in Section 8, and draw our con-
clusions in Section 9.

139978-1-4244-2232-6/08/$25.00 ©2008 IEEE

2 State of the Art in Performance Counter
Design

Many processor architectures include a set of perfor-
mance counters that monitor system components such as
processors, memory, and network I/O by counting specific
events, such as cache misses, pipeline stalls and floating
point operations. Statistics of such events can be collected
in hardware with little or no overhead from the operating
system or the application running on it, making perfor-
mance counters a powerful means to monitor an application
and analyze its performance. An overview of existing per-
formance monitoring systems is presented by Sprunt [14].

However, most traditional processors support a very lim-
ited number of counters. For example, Intel’s X86 and IBM
PowerPC implementations typically support 4 to 8 event
counters. While typically each counter can be programmed
to count a specific event from the set of possible counter
events, it is not possible to count more than N events simul-
taneously, where N is the number of counters physically im-
plemented on the chip. Furthermore, the event routing and
multiplexing resources on the chip typically impose addi-
tional limitations on which combinations of events can be
monitored concurrently.

If an application tuning specialist needs to collect infor-
mation on more than N processor, memory or I/O events,
execution of the application will have to be repeated sev-
eral times, each time with a different setting of the perfor-
mance counters. In addition to being time consuming, the
collected statistics can also be inaccurate and hard to cor-
relate, as separate application runs can exhibit differences
in behavior and triggered events. This can be due to differ-
ences in machine resources, such as cache contents, predic-
tor values, I/O characteristics due to network load, etc. This
is especially true for multiprocessor applications.

An alternative approach to this problem is time multi-
plexing the performance counters [1, 10]. In this approach,
performance counters are reconfigured for different sets of
counter events at regular time intervals. However, time-
multiplexing of performance counters introduces reconfig-
uration overhead, and time alignment of samples. Addi-
tionally, the results of time-multiplexing hardware events
are statistically similar (within 15%) to non-multiplexed
data [1].

Martonosi et al. [7] explain the importance of employ-
ing hardware performance counters for tuning multiproces-
sor systems. In shared address space multiprocessor sys-
tems, much of communication and synchronization occurs
via the cache coherence mechanism, and is therefore virtu-
ally impossible to measure in software. In message passing
multiprocessor systems, hardware performance counters are
invaluable for monitoring fine grained communication.

A robust performance monitoring subsystem requires not

only providing a large number of counters, but also com-
paratively wide counters (such as 64b per counter) to cap-
ture a representative workload execution period, and avoid
counter overflows and wrap-around. Small counter widths
also lead to spurious interference by software handlers to
unload and reset counters during application runs. How-
ever, area and power consumption are limiting factors on
the number of counters that can be implemented.

Conventionally, performance monitors have been tar-
geted at internal microprocessor core events, while less
consideration was given to system-level events. As uni-
processor applications give way to multi-core or massively
parallel many-core solutions, understanding the program
behavior at the system level, and specifically the interac-
tion between cores, becomes of paramount importance for
application performance tuning.

In this article, we explore a performance monitor de-
sign for tracking events in a massively parallel multipro-
cessor system such as Blue Gene. The goal of this work
was to provide a scalable solution, supporting over a thou-
sand events, including core events, memory hierarchy and
coherence events, as well as I/O and network traffic events.

This goal leads to a number of competing requirements:

• A big state space requires dense storage technologies
to store a large number of bits efficiently. Memories,
such as SRAM, achieve high density by providing only
a limited number of access ports to a large number of
bits.

• Supporting simultaneous events requires separate par-
allel access to counters to gather and accumulate statis-
tics. Each simultaneous event requires the ability to
read and modify the hardware performance counter at
any point in time concurrently with any other combi-
nation of events.

• Low-latency threshold notification requires concurrent
comparison of all updated events with a threshold, to
raise an interrupt when a threshold is reached.

3 Blue Gene/P System Overview

The Blue Gene R© system family is the first high perfor-
mance computing (HPC) system that implements a large
number of performance counters for performance opti-
mization and tuning. The first generation chip, the Blue
Gene/LTM compute chip [5, 12, 13] has 48 32-bit perfor-
mance counters, and mapping of events onto physical coun-
ters is handled through the user-level API BGLperfctr [9].
The second generation Blue Gene/P compute chip [4] im-
plements the larger and more versatile set of performance
counters described in this paper.

140

BlueGene/P

13.6 GF/s
8 MB EDRAM

4 processors

1 chip, 20
DRAMs

13.6 GF/s
2.0 GB DDR2

(4.0GB is an option)

32 Node Cards

13.9 TF/s
2 TB

112 Racks, 112x32x32

1.5PF/s
224 TB

Cabled 8x8x16Rack

System

Compute Card

Chip

435 GF/s
64 GB

(32 chips 4x4x2)
32 compute, 0-1 IO cards

Node Card

Figure 1. BlueGene/P System Architecture

JTAG 10 Gb/s

256

256

32k I1/32k D1
32k I1/32k D1

PPC450
PPC450

Double FPU
Double FPU

Ethernet
10 Gbit

Ethernet
10 GbitJTAG

Access

JTAG
Access Collective

Collective
Torus

Torus Global
Barrier

Global
Barrier

DDR-2
Controller
w/ ECC

DDR-2
Controller
w/ ECC

32k I1/32k D1
32k I1/32k D1

PPC450
PPC450

Double FPU
Double FPU

4MB
eDRAM

L3 Cache
or

On-Chip
Memory

4MB
eDRAM

L3 Cache
or

On-Chip
Memory

6 3.4Gb/s
bidirectional

4 global
barriers or
interrupts

128

32k I1/32k D1
32k I1/32k D1

PPC450
PPC450

Double FPU
Double FPU

32k I1/32k D1
32k I1/32k D1

PPC450
PPC450

Double FPU
Double FPU L2

L2

Snoop
filter

Snoop
filter

4MB
eDRAM

L3 Cache
or

On-Chip
Memory

4MB
eDRAM

L3 Cache
or

On-Chip
Memory

512b data
72b ECC

128

L2
L2

Snoop
filter

Snoop
filter

128

L2
L2

Snoop
filter

Snoop
filter

128

L2
L2

Snoop
filter

Snoop
filter

M
ultiplexing

sw
itch

M
ultiplexing

sw
itch

DMA
DMA

M
ultiplexing

sw
itch

M
ultiplexing

sw
itch

3 6.8Gb/s
bidirectional

DDR-2
Controller
w/ ECC

DDR-2
Controller
w/ ECC

13.6 GB/s
DDR-2 DRAM bus

32

Shared
SRAM

Shared
SRAM

snoop

Hybrid
PMU

w/ SRAM
256x64b

Hybrid
PMU

w/ SRAM
256x64b

Shared L3
Directory

for
eDRAM

w/ECC

Shared L3
Directory

for
eDRAM

w/ECC

Shared L3
Directory

for
eDRAM

w/ECC

Shared L3
Directory

for
eDRAM

w/ECC

Arb
Arb

512b data
72b ECC

Figure 2. Blue Gene/P Compute chip architec-
ture.

The Blue Gene/P supercomputer is a scalable,
distributed-memory system consisting of up to 262,144
nodes (illustrated in Figure 1). Each node comprises a
single ASIC, the Blue Gene/P Compute (BPC) chip, and
its associated DRAM chips. The BPC chip is a highly
integrated System-on-a-Chip (SoC) chip multiprocessor
(CMP), based on four PowerPC 450 embedded processor
cores.

The PowerPC 450 core is a high-performance, out-of-
order industry-standard PowerPC microprocessor core orig-
inally targeted at high-end embedded systems. The proces-
sor supports 2-way superscalar instruction execution with
a seven stage pipelined microarchitecture. The processor
cores include highly associative first level instruction and
data caches with a capacity of 32KB each. As illustrated in
Figure 2, on the BPC chip, each PowerPC 450 core is cou-
pled to a small, private, second-level cache whose principal
responsibility is to prefetch streams of data from the 8 MB
shared third-level cache. The L3 cache interfaces to two on-
chip memory controllers, which directly control 2 GB or 4
GB of external DDR2 DRAM.

A dual-pipeline SIMD floating point unit is attached
to each processor core. The floating point unit pairs two
floating-point register files and two execution pipes. Both
primary and secondary register files are independently ad-
dressable, but they can be jointly accessed by SIMD in-
structions. SIMD execution exploits the data-level paral-
lelism often present in high-performance computing work-
loads, and reduces the number of instructions necessary to
fetch, issue and complete, while increasing the number of
operations completed.

The BPC chip also integrates the interfaces to five ded-
icated communication networks: the torus network, the
collective network, the barrier network, 10Gb/s Ethernet,
and IEEE1149.1 (JTAG). The main network is the torus,
which provides high performance data communication to
nearest neighbor nodes in a 3D mesh configuration (with
ends wrapped around) with low latency and high through-
put. The collective network supports efficient collective op-
erations, such as broadcast and reduction.

4 A Scalable Performance Monitor Architec-
ture

The hybrid performance monitor architecture imple-
mented in the BPC chip provides concurrent access to a
large number of counters as well as a high area density.
This is achieved by splitting the counters into a high rate
of change portion implemented using register logic, and a
densely implemented portion using SRAM arrays.

Thus, we build each counter from a 52 bit SRAM word to
provide the high-order bits, and a 12 bit counter to provide
the low-order bits. At the maximum event rate of 1 event

141

Increment Carry

Counter
Address

SRAM

52 bit increment

110 12 63

FSM

C
ounter events

PMU

Figure 3. Hybrid performance counter archi-
tecture.

per cycle, the low-order counter will overflow at the earliest
after 212 = 4096 cycles. This overflow condition is captured
in a carry latch.

The rate-reduced overflow event is accumulated in the
dense SRAM array portion of the counters. Because an
overflow event can occur only every 212 cycles, a mainte-
nance state machine can keep up with this event rate if it is
guaranteed to service every counter in less than 4096 cycles.
Thus, with 256 low-order counters coupled to a memory ar-
ray with 256 entries we will have 16 cycles to read each
memory word, increment based on the associated carry bit,
and write back.

The basic architecture of this hybrid counter design is il-
lustrated in Figure 3. The 256 counter events to monitor are
selected from a set of 1024 events selected by input multi-
plexers. The selected performance events are counted in the
counter block with 256 12-bit wide counters.

When a counter from the counter block reaches its max-
imum, its value rolls over to zero, the corresponding “carry
bit” is set, and the counter continues to track performance
events. The 52 most significant bits of counters are stored in
a 256×52 bit SRAM memory array block. The width of the
memory array is increased with additional bits to implement
a parity protection scheme.

A maintenance state machine cycles through all memory
entries (SRAM word addresses) in a round-robin fashion,
and checks the status of the carry latch associated with that
counter. If the carry bit is set, this memory entry is read out,
incremented in the increment block, and the incremented
counter value is stored back to the memory array. Note that
we implement only one incrementer shared by all memory
entries rather than 256, one for each counter. Reading out a

Increment Carry

Counter
Address

FSM

C
ounter events

Interrupt

52 bit increment

Interrupt threshold reg.

=

Interrupt Arm

Figure 4. Hybrid counter array with interrupt
pre-indication.

memory entry from the SRAM memory array, incrementing
the counter value, and storing the result back into the mem-
ory is easily accomplished within the 16 cycles available.

5 Low-Latency Threshold Interrupts

Thresholding enables interrupting the CPU on interest-
ing events, while continuously monitoring a process. This
allows the exploitation of workload-specific events to guide
the optimization of data placement, thread assignment to
processors [3], and communication patterns.

Without a hardware-supported thresholding capability,
monitoring software would have to periodically poll the per-
formance monitor counters to determine their status. In
some cases, event polling can involve scanning a large
memory array (for example to determine if a packet was
received), which is both time consuming and disruptive [7].

Thresholding monitors a counter value. If the counter
value reaches or exceeds the user specified threshold value,
an interrupt is generated to notify the CPU. This mecha-
nism can be used by a higher level application, monitoring
software or the operating system to take software action in
response to monitored behavior.

To ensure low-latency interrupt handling, the threshold
value must be compared against the counter value and a
notification must be signaled. However, values stored in
multiple array entries cannot be readily compared simulta-
neously. In addition, allocating a full comparator for each
entry would lead to prohibitive hardware cost.

Again, we exploit the hybrid architecture. A value meets
or exceeds a threshold exactly if the high order part matches
and the low order part meets or exceeds the threshold value.

142

To implement threshold comparison efficiently, it follows
the approach of hybrid event counting, as shown in figure 4.
The state machine implementing the array update also im-
plements a threshold comparison for the high-order 52 bits
of the event counters that have interrupt enabled. When the
high order 52 bits match, a single bit match indicator is set,
“arming” the interrupt. The next time the low-order bits of
the same event counter result in a carry-out, an interrupt will
be raised.

Based on this implementation, a threshold notification
event can be obtained for exact counter multiples of 212

= 4096. Thresholds which are not multiples of 4096 of
the form 4096 × n + m can be achieved by configuring
a threshold value of 4096× n and preloading the low-order
bit counter with the value (4096 − m).

6 Flexible Event Monitoring Framework

In a system, there are a variety of event types and there
are various uses for any single event type. For example, a
cache miss event may be used either as an edge-triggered
or as a level sensitive event. As an edge-triggered event,
the performance monitor captures the total number of cache
misses which occurred. This information can be used for
a variety of purposes ranging from identifying hot spots, to
understanding cache behavior and to optimizing data lay-
out. On the other hand, level-sensitive counting of the cache
miss event captures the total number of cycles spent in
cache miss handling. This is useful for deriving CPI stacks
to understand overall program behavior, and to understand
memory subsystem issues such as queuing and port con-
tention.

Edge sensitive counting is most useful for counting dis-
tinct events, such as the occurrence of interrupts, or memory
read and write requests. These can be used to compile such
information as instruction frequency statistics, hit and miss
statistics at different cache levels or to track communication
parameters in system networks. Level sensitive counting
can capture aggregate delay information, such as aggregate
latency cycles associated with different events.

Thus, in addition to providing for a large number of con-
current events, it is also important to provide flexibility in
capturing events based on specific event properties.

This flexibility is achieved by associating configuration
information with each counter. The configuration informa-
tion is accessible as memory-mapped configuration regis-
ters from user-space, as shown in Figure 5. User-space con-
figurability reduces the overhead of configuring and access-
ing performance monitors, and avoids disruption and con-
tamination of performance monitor data by operating sys-
tem intervention.

Each counter has a set of configuration bits to define its
characteristics. To reduce the cost of configuration informa-

Memory mapped
counters

0xXX000000

0xXX0007F8

0xXX000800

0xXX0008F8

0xXX000900

0xXX000910

Configuration registers

Start/stop register

Threshold register

Figure 5. Memory mapping of performance
counters.

tion, our implementation groups counters into small counter
groups which share a configuration register, with separate
fields for each counter.

In this framework, each counter can be individually and
separately configured to count in one of four different sig-
nal level modes. The user has the choice between level-
sensitive events (low- or high-active) and edge-sensitive sig-
naling (low-high- or high-low transition). Each counter can
be configured to select one of four associated counter in-
puts. An additional bit per counter enables an interrupt if a
specified threshold value is reached.

To help in application tuning, we support a mechanism
to isolate counting events only on code segments of an ap-
plication which are analyzed. Typically, such relevant code
segments are functions or loops, and it is desirable to count
events generated only by these code portions, and not from
the whole application.

To achieve this, we implement a single start/stop facil-
ity simultaneously operating on all counters, to stop and re-
start event counting. This is achieved by writing a single
start/stop register (separate from the configuration registers)
in the memory-mapped I/O region of the counter unit. See
Figure 5.

7 Performance Monitor Software

The first level of software support for performance mon-
itors is PAPI (Performance Application Programming Inter-
face), a standardized interface [11] to provide applications
with access to hardware performance monitors (HPM).
PAPI includes functions that allow user applications to ini-
tialize the HPM, initiate and reset HPM counters, read the
HPM counters and generate interrupts on HPM counter
overflow and register interrupt handlers.

143

In addition to PAPI, other performance monitor inter-
faces can be supported by our design.

However, the BlueGene/P performance monitoring unit
provides more advanced features that are best taken advan-
tage of with hardware-specific functions. For example, the
global accessibility of configuration and count values al-
lows simultaneous program execution and monitoring.

Thus, a single monitoring thread executing as part of a
system service, or as part of an application, can read the
performance monitor values and either provide them to on-
line (on-the-fly) system optimization tasks, or send them to
another computer for collection or analysis.

Dynamic system optimization with on-the-fly perfor-
mance analysis to optimize data layout, thread placement
and optimization of communication patterns is best per-
formed as part of the operating system and system man-
agement stack.

Finally, to isolate the analysis of critical code regions,
the start/stop function can be used for a variety of purposes.
System services can use the function to disable monitoring
of system operations which might perturb application pro-
files, or the start/stop function may be used to count data
only corresponding to a defined program region. The latter
case is especially useful when optimizing aspects of an ap-
plication which significantly affect execution time, such as
data layout or inter-processor communication.

8 System Integration

A single performance monitor unit is implemented on
each Blue Gene/P Compute chip. Due to its hybrid architec-
ture, the majority of counter state takes only a small fraction
of the overall counter unit area, as seen in figure 6.

While the usage of the present performance monitor unit
for application and system tuning will be described in future
work, we give an example of data collection with the unit.

For any given time interval, the performance monitor
unit can track 256 events simultaneously, giving wide in-
formation about the application that is executing. The col-
lected data includes information on processor cores, floating
point units, all levels of caches, coherence traffic informa-
tion, and a number of events related to network traffic. An
example of events monitored during a Block Tri-diagonal
Solver (BT) application run from NAS benchmark [2] on a
Blue Gene/P system is shown in Table 1. We list here only
a subset of events for processor cores 0 and 1 and their re-
spective floating point units and L2 prefetch caches, to give
an illustration of the versatility of the performance monitor-
ing unit.

The large number of available counters enable the gath-
ering of a lot of information about the processors, memory,
and network subsystems. This information can be used for
a variety of system measurements as well as for system op-

SRAM array

Figure 6. The Blue Gene/P Universal Perfor-
mance Counter (UPC) unit captures node-
wide counts of microprocessor, memory hi-
erarchy, network and I/O events. While the
SRAM stores most of the counter state, it oc-
cupies only a small fraction of the unit area.

timizations. Examples are the counters for floating point
operations, that can be used to determine the performance
of the system expressed in FLOPS. Other uses are related to
the power management of the chip, static and dynamic com-
piler optimizations, and workload distribution. For applica-
tion tuning, performance counters can provide feedback to
application developers on how efficiently they are using the
resources of the machine, for example the number of cy-
cles the system was stalled waiting on memory access, or
information on floating point pipeline issues.

In addition, the rich set of performance counters allows
us to collect information that may influence the architecture
of future systems. Examples are:

• We can precisely measure the data volume to the off-
chip DDR memory, and thus optimally size the mem-
ory controllers

• We can determine the number of clock cycles that pro-
cessors are waiting for data reads from the off-chip
memory to find out if the system is stalled on mem-
ory accesses. System stalls would allow the start of
additional threads.

• Performance counters include performance informa-
tion for all levels of the caches, including coherence
information for snoop traffic. This information could
be used for sizing memory and symmetric multipro-
cessors (SMP).

• Performance counters are available for tracking net-

144

Event name Counter ID Average value Event name Counter ID Average value
PU0 JPIPE INSTRUCTIONS 0 1.96E+09 PU1 JPIPE INSTRUCTIONSD 35 1.55E+09
PU0 JPIPE ADD SUB 1 2.87E+10 PU1 JPIPE ADD SUB 36 2.93E+10
PU0 JPIPE LOGICAL OPS 2 3.26E+09 PU1 JPIPE LOGICAL OPS 37 1.97E+09
PU0 IPIPE INSTRUCTIONS 4 7.7E+09 PU1 IPIPE INSTRUCTIONS 39 7.07E+09
PU0 IPIPE MULT DIV 5 38224109 PU1 IPIPE MULT DIV 40 4772199
PU0 IPIPE ADD SUB 6 1.05E+10 PU1 IPIPE ADD SUB 41 1.17E+10
PU0 IPIPE LOGICAL OPS 7 3.12E+09 PU1 IPIPE LOGICAL OPS 42 2.9E+09
PU0 IPIPE BRANCHES 9 1.32E+10 PU1 IPIPE BRANCHES 44 1.23E+10
PU0 DCACHE MISS 15 2.46E+08 PU1 DCACHE MISS 50 2.44E+08
PU0 DCACHE HIT 16 1.06E+10 PU1 DCACHE HIT 51 1.15E+10
PU0 DATA LOADS 17 5.5E+09 PU1 DATA LOADS 52 5.84E+09
PU0 DATA STORES 18 4.03E+09 PU1 DATA STORES 53 4.58E+09
PU0 ICACHE MISS 20 20859131 PU1 ICACHE MISS 55 4628756
PU0 FPU ADD SUB 1 22 39898517 PU1 FPU ADD SUB 1 57 39834798
PU0 FPU MULT 1 23 2.24E+08 PU1 FPU MULT 1 58 2.23E+08
PU0 FPU FMA 2 24 5.55E+08 PU1 FPU FMA 2 59 5.55E+08
PU0 FPU DIV 1 25 8252723 PU1 FPU DIV 1 60 8254148
PU0 FPU ADD SUB 2 27 55481 PU1 FPU ADD SUB 2 62 55861
PU0 FPU MULT 2 28 691425 PU1 FPU MULT 2 63 691476
PU0 FPU FMA 4 29 1053207 PU1 FPU FMA 4 64 1052646
PU0 FPU QUADWORD LOADS 31 11050217 PU1 FPU QUADWORD LOADS 66 11041834
PU0 FPU QUADWORD STORES 33 36801959 PU1 FPU QUADWORD STORES 68 36815807
PU0 L2 VALID PREFETCH REQUESTS 72 91491349 PU1 L2 VALID PREFETCH REQUESTS 104 89531718
PU0 L2 PREFETCH HITS IN STREAM 74 64467321 PU1 L2 PREFETCH HITS IN STREAM 106 64296927
PU0 L2 CYCLES PREFETCH PENDING 75 61389539 PU1 L2 CYCLES PREFETCH PENDING 107 60868353
PU0 L2 PAGE ALREADY IN L2 76 56301845 PU1 L2 PAGE ALREADY IN L2 108 51160022
PU0 L2 READ REQUESTS 81 4.14E+08 PU1 L2 READ REQUESTS 113 4.87E+08
PU0 L2 L3 READ REQUESTS 83 56667890 PU1 L2 L3 READ REQUESTS 115 54606960
PU0 L2 NETBUS READ REQUESTS 84 3.34E+08 PU1 L2 NETBUS READ REQUESTS 116 3.43E+08
PU0 L2 PREFETCHABLE REQUESTS 86 91515948 PU1 L2 PREFETCHABLE REQUESTS 118 89553124
PU0 L2 HIT 87 90846332 PU1 L2 HIT 119 88933771

Table 1. Example subset of counter events collected during a run of the BT application from NAS
benchmark on a Blue Gene/P chip.

work events. We can gather insight into the commu-
nication requirements of parallel applications.

As an illustration of the use of the performance moni-
tor unit for compiler development and tuning, we counted
how many floating point operations are generated for the
single versus the dual (SIMD) floating point unit execution
pipes. Figure 7 illustrates this phenomenon for the FFT
(FT) NAS parallel benchmark. When the qarch440d com-
piler flag is used to extract data parallelism (in addition to
the normal optimizations), we observe that this FFT appli-
cation can significantly benefit from deploying the SIMD
FPU. In addition to generating SIMD FPU operations, the
compiler option also introduced quadloads and quadstores
into the instruction mix, reducing the number of required
double and single store operations. Information such as this
is especially useful for large applications with thousands of
routines, where this information would be extremely hard
to extract by using assembly listings.

In a forthcoming paper, we will more extensively de-
scribe the use of the performance monitor unit for compiler

tuning, memory subsystem and network analysis, and ap-
plication tuning.

9 Conclusion

We have discussed the design of an advanced perfor-
mance monitor unit for a multiprocessor system which sup-
ports a large number of simultaneous events.

The unit is configurable to provide flexibility in adapting
to different usage scenarios. Threshold-based interrupts and
global start/stop functionality offer a simple and efficient
way for the performance monitor unit to interact with oper-
ating systems, application software and performance tuning
tools.

The use of an area-efficient yet flexible hybrid imple-
mentation of dense memory arrays for most significant bits
coupled with classic counters for least significant bits al-
lows for the simultaneous monitoring of a large number of
events with wide counters, while preserving performance
monitor counter configurability.

145

Figure 7. FT - SIMD instructions for different
compiler optimizations

The capability to monitor a large number of concurrent
events mitigates the complexity of time-multiplexing of per-
formance counters, time alignment of samples, and other
difficulties usually connected with performance monitoring
efforts. Application tuning and operating system specialists
can concentrate on data mining and performance optimiza-
tion.

While the unit has been designed in the context of a mas-
sively parallel supercomputer, performance monitoring in
multiprocessor systems will become increasingly important
for a broader range of microprocessors as chip multipro-
cessors with many cores enter the mainstream computing
market.

10 Acknowledgments

The Blue Gene/P system resulted from the dedicated
work of a large team, and we thank all members of that
team. We thank in particular Ruud Haring for his help and
suggestions during the preparation of this paper.

The Blue Gene/P project has been supported and par-
tially funded by Argonne National Laboratory and the
Lawrence Livermore National Laboratory on behalf of the
United States Department of Energy under Subcontract No.
B554331.

References

[1] R. Azimi, M. Stumm, and R. Wisniewski. Online perfor-
mance analysis by statistical sampling of microprocessor

performance counters. In ACM International Conference on
Supercomputing, June 2005.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS parallel benchmarks 2.0.
Technical Report NAS-95-929, NASA Ames Research Cen-
ter, December 1995.

[3] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. Sexton,
and R. Walkup. Optimizing task layout on the Blue Gene/L
supercomputer. IBM Journal of Research and Development,
49(2/3), 2005.

[4] BlueGene/P team. Overview of the Blue Gene/P project.
IBM Journal of Research and Development, 52(1/2), Jan-
uary/March 2008.

[5] A. Bright, M. Ellavsky, A. Gara, R. Haring, G. Kopcsay,
R. Lembach, J. Marcella, M. Ohmacht, and V. Salapura.
Creating the BlueGene/L supercomputer from low power
SoC ASICs. In Digest of Technical Papers, 2005 IEEE In-
ternational Solid-State Circuits Conference, pages 188–189,
2005.

[6] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Character-
izing and predicting program behavior and its variability. In
PACT 2003, September 2003.

[7] M. Martonosi, D. Clark, and M. Mesarina. The SHRIMP
performance monitor: Design and applications. In ACM
SIGMETRICS Symposium on Parallel and Distributed
Tools, May 1996.

[8] B. Matthews, J.-D. Wellman, and M. Gschwind. Exploring
real time multimedia content creation in video games. In
Media and Streaming Processors MSP, December 2004.

[9] L. Mindlin, J. Brunheroto, and J. E. Moreira. Obtaining
hardware performance metrics for the Blue Gene/L super-
computer. Springer Lecture Notes in Computer Science,
2790/2004, 2003.

[10] T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan.
Time interpolation: So many metrics, so few registers. In
MICRO 40, December 2007.

[11] PAPI performance monitoring API.
http://icl.cs.utk.edu/papi.

[12] V. Salapura, R. Bickford, M. Blumrich, A. A. Bright,
D. Chen, P. Coteus, A. Gara, M. Giampapa, M. Gschwind,
M. Gupta, S. Hall, R. A. Haring, P. Heidelberger,
D. Hoenicke, G. V. Kopcsay, M. Ohmacht, R. A. Rand,
T. Takken, and P. Vranas. Power and performance optimiza-
tion at the system level. In ACM Computing Frontiers 2005,
Ischia, Italy, May 2005. ACM Press.

[13] V. Salapura, R. Walkup, and A. Gara. Exploiting workload
parallelism for performance and power optimization in Blue
Gene. IEEE Micro, 26(5), September 2006.

[14] B. Sprunt. The basics of performance-monitoring hardware.
IEEE Micro, pages 64–71, July-August 2002.

146

