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Abstract

We study power and performance characteristics of different traf-
fic predictors for online one-step-ahead predictions. The goal is to
identify a predictor with reasonable accuracy and low powercon-
sumption. Our experiments on a large number of real network
traces indicate that Double Exponential Smoothing and Auto-
Regressive Moving Average are low cost predictors with reason-
able accuracy.

1 Introduction

Multicore processors are increasingly being used in networking
applications in order to keep up with the growing amount of
traffic and complexity of applications. FreeScale’s p4080 [2],
Intel IXP [5] and Tilera processors [3] are some examples of
multicore processors being used in networking applications.
These packet processing systems are designed and provisioned
with enough resources to meet with the peak traffic load. But
network traffic varies with time and reaches the peak value
for only a small portion of time. Resources in these packet
processing systems can be utilized more efficiently if the future
traffic can be predicted accurately [15, 11]. For example, ifwe
can accurately predict future traffic based on its past behavior,
idle or low traffic times can be exploited to force the system into
a low-power state. Accurate traffic prediction is of interest in
many other applications such as congestion control, admission
control and network bandwidth allocation. We use a large num-
ber of real network traces to study the predictability of network
traffic and compare the power and performance characteristics
of various on-line one-step-ahead predictors. We study three
categories of predictors: Classic Time Series based predictors,
Artificial Neural Networks based predictors [9, 7], and Wavelet
Transform based predictors [13]. Our results indicate that
Double Exponential Smoothing (DES) is a low cost predictor
with reasonable accuracy. DES is a well known predictor for
financial time series predictions but we are the first ones to use
DES for network traffic prediction. Auto-Regressive Moving
Average predictor also exhibits good prediction performance.

2 Traffic Prediction Techniques

2.1 Classic Time Series Predictors

Last Value (LV) predictor uses last observed value as prediction
for the next interval. InWindowed Moving Average (MA) we
use average of pastn past observations as prediction for the next
interval.

Predictor Equation Compute Storage

LV Xt+1 = Xt 0 1R

MA Xt+1 = 1
n

∑
n−1

i=0
(Xt−i) (n-1)A+1S q(n)

St = αyt + (1 − α)(St−1 + bt−1),

DES bt = γ(St − St−1) + (1 − γ)bt−1 6M + 4A 4R

Xt+1 = St + bt

AR Xt+1 =

∑
n−1

i=0
Ci ∗ Pt−i n(M + A) q(n)+nR

ARMA Xt+1=

∑
n−1

i=0
Ci∗Xt−i (n+m)(M+A) q(n)+q(m)

+

∑
m−1

i=0
αi∗Et−i (n+m)R

Table 1: compute and storage requirements of classic predictors

Double Exponential Smoothing (DES) gives exponential lower

weights to older observations like Exponential smoothing but also
caters for trends in the data. InAuto-Regression (AR) technique,
a signal is regressed with itself to exploit the autocorrelation
structure. Auto-Regression Moving Average (ARMA) uses a
combination of moving average (MA) of previous error terms in
addition to Auto-regression (AR) for making predictions. ARMA
based traffic predictors have been studied previously by [10, 14].

2.2 Artificial Neural Network (ANN) based Predictors

Neural Networks learn the relationship between input and output
by looking at training examples. ANN consists of functions
called neurons. These neurons have connections to receive the
inputs and they pass the output to other neurons through more
connections. Each connection has a weight associated with it.
These weights determine behavior of the ANN. These weights
are learned during the training phase.

2.3 Wavelet based Predictors

The prediction using wavelets usually involves three steps
namely wavelet decomposition, signal extension and signal
reconstruction. Wavelet decomposition divides the signalinto
a low pass output calledApproximation and a high pass output
calledDetail. The wavelet decomposition function can be applied
recursively to the approximations to get further levels of approxi-
mations and details. At any level the original signal is sum of the
approximation at that level plus details at all lower levels. i.e., for
a level 3 decomposition of signal x,x = a3 + d3 + d2 + d1. A
model (e.g., AR) is fitted on approximation and details whichare
extended by predicting the next values using this model. Finally
the extended approximations and details are combined to getthe
predictions for the original time series.

3 Experimental Methodology

We use real network traces from Caida [6], University of
Auckland [4] and Bellcore Research [1]. The original traces
contain arrival times of every packet. The trace is divided into
two parts. The initial 25% of trace constitutes training setand
the remaining is used to test the prediction accuracy. The details
of the set of traces used in this study are listed in Table 2. We
use Normalized Mean Square Error to compare the performance
of predictors.NMSE = 1

σ2
1

M

∑
M

t=1
(Xt − X̂t)

2 whereXt is
the actual value,X̂t is the predicted value andM is number of
predictions.σ2 is the variance ofXt during prediction. In case
of a trivial predictor (a predictor which always predicts mean)
NMSE=1. If NMSE> 1, this means that the predictor is worse
than the trivial. NMSE=0 in case of a perfect predictor.

Source Traces Avail. Traces Used duration/trace
Caida 20 16 1 hour

University 24
of Auckland 84 20 hours

Bellcore 1 million
Research 4 4 packets

Table 2: Summary of Network traffic traces used in this study

4 Results and Discussion

4.1 Accuracy of Predictors

We evaluated accuracy of all the prediction techniques described
in Section 2. For each predictor, we present the results of best
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Figure 1: Normalized Mean Square Error of different predictors for Caida traces. Prediction interval used is 100 milli-Seconds

performing configurations of the predictors. In our simulations
MA(8), AR(8) and ARMA(9,8) predictors performed the best.
Also, we present the results of 3 layer ANN. The number of neu-
rons in input layer is 8 and middle layer is 4. Results of wavelet
based predictors using 2 level decomposition and db3 as mother
wavelet are presented. We ran experiments on all the traces de-
scribed in Table 2. Figure 1 shows accuracy of predictors on two
sample traces from each source in Table 2. For all the predictors
the NMSE value is less than 1, which means these traces are
generally predictable. For Caida traces DES is a clear winner
in terms of accuracy. For Auckland and Bellcore traces, ARMA
is the best performing predictor. DES and ANN also perform
comparably. For bellcore 2 trace, all of the predictors perform
exceptionally well. This trace captures only external traffic and
contains long periods of inactivity. So most of the predictors ex-
hibit good behavior for this trace. It is also interesting tonote that
wavelet predictor does not perform well in most of the situations
despite its high cost. This unsatisfactory performance of wavelet
based prediction may be due to the effect of boundary conditions
when applying wavelet transform to a finite length time series [9].

4.2 Power and Performance Overhead of Traffic Predictors

We implemented these predictors in software and measured the
performance and energy overhead of these software predictors on
a simple 2-issue processor. Table 3 shows instructions executed
and energy consumed per prediction for different predictors.
We focus only on power and performance overhead during the
prediction phase. A predictor needs to be trained only once
and that overhead can be ignored. In other situations, where
traffic behavior changes over time, we may need to re-train the
predictors. But this training is required very rarely as previous
research has shown that traffic behavior remains steady over
time [13, 14]. We used a one hour long trace and measured the

LV MA AR ARMA DES ANN Wave
Instructions 225 258 269 307 230 417 590

u-Joules 21.6 24.7 25.9 29.5 22.8 39.4 93.1

Table 3: Per Prediction processing and energy of predictors

performance and power using GEMS [12] full system simulator
integrated with Wattch [8] for power measurement. Table 3
shows instructions per prediction for each type of predictor when
the predictors are implemented in software and corresponding
energy per prediction. We see that ANN and wavelet based
predictor requires considerably more instructions than other pre-
dictors. It is interesting to note that DES predictor has very small
overhead yet it provides very good performance. We have seen
from the performance results in Section 4 that ANN and ARMA
also give very good performance results for most of the traces.
But when comparing energy consumption, we can see that DES
is the lowest power consuming predictor. It is also comparable in
performance to the high cost predictors like ANN which makes
this very useful for applications like one-step-ahead traffic pre-
diction for power management. Energy consumption by ARMA
predictor is also fairly low as compared to ANN and wavelet.

Although ANN performs well in most situations, the power and
performance cost associated with it make it suitable only for
off-line applications like network design and capacity planning.

5 Conclusions

We have provided a performance and power comparison of
three different classes of predictors using real network traces.
Our results indicate that network traffic is generally predictable.
Furthermore, the choice of predictor is dependent on the charac-
teristics of the network. We found different predictors suitable
for traces from different sources. Also, in power critical online
applications DES and ARMA show promising accuracy with
minimal energy overhead. ANN based predictor performed
consistently well but has high power and computation overhead
and thus maybe used in off-line studies.
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