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ABSTRACT

The energy cost of asymmetric cryptography, a vital component of modern se-

cure communications, inhibits its wide spread adoption within the ultra-low energy

regimes such as Implantable Medical Devices (IMDs), Wireless Sensor Networks

(WSNs), and Radio Frequency Identification tags (RFIDs). In literature, a plethora

of hardware and software acceleration techniques exists for improving the perfor-

mance of asymmetric cryptography. However, very little attention has been focused

on the energy efficiency. Therefore, in this dissertation, I explore the design space

thoroughly, evaluating proposed hardware acceleration techniques in terms of energy

cost and showing how effective they are at reducing the energy per cryptographic op-

eration. To do so, I estimate the energy consumption for six different hardware/soft-

ware configurations across five levels of security, including both GF (p) and GF (2m)

computation. First, we design and evaluate an efficient baseline architecture for pure

software-based cryptography, which is centered around a pipelined RISC processor

with 256KB of program ROM and 16KB of RAM. Then, we augment our processor

design with simple, yet beneficial instruction set extensions for GF (p) computation

and evaluate the improvement in terms of energy per cryptographic operation com-

pared to the baseline microarchitecture. While examining the energy breakdown of

the system, it became clear that fetching instructions from program memory was

contributing significantly to the overall energy consumption. Thus, we implement a

parameterizable instruction cache and simulate various configurations. We determine

that for our working set, the energy-optimal instruction cache is 4KB, providing a

25% energy improvement over the baseline architecture for a 192-bit key-size. Next,

we introduce a reconfigurable GF (p) accelerator to our microarchitecture and mea-
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sure the energy per operation against the baseline and the ISA extensions. For ISA

extensions, we show between 1.32 and 1.45 factor improvement in energy efficiency

over baseline, while for full acceleration we demonstrate a 5.17 to 6.34 factor improve-

ment. Continuing towards greater efficiency, we investigate the energy efficiency of

different arithmetic by first adding GF (2m) instruction set extensions to our proces-

sor architecture and comparing them to their GF (p) counterpart. Finally, we design

a non-configurable 163-bit GF (2m) accelerator and perform some initial energy es-

timates, comparing them with our prior work. In the end, we discuss our ongoing

research and make suggestions for future work. The work presented here, along with

proposed future work, will aid in bringing asymmetric cryptography within reach of

ultra-low energy devices.

iii



ACKNOWLEDGEMENTS

I would like to thank Don Owen, Allen Luettgen and Francis Israel for their

contributions to this work. Without their invaluable guidance and efforts, none of

this work would have been possible.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Asymmetric Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Asymmetric Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Confidentiality, Authenticity, and Integrity . . . . . . . . . . . 7
2.1.2 The One-Way Function and Finite Fields . . . . . . . . . . . . 9
2.1.3 Prime Fields and Modular Exponentiation . . . . . . . . . . . 11
2.1.4 Binary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Elliptic Curve Cryptography . . . . . . . . . . . . . . . . . . . 16

2.2 HW/SW Codesign and Computer Architecture . . . . . . . . . . . . . 21
2.3 Energy Consumption in Digital Circuits . . . . . . . . . . . . . . . . 30

3. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4. ALGORITHMS AND SOFTWARE . . . . . . . . . . . . . . . . . . . . . . 36

4.1 ECDSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Multi-precision Routines . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 Prime Field Multiplication . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Binary Field Multiplication . . . . . . . . . . . . . . . . . . . 45
4.2.3 Binary Squaring . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.4 Field Addition/Subtraction and Inversion . . . . . . . . . . . 48

v



4.3 Software Build/Run-time Environment . . . . . . . . . . . . . . . . . 49

5. MICROARCHITECTURES . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.1 Statically Scheduled Multiply . . . . . . . . . . . . . . . . . . 51
5.1.2 Karatsuba Multiplier Implementation . . . . . . . . . . . . . . 53

5.2 ISA Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Prime Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Binary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Instruction Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Cache Implementation . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 System Integration . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Prefetching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Prime-field Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Coprocessor Interface . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.2 Prime-field Arithmetic Unit . . . . . . . . . . . . . . . . . . . 69

5.5 Binary-field Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.1 Coprocessor Instructions . . . . . . . . . . . . . . . . . . . . . 79
5.5.2 Microarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.3 GF (2m) Arithmetic Units . . . . . . . . . . . . . . . . . . . . 82

6. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7. EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Prime Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Binary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Prime Fields vs. Binary Fields . . . . . . . . . . . . . . . . . . . . . . 93
7.4 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.5 Evaluation with Instruction Cache . . . . . . . . . . . . . . . . . . . . 98
7.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.7 Double Buffer Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.8 Baseline Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.9 FFAU Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 111

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



LIST OF FIGURES

FIGURE Page

1.1 The hardware acceleration trade-off. . . . . . . . . . . . . . . . . . . . 4

2.1 Basic cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Asymmetric cryptography for confidentiality or authenticity . . . . . 8

2.3 Elliptic Curve point addition and doubling on E(R) . . . . . . . . . . 17

2.4 The microarchitecture of a 5-stage pipeline processor . . . . . . . . . 26

2.5 A direct-mapped cache with a block size of 16 bytes and a 32-bit word
width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Elliptic Curve Digital Signature Algorithm computation hierarchy . . 36

5.1 Baseline: RISC Processor w/ ROM and RAM . . . . . . . . . . . . . 51

5.2 The Karatsuba Multiply Unit within the baseline architecture. . . . . 54

5.3 The Karatsuba Multiply-Accumulate Unit including support for prime-
field ISA extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 The Karatsuba Multiply-Accumulate Unit including support for prime-
and binary-field ISA extensions. . . . . . . . . . . . . . . . . . . . . . 59

5.5 The implementation of a direct-mapped instruction cache. . . . . . . 60

5.6 Pete with an instruction cache. . . . . . . . . . . . . . . . . . . . . . 63

5.7 The prime field accelerated architecture, “Pete with Monte.” . . . . . 66

5.8 The Finite-Field Arithmetic Unit at the center of “Monte” . . . . . . 70

5.9 Top Level Architecture of the FFAU . . . . . . . . . . . . . . . . . . 72

5.10 The Control Unit within the FFAU . . . . . . . . . . . . . . . . . . . 75

5.11 The binary-field accelerated architecture, “Pete with Billie” . . . . . . 78

vii



5.12 Billie’s coprocessor architecture. . . . . . . . . . . . . . . . . . . . . . 80

5.13 Binary-field squaring unit . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Energy per Sign + Verify vs. key size and microarchitecture for prime
fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Breakdown of energy per Sign + Verify for 192 and 256-bit key sizes
into various sub-components. . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Energy per Sign + Verify vs. key size for our baseline with no hardware
acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.4 Energy per Sign + Verify vs. key size for the ISA extended microar-
chitecture and the architecture accelerated with Monte. . . . . . . . . 91

7.5 Energy per Sign + Verify vs. key size for binary fields. . . . . . . . . 92

7.6 Energy per Sign + Verify vs. key size for binary ISA extensions. . . . 93

7.7 Energy per Sign + Verify vs. key size, comparing prime and binary
fields of equivalent security. . . . . . . . . . . . . . . . . . . . . . . . 94

7.8 Energy per Sign + Verify vs. key size for Monte and Billie . . . . . . 95

7.9 Breakdown of energy per Sign + Verify for 192/163- and 256/283-bit
key sizes into various sub-components. . . . . . . . . . . . . . . . . . 97

7.10 Static and dynamic power of evaluated microarchitectures. . . . . . . 98

7.11 Energy improvement with ideal instruction cache vs. key size. . . . . 99

7.12 Energy per 192-bit Sign + Verify with real instruction cache for various
cache configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.13 Energy per Sign + Verify vs. key size for prime ISA extended mi-
croarchitecture with 4KB instruction cache. . . . . . . . . . . . . . . 102

7.14 Performance for 163-bit scalar point multiply comparing Billie to prior
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.15 Energy per Montgomery multiplication vs. datapath width . . . . . 109

viii



LIST OF TABLES

TABLE Page

5.1 Instruction set extensions for prime fields . . . . . . . . . . . . . . . . 55

5.2 Instruction set extensions for binary fields . . . . . . . . . . . . . . . 58

5.3 Coprocessor 2 Instructions used to control Monte . . . . . . . . . . . 66

5.4 Arithmetic Core Computational Capabilities . . . . . . . . . . . . . . 73

5.5 Index Register Control Codes . . . . . . . . . . . . . . . . . . . . . . 75

5.6 Coprocessor 2 Instructions used to control Billie . . . . . . . . . . . . 79

7.1 Latency per operation for prime-field microarchitectures . . . . . . . 103

7.2 Latency per operation for binary-field microarchitectures . . . . . . . 104

7.3 Area utilization, static power, and dynamic power vs. datapath width. 108

7.4 Average power, execution time, and energy per Montgomery multipli-
cation vs. datapath width . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Average power and energy per modular multiplication vs. key size for
the ARM Cortex-M3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

ix



1. INTRODUCTION

Since the advent of the microprocessor in the early 1970s, the number of com-

ponents that fit on a single Integrated Circuit (IC) has continued to climb. This

increase has primarily been due to advances in IC fabrication techniques, leading to

trends in device scaling first described by Gordon Moore in 1964 [1]. “Moore’s Law,”

the name given to the rapid growth in integrated circuit density, has given rise to

the System on a Chip (SoC), which has allowed miniature computer systems to be

embedded in everything from microwaves to the human body.

As SoCs become more ubiquitous, the desire to communicate with them escalates.

For example, many programmable thermostats now have built-in wireless capabili-

ties. Moreover, these devices are being trusted to communicate increasingly sensitive

data, while concerns for privacy grow stronger. Therefore, embedded devices need to

be equipped with algorithms such as asymmetric cryptography in order to securely

communicate.

1.1 Asymmetric Cryptography

Asymmetric cryptography, also known as public key cryptography, has become

an essential component in modern, secure communications. Unlike its symmetric

counterpart, asymmetric cryptography requires separate keys for encryption and de-

cryption, allowing it to solve a host of security challenges not possible with symmetric

cryptography alone. Uses for asymmetric cryptography range from session key es-

tablishment for secure communications to digital signatures for message authenticity

and non-repudiation. While symmetric cryptography is based on data shifts and

permutations, asymmetric cryptography is built upon a foundation of mathemati-

cally hard problems. As a result, the computational requirements for asymmetric
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cryptography are far greater than that of symmetric cryptography [2].

Employing asymmetric cryptography on ultra-low energy devices, such as Im-

plantable Medical Devices (IMDs) [3, 4], Wireless Sensor Networks (WSNs) [5], and

Radio Frequency Identification (RFID) tags [6, 7], can be especially challenging. In

this class of applications, the energy cost of each operation is paramount to the

device’s utility. For example, in a typical IMD, each extra Joule expended in com-

putation reduces the life of the device, and each surgical replacement of the device

endangers the life of the patient. Security in this application is of critical importance;

unauthorized access to an implanted cardiac defibrillator’s programming interface

poses an unambiguous threat to the patent’s health and privacy.

Despite the obvious need for security in this domain, relatively few designs have

incorporated encryption; among these, most employ symmetric (shared-key) encryp-

tion techniques [3]. More secure schemes for communication exist that involve asym-

metric cryptography. However, the high computational cost of asymmetric cryptog-

raphy has put these schemes out of reach for ultra-low energy applications. In the

WSN domain, Wander et al. found that even weak asymmetric cryptography (160-

bit ECC, equivalent to 1024-bit RSA) consumes approximately 72% of the energy

allotted for communication handshaking. Moreover, they assume that only 5% to

10% of a WSN’s energy budget is available for handshakes [8]. Pabbuleti et al. show

that asymmetric cryptography reduces the energy cost of transmitting the signature

compared to hash-based authentication protocols; however, the energy cost of com-

putation rapidly exceeds the cost of signature transmission when considering 128-bit

security levels [9]. For RFID tags, it is difficult to quantify the energy budget for

encryption; however, because most tags are passive energy harvesters, the budget is

significantly less than that of a WSN node.

To alleviate this computational burden, special purpose hardware can be designed

2



into an embedded system to accelerate portions of the cryptographic algorithms.

Hardware designed to perform specific computations will typically do so more effi-

ciently compared to hardware designed for general purpose computation. For the end

user, hardware acceleration yields an overall design that is not only more responsive

but is also much more energy efficient. Whereas past work has extensively evalu-

ated the performance gains associated with hardware acceleration, this work focuses

primarily on the energy benefit. In other words, this work attempts to comprehen-

sively quantify energy improvements available through the hardware acceleration of

asymmetric cryptography.

In the ultra-low energy domain, a spectrum of hardware/software acceleration

techniques exists, in which an increase in hardware acceleration will lower recon-

figurability in exchange for energy efficiency. Figure 1.1 depicts this trade-off with

compiled software executing on a power-conscious processor on one side and a fully

dedicated cryptographic processor on the other. The more interesting research lies

in the middle, where some degree of reconfigurability is maintained while the energy

consumed per operation is much less than that of a pure software implementation.

This area is precisely the portion of the spectrum our work attempts to capture.

Understanding the energy design space specific to asymmetric cryptography is

important in order to ensure the correct trade-offs are made prior to device fab-

rication. For example, a lack of reconfigurability could render the device obsolete

sooner, as security requirements change, while too little hardware acceleration could

render the device inoperable under assumed energy budgets. Furthermore, too much

hardware acceleration could unnecessarily increase the cost of design validation and

device fabrication. Thus, we compare different points on the spectrum and let the

system designer choose which level of acceleration is appropriate.

3



Reconfigurability/Generality

Energy Efficiency

Optimized
Software

Instruction Set
Extensions

Microcoded
Accelerator

Custom
Hardware

Figure 1.1: The hardware acceleration trade-off.

1.2 Thesis Statement

In this dissertation, I provide a thorough evaluation of the design space of energy-

efficient asymmetric cryptography. In doing so, I describe the steps taken to design

and accurately model our embedded system, which includes the development of an

embedded processor with application specific extensions as well as two custom arith-

metic accelerators. This dissertation showcases the energy efficiency of our custom

arithmetic logic, making a strong argument for hardware acceleration of asymmetric

cryptography.

1.3 Contributions

For comparison, we start by evaluating a baseline architecture in terms of energy

cost per signature and verification operation, as defined by the Elliptic Curve Digital

Signature Algorithm (ECDSA) [10, 11]. Our baseline represents the left-most side of

Figure 1.1 and consists of a low-power RISC processor without an instruction cache

and a minimal memory layout, typical of an embedded microcontroller. Moving to

the right within Figure 1.1, we add simple yet effective instruction set extensions
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to our baseline architecture and evaluate the improvement in terms of energy cost

per operation. Next, we evaluate our system with a reconfigurable, microcoded

accelerator that we designed for prime finite-field arithmetic. As a comparison, we

evaluate the energy benefit of a non-configurable, accelerator that we designed for

binary finite-field arithmetic. Although the non-configurable aspect implies that the

level of security is fixed after device fabrication, this configuration yields the highest

degree of energy efficiency. Finally, we include an instruction cache in our design and

measure the energy improvement that it provides for the ISA extended architectures.

The contributions of this work are summarized as follows:

• Detailed power, energy and performance analysis of ultra-low energy asymmet-

ric cryptography for several different hardware/software configurations within

the same technology node, using the same experimental techniques

• Design space exploration across a range of Elliptic Curve Cryptography (ECC)

key-sizes that includes up to 521-bit prime and 571-bit binary, providing insight

into current and future secure data exchange for embedded systems

• Development of a microcoded, prime-finite field accelerator that maintains re-

configurability via microcode programming while decreasing the energy per

digital signature

• Development of a binary-field accelerator that further reduces the energy of

asymmetric cryptography while outperforming prior work

• Evaluation of the energy benefit of an instruction cache in the context of asym-

metric cryptography

• Detailed hardware models and recommendations for future energy exploration

within the ultra-low energy domain
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2. BACKGROUND

In this chapter, we refresh the reader’s understanding of the relevant background

topics for this study. We start by reviewing basic cryptographic concepts and in-

troducing the mathematics that underpin all asymmetric cryptosystems. Then we

provide a brief primer on computer architecture in order to explain some of the termi-

nology referenced throughout this work. Finally, we review how energy is consumed

in digital circuits and discuss the relationship between power and energy. A reader

already familiar with these topics may skip this chapter.

2.1 Asymmetric Cryptography

The field of cryptography encompasses the techniques and mechanisms used to

communicate securely over an insecure channel. The primary objective is to encrypt

data prior to communication in such a way that it can only be decrypted by the

intended recipient. Consider the textbook scenario, depicted in Figure 2.1, where

Alice encrypts a plaintext message using her encryption key and sends the encrypted

data, also know as the ciphertext, to Bob over a public channel. Bob uses his

decryption key to translate the ciphertext back into plaintext. Along the way, the

data is intercepted by Eve, an eavesdropper; however, Eve is unable to recover the

plaintext message without Bob’s decryption key.

In cryptography, there are two distinct categories: symmetric and asymmetric.

Symmetric cryptography uses the same key for encrypting and decrypting data,

whereas asymmetric cryptography uses one key for encrypting and a separate key

for decrypting. By keeping one key private and making the other key publicly avail-

able, asymmetric cryptography (a.k.a public-key cryptography) can solve a host of

problems not possible with symmetric cryptography alone[12]. Classic schemes, such

6



Figure 2.1: Basic cryptography

as substitution ciphers, along with some modern encryption algorithms, such as DES

and AES, fall into the symmetric cryptography category. RSA and Diffie-Hellman

key exchange are examples of early asymmetric cryptography, while modern schemes

employ Elliptic Curve Cryptography, such as Elliptic Curve Diffie-Hellman (ECDH)

key exchange and the Elliptic Curve Digital Signature (ECDSA).

2.1.1 Confidentiality, Authenticity, and Integrity

Confidentiality refers to the protection of a message from eavesdropping, while

authenticity refers to trust in the origin of the message. Data integrity ensures the

message has not been modified, whether accidental or malicious. In an asymmet-

ric cryptosystem, each communicating entity has its own private/public key pair.

Then, depending on how the keys are used, asymmetric cryptography can provide

data confidentiality or authenticity/integrity. Figure 2.2a demonstrates the use of

asymmetric cryptography for confidentiality, while Figure 2.2b demonstrates its use

for authenticity/integrity. For confidentiality, Alice uses Bob’s public key to encrypt

a message and sends the resulting ciphertext to Bob who uses his private key to de-

crypt the ciphertext. In this scenario, only Bob’s private key can be used to recover

7



a message encrypted with his public key. Furthermore, Bob’s private key cannot

be derived from his public key. Even though the message is sent via an unsecured

channel, it is still protected from unauthorized access.

(a) Confidentiality

(b) Authenticity

Figure 2.2: Asymmetric cryptography for confidentiality or authenticity

For authenticity, Alice uses her private key to encrypt a message before she sends

it to Bob, who in turn uses her public key to decrypt the ciphertext. If the decryption

process yields an intelligible message, then Bob has high degree of confidence that

the message originated from Alice. Remember that only Alice’s private key could

have been used to encrypt a message that can be decrypted with her public-key.1 It

should be noted that tampering with the ciphertext will yield an unreadable message

after decryption, so data integrity is ensured as well.

Both confidentiality and authenticity can be achieved by encrypting first for con-

fidentiality and then again for authenticity. In which case, two encryption operations

1The underlying assumption here is that Bob is able to somehow authenticate Alice’s public key.
This is where certificates and the public-key infrastructure come into play.
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will be required on the sender’s side as well as two decryption operations on the re-

ceiver’s side. Likewise, both key pairs from Alice and Bob are required. In this

scenario, an adversary who stands between Alice and Bob can neither decipher their

communication nor successfully impersonate one or the other.

With the properties of confidentiality, authenticity and data integrity, asymmetric

cryptography can solve secret-key distribution problems. In order for two entities

to communicate securely using a symmetric cipher, they must somehow securely

exchange a shared secret key. Without asymmetric cryptography, this would require

an additional medium that can guarantee privacy; otherwise, an adversary could

discover the shared key and easily decrypt future communication. Moreover, large

key rings are required if a number of devices need to communicate securely. For

instance, n devices would require a total of n(n−1)
2

different secret keys, where each

device must store n− 1 keys [2].

With asymmetric cryptography, any two entities can easily and securely exchange

a temporary secret-key and then use symmetric cryptography to encrypt data traffic

for the remainder of the communication session. It should be noted that asymmetric

cryptography is ill-suited for bulk data encryption due to its high computational

cost. Thus, it is more energy efficient to amortize a key-exchange across a lengthy

communication session [13]. We will talk more about the protocols developed for

secure key exchange after delving into the mathematics.

2.1.2 The One-Way Function and Finite Fields

Improving the energy efficiency of an asymmetric cryptosystem requires an under-

standing of the underlying mathematics. Therefore, the following section will briefly

review the necessary mathematical concepts. At the core of asymmetric cryptog-

raphy is the mathematical one-way function with a trapdoor. A one-way function
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has a forward operation that is easy to compute but an inverse operation that is

considered computationally infeasible to compute. When a one-way function has a

trapdoor, certain knowledge can make the inverse operation also easy to compute

[14]. One-way functions for asymmetric cryptography are constructed using finite

fields, which are part of a division of mathematics known as abstract algebra. In

order to understand finite fields, we must first understand groups and rings.

A group, {G, •}, is a set (G) with a binary operation (•) and the following

properties:

• Closure, if a, b ∈ G, then a • b ∈ G

• Associative, a • (b • c) = (a • b) • c if a, b, c ∈ G

• Unit Element, there exists an element, e, such that a • e = e • a = a for all

a ∈ G

• Inverse Element, for all a ∈ G there exists an element a′ such that a • a′ =

a′ • a = e

If the commutative property, a • b = b • a for all a, b ∈ G, holds true, then the group

is an Abelian group.

A ring, {R,+,×}, is a set (R) with two binary operations (+,×) and the following

properties:

• R is an Abelian group with respect to +

• Closure over ×

• Associative over ×

• Unit Element with respect to ×

10



• Distributive, a× (b+ c) = a× b+ a× c and (b+ c)× a = b× a+ c× a

If the commutative property holds true for ×, then the ring is commutative. Note

that the + and × operations are commonly referred to as addition and multiplication,

respectively.

A Field, {F,+,×}, is a commutative ring such that all elements except the ad-

ditive identity element (i.e., zero) in F have a multiplicative inverse element. For

multiplication, the inverse element of a is denoted by a−1. The inverse of a with

respect to addition is denoted by −a. In a field, the subtraction and division oper-

ations are derived from addition and multiplication by utilizing the inverse element

of the second operand, so the following holds true:

• a− b = a+ (−b)

• a/b = a× (b−1)

In other words, a field is a set of elements over which we can perform addition,

subtraction, multiplication and division; however, division by zero is not allowed. If

F is finite, then the field is referred to as a finite field.

2.1.3 Prime Fields and Modular Exponentiation

The modulo operation, a modulo p where a and p are integers, is equal to r such

that a = q ∗ p+ r for some value of q. The integers from 0 to p− 1 are known as the

set of residues modulo p. If p is prime and all arithmetic computations on the set of

residues are performed modulo p, the result is a prime field, denoted by GF(p).2 The

unit element with respect to addition for prime fields is 0, while the unit element for

multiplication is 1. The following are examples of GF(7) computation:

• Addition: 2 + 5 modulo 7 = 0

2GF stands for Galois Field and is named after the French mathematician, Evariste Galois.
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• Subtraction: 3− 6 modulo 7 = 4

• Multiplication: 5× 4 modulo 7 = 6

• Division: 2÷ 4 modulo 7 = 4

For division, if a, b, c ∈ GF (p), c = a ÷ b modulo p such that c × b ≡ a modulo p

and is found by first solving for b−1 modulo p then computing a× b−1 modulo p. It

should be noted that big integer division is extremely costly in terms of computation.

Thus, more efficient methods exist to perform the reduction operation (modulo p)

and compute the inverse (a−1 modulo p). We will discuss these methods in more

detail when we talk about the specific algorithms used in this study.

Traditional public-key cryptosystems such as RSA, Diffie-Hellman, and the Dig-

ital Signature Algorithm (DSA) utilize modular exponentiation (y = gx mod p) as

the one-way function [11, 15, 12]. The brute-force method for computing modular

exponentiation is to multiply g by itself x times, but far more efficient techniques

exist, such as the suite of repeated square-and-multiply algorithms [2]. Each square

or multiply in modular exponentiation is an operation performed over a finite field.3

Assuming a 4096-bit RSA algorithm, on the order of 1.5 ∗ 4096 field multiplications,

each of size 4096 bits, must be performed for each modular exponentiation. The

reverse operation, compute x given y, g, p, is referred to as the Discrete Logarithm

Problem (DLP) and is considered intractable as the size of the modulus increases.

Methods considerably more efficient than brute force exist for computing the DLP.

Thus, very large integers must be used to ensure security with traditional public-key

cryptosystems based upon modular exponentiation. As we will see shortly, more

efficient one-way functions exist, which allow computation over smaller fields.

3To be pedantic, the operations are over a multiplicative Abelian group because modular expo-
nentiation only uses multiplication.
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2.1.4 Binary Fields

Prime fields are commonly used for asymmetric cryptography, but when con-

sidering elliptic curves, other types of fields may be used as well. For finite-field

computations, the order does not necessarily have to be prime but must be a power

of a prime, e.g., GF(pm) where m is an integer such that m > 0, and p is the charac-

teristic of the finite field. If m > 1, polynomial arithmetic, such that the coefficients

are computed modulo p can be used.

Finite fields with a characteristic of 2, referred to as binary fields or GF (2m),

are especially attractive for custom hardware implementations because addition is

simply a bitwise XOR operation. Since multiplication is derived from addition,

the partial-product accumulation within multiplication is similar to that of integer

multiplication but without the carry logic. For this reason, binary-field arithmetic is

often called “carry-less” arithmetic.

Because we use polynomial arithmetic for binary-field computation, we borrow

the polynomial representation. As such, a GF (2m) field is denoted in the following

way: a(x) = am−1x
m−1 + · · · + a2x

2 + a1x + a0 where x is the indeterminate of the

polynomial, and the coefficients, am−1, · · ·, a2, a1, a0 ∈ [0, 1]. In a computer system, a

binary-field element is stored as an m-bit binary vector, (am−1, ···, a2, a1, a0). As with

prime fields, the result of a binary-field multiplication needs to be reduced. Binary-

field reduction is performed modulo an irreducible polynomial, f(x). Note that unlike

prime fields, binary-field addition and subtraction do not require reduction because

there are no arithmetic carries.

The following are examples of GF (27) computation assuming f(x) = x7 + x+ 1:

• Addition: (x6 + x4 + x3 + 1) + (x5 + x4 + x2 + 1) = x6 + x5 + x3 + x2

• Subtraction: (x6 + x4 + x3 + 1)− (x5 + x4 + x2 + 1) = x6 + x5 + x3 + x2
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• Multiplication: (x6 + x3 + x)× (x6 + x2 + 1) modulo f(x) = x3 + x+ 1

• Squaring: (x6 + x3 + 1)2 modulo f(x) = x5 + 1

Let us take a closer look closer at multiplication. First, we must perform polynomial

multiplication, such that the coefficients are computed modulo 2, as shown below:

(x6 + x3 + x)(x6 + x2 + 1) = x12 + x8 + x6 + x9 + x5 + x3 + x7 + x3 + x

= x12 + x9 + x8 + x7 + x6 + x5 + x

Then we reduce the result of the polynomial multiplication by dividing it by f(x)

and taking the remainder, i.e., compute modulo f(x). The necessary polynomial

division is shown below:

x5 +x2 +x +1

x7 + x+ 1
)

x12 +x9 +x8 +x7 +x6 +x5 +x

− x12 +x6 +x5

x9 +x8 +x7

− x9 +x3 +x2

x8 +x7 +x3 +x2

− x8 +x2 +x

x7 +x3

− x7 +x +1

x3 +x +1
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It should be noted that polynomial division is extremely costly in terms of com-

putation. Thus, more efficient algorithms exist to perform the reduction operation,

and we will elaborate on those algorithms in Section 4.2.

For the squaring example, we have the following:

(x6 + x3 + 1)(x6 + x3 + 1) = x12 + x9 + x6 + x9 + x6 + x3 + x6 + x3 + 1

= x12 + x6 + 1

= (x5)(x7) + x6 + 1

= (x5)(x+ 1) + x6 + 1

= x6 + x5 + x6 + 1

= x5 + 1

One thing to note is that most of the terms generated in the first step cancel out.

Mathematically, this can be explained by observing that

(a+ b)(a+ b) = a2 + (ab+ ab) + b2

where (ab + ab) equals zero because addition is an exclusive OR operation. This

concept can be extrapolated to more terms as shown below:

(a+ b+ c)(a+ b+ c) = a2 + b2 + c2

For this reason, binary-field squaring is much less computationally expensive com-

pared to binary-field multiplication.

Although the squaring algorithm for binary fields is fast, a reduction operation

must still be performed. Thus, the example above includes a glimpse of the afore-

mentioned fast-reduction techniques. In the fourth step, we are able to substitute

x+ 1 for x7 because of modular congruency shown below:
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x7 + x+ 1 ≡ 0 modulo f(x)

x7 ≡ x+ 1 modulo f(x)

Finally, it should be noted that although binary-field arithmetic can be efficiently

realized in hardware, some protocols, such as the Elliptic Curve Digital Signature

Algorithm (ECDSA) still require prime-field mathematics [16]. In the next section,

we will introduce a more efficient one-way function based on elliptic curves.

2.1.5 Elliptic Curve Cryptography

The Elliptic Curve Cryptography (ECC) analog of modular exponentiation is

scalar point multiplication, which involves repeated addition-and-doubling of points

on an elliptic curve defined over a finite field. As with modular exponentiation, the re-

verse operation, known as the Elliptic Curve Discrete Logarithm Problem (ECDLP),

is considered intractable.

Elliptic curves are defined by a form of the Weierstraß equation. When prime

fields4 are used as the underlying field, K, the elliptic curve equation can be simplified

to the following:

E : y2 = x3 + ax+ b (2.1)

where a, b ∈ K and the discriminant, 4 = −16(4a3 + 27b2) 6= 0. For binary fields,

the simplified Weierstraß equation is given by:

E : y2 + xy = x3 + ax2 + b (2.2)

For cryptography, K is a finite field; however, for pedagogical purposes, it is

useful to view elliptic curves defined over the set of real numbers, K = R, as shown

in Figure 2.3. A graphical representations of point addition on an elliptic curve,

4 A prime field has a characteristic 6= 2, 3.
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Figure 2.3: Elliptic Curve point addition and doubling on E(R)

E(R), is depicted in Figure 2.3a. As shown, P and Q are added by first drawing a

straight line through the two points and then locating the third point of intersection

between the line, PQ, and the elliptic curve. The point, P + Q, is then the x-axis

reflection of the third point of intersection. For point doubling, shown in Figure 2.3b,

the x-axis reflection of 2P is the second point of intersection between the tangent

line of point P and the elliptic curve.

The set of points defined on the elliptic curve along with the point addition

operation form an Abelian group. The unity element for this Abelian group is the

point at infinity, ∞. When the line between two points is vertical, the third point

of intersection is said to be at infinity. Thus, P − P = ∞ where −P is the x-axis

reflection of P .

Mathematically, point addition and doubling for prime fields can be described by

the equations below such that A = (xa, ya), B = (xb, yb), and C = (xc, yc).
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• Addition:

xc =

(
yb − ya
xb − xa

)2

− xa − xb (2.3)

yc =

(
yb − ya
xb − xa

)
(xa − xc)− ya (2.4)

• Doubling:

xc =

(
3x2a + a

2ya

)2

− 2xa (2.5)

yc =

(
3x2a + a

2ya

)
(xa − xc)− ya (2.6)

Note that from Eq. (2.2), we can develop slightly different point addition and dou-

bling expressions for binary fields.

Just like modular multiplication and squaring are used by the modular exponen-

tiation algorithm, point addition and doubling are used for the scalar point multipli-

cation algorithm, which is the elliptic curve one-way function. Scalar point multipli-

cation, Q = xP , can be computed via the repeated point add-and-double method such

as right-to-left binary point multiplication described in Algorithm 1. The right-to-left

binary point multiplication algorithm is nearly identical to the algorithms used for

modular exponentiation, except square and multiply have been replaced with double

and add, respectively. It should be noted that Algorithm 1 is shown here purely

for example sake. Due to its simplicity, it is relatively inefficiently and susceptible

to side-channel attacks. In practice, more efficient sliding-window algorithms are

utilized, in which more than one bit of the multiplier is scanned at once [16].

As we can see from Eq. (2.3) to Eq. (2.6), each point operation requires a field

inversion, which can be up to two orders of magnitude more costly than a field

18



Algorithm 1 Calculate Q = xP [16]

Input: P ∈ E(Fq) and integer x ≥ 1

Q⇐∞
while x 6= 0 do

if x is odd then

Q⇐ Q+ P

end if

x⇐ bx/2c
if x 6= 0 then

P ⇐ 2P

end if

end while

return Q

multiplication. Rather than using 2-dimensional, affine coordinates, we can use 3-

dimensional, projective coordinates. When using projective coordinates, intermediate

field inversions are not necessary. Instead, a conversion into projective coordinates

is performed at the beginning of a scalar point multiplication. Then throughout the

scalar point multiplication, projective coordinates are used, requiring no inversion

operations. Finally at the end of the scalar point multiplication, one inversion is

required to map the result back into affine coordinates.

Various projective coordinates have been proposed in literature; however, for

prime fields, Jacobian coordinates stand out as being the most computationally

efficient [16]. The mapping between Jacobian and affine points is (X, Y, Z) →

(X/Z2, Y/Z3) such that Z 6= 0, and the point at infinity is represented as (1, 1, 0).

To project an affine point onto a Jacobian point, we simply set Z = 1. However, to

convert a Jacobian point into an affine point, we must perform one field inversion

to calculate Z−1. For prime fields, the negative of a Jacobian point, (X, Y, Z), is

simply (X,−Y, Z). We can further improve the computational efficiency by using a
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mixture of Jacobian and affine points. In particular, we use Jacobian coordinates for

the point double operation, but when we perform a point addition, we actually add

an affine point to a Jacobian point.

For binary fields, Lopez and Dahab introduced a more efficient coordinate system

with the projective mapping of (X, Y, Z) → (X/Z, Y/Z2) and the point at infinity

being represented as (1, 0, 0) [17]. Because the additive inverse of an element in a

binary field is the element itself, the negative of a point is represented differently com-

pared to the prime counterpart. Specifically, in the Loped-Dahab (LD) coordinate

system, the negative of the point (X, Y, Z) is (X,X + Y, Z).

Determining the number of finite-field operations for ECC is not as straightfor-

ward as it is for modular exponentiation because each ECC addition and doubling

encompasses potentially dozens of finite-field operations. Given the same key size,

there is an order of magnitude more field operations for a typical ECC scalar point

multiplication compared to an RSA modular exponentiation, but the advantage of

elliptic curves over modular exponentiation for asymmetric cryptography is that the

ECDLP is considered to be computationally harder than the DLP. Consequently, the

size of integers used for ECC is much smaller than that of modular exponentiation-

based schemes of equivalent security. For this reason, ECC is substantially more

energy efficient than modular exponentiation schemes for the same level of security

and is the only asymmetric cryptosystem evaluated in this study [8, 13]. Given ex-

isting computational capabilities, integer computation in the range of 192-bits to

384-bits maintains adequate security for ECC. To provide similar levels of security,

RSA would need 1024-bit to 15360-bit computations [18].

The discussion here on elliptic curve cryptography is in no way intended to be

comprehensive. For a more in-depth treatment, we recommend two excellent books

dedicated to the subject, the “Guide to Elliptic Curve Cryptography” and the “Hand-
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book of Elliptic and Hyperelliptic Curve Cryptography” [16, 19].

2.2 HW/SW Codesign and Computer Architecture

The work presented here investigates the energy efficiency of asymmetric cryp-

tography on an ultra-low power embedded system. The term embedded system refers

to a special-purpose, System on a Chip (SoC), i.e., a small self-contained computer

system. An embedded system is comprised of two major design components, namely

hardware and software. The hardware is the tangible part, typically containing dig-

ital logic gates fabricated on a silicon substrate, while the software is the program

that orchestrates computation on the hardware. Often, these two components are de-

signed separately; however, hardware/software co-design can yield far more efficient

systems.

At the heart of any modern computer system is the processor core. Although

higher performance systems contain processors with multiple cores, we focus here

on a system with a single core. A typical processor core follows the stored-program

model, in which it sequentially fetches instructions from memory and performs arith-

metic and logic operations on data accordingly. The unit of data that is processed

by a given instruction is referred to as a word. Common word widths for modern

processors include 32-bits and 64-bits; however, some embedded systems use 8-bit

and 16-bit words. Data words can be stored in either memory or registers, the latter

having a much faster access time than the former. A register is nothing more than

a grouping of logic storage elements knowns as flip-flops. From the programmer’s

point of view, data and instructions are stored in the same memory but usually in

different locations, i.e., a Von Neumann architecture.

The Instruction Set Architecture (ISA) is the programmers interface to the pro-

cessor and essentially defines the hardware/software boundary. We can broadly cate-
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gorize an ISA into one of two categories: RISC or CISC. In a Reduced Instruction Set

Computer (RISC) architecture, instructions only perform operations on data within

registers. Therefore, data is loaded from memory into registers prior to computa-

tion and then stored back out to memory after computation. For this reason, RISC

architectures are synonymous with load-store architectures. A Complex Instruction

Set Computer (CISC) architecture, on the other hand, is a register-memory archi-

tecture, where instructions can operate on data in memory as well as in registers.

Common examples of a RISC architecture include MIPS, SPARC, PowerPC, and

the ubiquitous ARM, while well-known CISC architectures include Intel’s x86 and

Motorola’s 68000.

One of the primary advantages of a RISC architecture is that the instructions have

a simpler, fixed-width format and are therefore easier to decode in hardware. Coupled

with the load-store concept, a RISC machine is also easier to pipeline and hence a

good choice for an embedded system. This is especially true if code compatibility is

not a requirement, which means the designer is not forced to use a legacy CISC ISA.

For our work, we chose a subset of the MIPS ISA due mostly to its popularity in the

academic community but also partially because of being well supported in the GNU

toolchain.

The implementation of an ISA is commonly called the microarchitecture. An ISA

can have various microarchitectures depending on the generation of the machine and

the level of expected performance. For example, the R2000 and R3000 both imple-

ment the MIPS-I ISA; however the R3000 is an improvement over the R2000 [20].

Both machines are binary compatible, which implies a program does not have to be

modified to run on either machine.5 The field of computer architecture encompasses

5Binary compatibility does not necessary mean a program written for one machine will run well
on the other as a certain amount of machine-level software optimization might be present.
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microarchitecture design as well as ISA design. Although very little research today is

being put towards full ISA design, a hardware/software codesign project such as this

will often include both aspects of computer architecture by extending or enhancing

an existing ISA.

The microarchitecture of our research processor is based on the classic five-stage

pipelined processor taught in many computer architecture classes [21]. In such a

design, instruction execution consists of five stages, each normally requiring a single

clock cycle. The five stages are described below:

1. Fetch: An instruction is read from memory (or an instruction cache, which will

be discussed later), and the Program Counter (PC), which keeps track of the

processor’s place in the instruction sequence, is updated.

2. Decode: The instruction is decoded, creating control signals that will flow down

the pipeline, and the register file is read. Also, hazards (briefly discussed later)

are detected and handled.

3. Execute: This stage contains the Arithmetic-Logic Unit (ALU), which performs

an arithmetic or logic operation on the data read from the register file. If the

instruction is a load or store instruction, the memory address is calculated. If

the instruction is a branch instruction, which changes the control flow of the

program, the branch address is determined.

4. Memory: If the instruction is a load or store instruction, the memory (or the

data cache) is accessed. Instruction exceptions are also handled in this stage.

An exception interrupts normal program execution and can be caused by a

number things, including an unrecognized instruction, an arithmetic overflow,

or even an external notification.
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5. Write-Back: The register file is updated in this last and final stage. If the

instruction was a load, the value read from memory is written into the ap-

propriate register. If the instruction was an arithmetic-logic instruction, the

destination register is written.

In an in-order microarchitecture, instructions flow through the pipeline in pro-

gram order, ideally progressing to the next stage every clock cycle. This implies that

the ideal throughput of such a machine is one instruction per clock cycle (IPC = 1).6

Real processors, however, do not achieve ideal IPC due to hazards in the pipeline. A

hazard occurs when an instruction must stall because it depends on the results of an

instruction ahead of it in the pipeline. Hazards are a negative effect of instruction

execution overlap and must be handled properly to ensure correct execution. We

will now briefly describe the hazards possible in our 5-stage pipelined processor and

discuss how they are handled.

Three types of hazards exist in a traditional processor: data, control and struc-

tural. A data hazard exists when an instruction needs the result of another instruc-

tion ahead of it in the pipeline. In computer architecture terminology, this presents

a Read-After-Write (RAW) data hazard.7 Forwarding logic allows the pipeline to

continue without stalling in the case of back-to-back arithmetic-logic instructions so

long as each instruction only requires one clock cycle in the execute stage. However,

when an arithmetic-logic instruction immediately following a load instruction needs

the data being loaded, the pipeline must stall until the load is complete.8

A control hazard is caused by a branch instruction, which modifies the control

flow of the program. The problem is that the processor must update the PC in

6More aggressive microarchitectures fetch multiple instructions per clock cycle and execute them
out of order. These designs can achieve an IPC greater than one.

7Other types of data hazards exist but are not relevant for an in-order processor.
8Note that some literature uses the term interlocking to refer to pipeline stalling.
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the fetch stage, but the branch address is not determined until the execute stage.

Various techniques have been developed to reduce pipeline stalls caused by control

hazards, such as delaying the branch decision and predicting the branch outcome

early in the pipeline. The latter technique has proven useful in many microarchitec-

tures, while the former actually complicates the design of modern, more aggressive

microarchitectures.

In MIPS, the branch decision is delayed one clock cycle with a branch delay slot.

In other words, the instruction immediately following the branch in program order

is always executed, regardless of the outcome of the branch. To further reduce the

effects of control hazards, we use a simple branch predictor to predict the branch

outcome in the decode stage and then verify the prediction in the execute stage. If the

prediction was incorrect, the instruction that was speculatively fetched is invalidated,

and instruction fetch resumes at the correct branch target address. Of course, if the

prediction was correct, the processor simply continues execution uninterrupted.

A structural hazard exists when two or more instructions require the same hard-

ware resource in a given clock cycle. In an in-order, pipelined processor such as ours,

structural hazards only exist when a hardware resource is needed in two or more

pipeline stages. For instance, memory is accessed in the fetch and memory stage.

Similarly, the register file is read in the decode stage and written in the write-back

stage.

A simple solution to avoid memory structural hazards in a pipelined processor

is to store instructions and data in separate memories. This type of architecture,

commonly referred to as a Harvard architecture, is in contrast with the Von Neumann

architecture. Another solution is to provide multiple ports to the same memory. A

memory with two read/write ports is typically called a dual-port memory. One

disadvantage to such an approach is that the density of the memory goes down as
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the number of ports goes up (e.g., a single-port memory requires six transistors per

bit, while a dual-port memory requires eight). A third solution is to use separate

caches for data and instructions. While many embedded systems use a hybrid of the

aforementioned solutions, most computer system today use caches to solve memory

structural hazards. Structural hazards caused by the register file are usually avoided

with multiple ports. In particular, the register file in our processor has two read

ports and one write port.

Figure 2.4: The microarchitecture of a 5-stage pipeline processor

Putting all these concepts together, Figure 2.4 depicts the 5-stage pipelined pro-

cessor design used in our research. The forwarding paths for avoiding data hazards

are highlighted in green, while the signals for stalling and invalidating (i.e., flush-

ing) instructions are highlighted in red. The control signals that flow through the
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pipeline are colored blue and all other components of the datapath are colored black.

Note that the term datapath describes the data buses, registers, and arithmetic-logic

components within the microarchitecture.

For asymmetric cryptography, the width of the datapath (i.e., the word width),

specified by the ISA, can have a significant effect on the computational efficiency.

As seen in Section 7.9, larger datapaths prove to be beneficial in our accelerator

architecture. For MIPS-I and II, the datapath is 32-bits wide, while for MIPS-III

and above, the datapath increases to 64-bits. We currently utilize a 32-bit datapath

for our processor, but for future work, we would like to investigate the energy benefit

of using a 64-bit processor.

As will be discussed in Section 5.3, we investigate the energy impact of an instruc-

tion cache in our system. Thus, a brief description of caches is in order. We already

mentioned that caches can help eliminate structural hazards due to memory access,

but it is interesting to note that caches were developed primarily because the access

time of main memory was not keeping up with the speed of the processor. Starting in

the 1980s and continuing until about 2005, processor and main memory speed have

diverged exponentially [21]. Processor performance has increased drastically due to

advances in VLSI and computer architecture. Meanwhile, main memory speed has

been growing at a much slower rate as commodity DRAM capacity increases and

cost decreases.

To bridge this performance gap, computer architects began placing caches be-

tween main memory and the processor. Cache is simply smaller, faster memory that

leverages the principals of temporal and spacial locality. Temporal locality is the

observation that when an instruction or data word is accessed in memory, it is very

likely to be accessed again in the near future. Similarly, spacial locality observes

that when a word is accessed in memory, words within close proximity will likely be

27



accessed as well.

By using faster SRAM technology, rather than slower, more dense DRAM, and

keeping the memory small, the access time for a cache can be orders of magnitude

less than that of main memory. Initially, processors only had a single level of cache;

however as the processor-memory performance gap continued to increase, more levels

of cache were added to the memory hierarchy. The access time of the lowest level of

cache, L1, must be matched with the speed of the processor, requiring only one or

two processor clock cycles. Moving up in the memory hierarchy, each level of cache

is larger and slower than the level below it. The goal of a well designed memory

hierarchy is to give the programmer the illusion of a single memory that is large

but also fast. While a typical computer system today will have up to three levels of

cache, many embedded systems only use one level of cache or no cache at all.

The simplest of all cache designs, illustrated in Figure 2.5, is the direct-mapped

cache.9 In such a cache, a block of data in main memory maps to only one location

in the cache. Because the cache is much smaller than main memory, many blocks

in memory will map to the same block in the cache. Consequently, a tag must be

stored with a given cache block in order to uniquely identify that block in memory.

In addition to the tag, other bits must be stored to keep track of the state of each

cache block. In our simple architecture, we only need to know if the cache block

contains valid data; thus a single valid bit is sufficient.

One of the advantages of a direct-mapped cache is simplicity. As shown in Fig-

ure 2.5, the word address from the processor is broken up into three components,

namely tag, index and block offset. The index is used to select a cache block from

the cache. Due to spacial locality, a cache block will usually contain multiple words

9Modern computer systems use more advanced caching techniques, which lie outside the scope
of this work.
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Figure 2.5: A direct-mapped cache with a block size of 16 bytes and a 32-bit word
width.

(a power of two for hardware simplicity). Thus, the block offset selects a particular

word within a cache block. To ensure the cache block referenced by the index is

the exact block in memory the processor is addressing, the tag stored in the cache

is compared with the tag portion of the address. Also, the valid bit is checked. If

the tags match and the valid bit is set, a cache hit is detected, and the appropriate

word is forwarded to the processor; otherwise, a cache miss is detected, causing the

cache controller to access the next level in the memory hierarchy. As a miss is being

handled, an in-order processor such as ours, must stall, waiting for the correct cache

block to be returned from the memory system. This wait time is commonly referred

to as the miss penalty. More details about the cache design used in this study can
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be found in Section 5.3.

2.3 Energy Consumption in Digital Circuits

Understanding how energy is consumed in CMOS logic is key to creating energy

efficient designs. The general equation for energy is given by

Energy = Power ∗∆Time (2.7)

such that Power is the average computation power, and ∆Time is the time per oper-

ation. While ∆Time is dependent upon the computation time, Power is dependent

upon the CMOS implementation and usage.

CMOS circuits dissipate power in three different ways. First, there is static power

dissipation, which can be described by the formula below:

Pstatic = V ∗ Ileak (2.8)

where V is the source voltage and Ileak is source to drain current when the transistor

is turned off, referred to as leakage current. The second type of energy consumption

is switching power, given by the following formula:

Pswitching = (1/2) ∗ α ∗ C ∗ f ∗ V 2 (2.9)

C is the capacitance the transistors must drive and is made up of wire and gate

capacitance. The clock frequency, f , and the switching activity factor, α, capture

the rate at which the transistors switch. The third component of power is short
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circuit power and is given by the following formula:

Pshort = V ∗ Isc (2.10)

Isc is the short circuit current which exists between the type N and P transistors

during a logic state transition [22].

In computing, we can reduce energy per operation by either reducing the power

consumed in the computation logic or by reducing the amount of time required per

operation. Often, a small increase in power can be traded for a significant reduction

in execution time such that there is an overall benefit in energy conservation [23].

Conversely, an increase in execution time might be traded for a significant reduction

in power as seen with Dynamic Voltage Frequency Scaling (DVFS) [24].
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3. RELATED WORK

Researchers have dedicated much effort to achieving significant acceleration using

hardware in FPGA and ASIC designs; however, only a few publications seem to

investigate the energy consumption aspect of public-key cryptography for embedded

devices. In order for public-key cryptography to be viable in energy-constrained

applications, a better understanding of the energy cost associated with asymmetric

encryption in both hardware and software is necessary.

Wander et al. compared the energy cost of 1024-bit RSA with that of 160-

bit ECC to show that 160-bit ECC significantly reduces energy consumption when

executed on an 8-bit Atmel ATmega128L microprocessor [8]. The results provide a

very compelling argument for ECC, showing that, based on an assumed battery life,

the device using ECC could execute 4.2 times the number of key exchange operations.

While their work looked at the energy cost for asymmetric cryptography on the far

left side of the range shown in Figure 1.1, our work examines its cost for additional

points on the spectrum.

Also on the far left of the spectrum, Potlapally et al. investigated the energy

requirements of OpenSSL on an Intel SA-1110 StrongARM processor [13]. To do

so, they devised a LabVIEW based testbed that measures, in real-time, the power

consumption of a handheld device with the SA-1110 processor. Their experimental

results motivate further research by showing that for 1KB data transfers, asymmetric

cryptography consumes greater than 90% of the total energy spent on cryptographic

processing. This equates to 56% of the total energy expended during the data trans-

fer. Additionally, they show that 163-bit ECC requires less energy than 1024-bit RSA

when client authentication is used. Their work is particularly relevant considering
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the SA-1110 is comparable in size to the processor evaluated in our study.

Pabbuleti et al. evaluated the energy cost of several public-key authentication

schemes based on ECC (ECDSA) and one-time hashes (LD-OTS and W-OTS) [9].

For their experiments, the authors used a CC2500 low-power RF transceiver paired

with an MSP430 microcontroller, 256 KB of flash and 16 KB of RAM. To facili-

tate independent energy measurements, the authors used separate shunt resistors to

measure the current independently through the microcontroller and the transceiver.

Thus, their evaluation included not only the cost of computing the signature, but

also the cost of transmitting the signature. While ECC based protocols require much

more energy for computation compared to the hash-based schemes, the hash-based

schemes require more energy for transmission because of longer signatures. Unfor-

tunately, the energy cost of computation for ECDSA does not scale well to greater

security levels. As a result, 160-bit ECDSA was shown to be more energy efficient

at the 80-bit security level compared to LD-OTS and W-OTS, but 256-bit ECDSA

was much less efficient at the 128-bit security level.

Keller et al. examined public-key energy consumption for FPGAs [25]. First, the

design of an entire asymmetric cryptographic processor is explained. Then, the design

is implemented on an Xilinx Spartan 3E FPGA and characterized in terms of en-

ergy consumption. The processor is capable of utilizing binary or prime finite-fields.

For prime-field mathematics, the authors used 192-bit integers, while for binary-field

mathematics, the authors used 163-bit polynomials. For energy consumption char-

acterization, the authors kept the bit lengths the same but made various algorithmic

changes. They found that the power consumption of the FPGA remained quite con-

stant throughout their experimentation, and thus, the fastest system configuration

was also the most energy efficient. In the design by Keller et al., the field size was

fixed at synthesis time, placing it on the far right of the spectrum of Figure 1.1. By
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contrast, the prime-field accelerator presented here is run-time configurable for up to

521-bit ECC. Furthermore, our work evaluates the energy cost for ASIC technology

as opposed to FPGA logic, which presents a significantly different power-performance

profile.

Goodman et al. compared public-key cryptography on a Domain-Specific Recon-

figurable Cryptographic Processor (DSRCP) with previously reported FPGA imple-

mentations and a software only implementation on a strongARM [26]. The DSRCP

was implemented in a 0.25 µm process technology, and the energy consumption

numbers were true measurements. The authors report orders of magnitude lower

energy consumption for the DSRCP compared to software and FPGA implemen-

tations. For public-key cryptographic algorithms, reconfigurability of the DSRCP

is possible, while the energy consumed by the DSRCP is half that of previously re-

ported non-reconfigurable hardware solutions. Because the DSRCP can only perform

public-key encryption, it lies on the right side of the diagram in Figure 1.1. Our work

investigates more reconfigurable points to the left on the diagram.

Wenger et al. compared 192-bit prime- and 191-bit binary-field implementations

of ECC in terms of energy consumption on a custom cryptographic processor[27].

Their results show that binary-field computation provides a 2.82 factor improvement

in energy efficiency for an ECDSA signature. Specifically, their custom processor,

“Neptun,” requires only 19.53 µJ for a 191-bit binary-field signature compared to

55.10 µJ for a 192-bit prime-field signature. Results were reported assuming a 1

MHz clock rate and a low-power 130 nm technology node. Even though each archi-

tecture was tuned for a particular field, the difference in power consumption between

the two is insignificant. Thus, the majority of the energy savings due to binary-field

support comes from a reduction in execution time. The authors attribute fast field

squaring and a 50% reduction in the number of field multiplications as the primary
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benefits of binary-fields. For an ECDSA verification, however, binary-field compu-

tation only provides a 1.49 factor improvement in energy efficiency because the twin

multiplication algorithm for verification is not as efficient for binary-fields. As with

the DSRCP by Goodman et al., the Neptun processor is designed specifically for

ECC but maintains a certain degree of reconfigurability. Our work not only investi-

gates more reconfigurable architectures but also covers a larger portion of the design

space by evaluating greater security levels.

For symmetric encryption, Wu et al. show a 2.25x performance improvement over

pure SW with CryptoManiac, which requires 1/100th of the area of an Alpha 21264.

Although the authors did not investigate energy, we acknowledge that this design

would yield a significant reduction in energy per symmetric cryptographic operation.

It should be noted that this work is complementary to ours because symmetric and

asymmetric cryptography are used cooperatively.
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4. ALGORITHMS AND SOFTWARE

4.1 ECDSA

In this study, we examine the energy cost for the Elliptic Curve Digital Sig-

nature Algorithm (ECDSA), which is a variant of the Digital Signature Algorithm

(DSA) that utilizes elliptic curve scalar point multiplication in place of modular

exponentiation [10]. We chose ECDSA as our benchmark because it is a standard-

ized elliptic curve-based algorithm found in many protocol implementations, includ-

ing OpenSSL [18]. Figure 4.1 depicts the computational hierarchy of ECDSA with

finite-field arithmetic at the foundation.

Figure 4.1: Elliptic Curve Digital Signature Algorithm computation hierarchy

Finite-field arithmetic is essentially addition, subtraction, multiplication, and

inversion on a finite set of elements. In terms of clock cycles per operation, field

inversion is the most costly, with multiplication coming in second. The number of

field inversions required is kept to a minimum, however, making multiplication the

most costly operation overall. Significantly, when we accelerate ECC, the finite-field
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arithmetic is the portion of the algorithm that gets mapped into hardware, while the

rest remains in software and is consequently reconfigurable.

Next in the computational hierarchy are the point addition and doubling algo-

rithms that perform mathematical operations on an elliptic curve over a finite field.

The underlying field can be either prime – GF (p) – or binary – GF (2m) – both of

which are endorsed by the National Institute of Standards and Technology (NIST).

Mathematically speaking, the point double and add operations constitute an Abelian

group with the points on the curve and a point at infinity (i.e., the identify element).

Although an elliptic curve is described in two dimensions with the Weierstraß equa-

tion, practical implementations use a three-dimensional coordinate system to avoid

costly field inversions. For ourGF (p) implementations, we use mixed Jacobian-Affine

coordinates, while for GF (2m), we use mixed Lopez-Dahab-Affine. These coordinate

systems are optimal in that they require the least amount of field operations for their

respective curves [16].

Continuing up the hierarchy, we have the scalar point multiplication algorithms.

ECDSA defines an operation for signing a message and another operation for ver-

ifying the signature of a message. Our study examines the energy cost of both in

order to understand the cost of an SSL handshake. An ECDSA signature requires

a single scalar point multiplication (X = kP ), while a verification requires a twin

scalar point multiplication (X = u1P + u2Q). For a single scalar point multiplica-

tion, we use a sliding-window algorithm that uses two pre-computed points (3P and

5P ) and takes advantage of the fact that point subtraction is only marginally more

costly than addition. For the twin scalar point multiplication, we use an algorithm

that pre-computes P −Q and P +Q and then simultaneously scans both multipliers

(u1 and u2). In such a case, the cost of a twin scalar point multiplication is less than

two single scalar point multiplication [28]. We evaluated Montgomery scalar point
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multiplication for use with our binary-field coprocessor but found the algorithm to

be more costly in terms of performance and energy compared to the sliding-window

algorithm [17].

Encompassed within ECDSA is also arithmetic performed modulo the order of

the base point of the specified curve and is done in addition to the scalar point multi-

plications to complete either a signature or a verification operation. For most imple-

mentations, the scalar point multiplication constitutes the majority of the ECDSA

computation, but as will be shown later, this is not always the case with hardware

acceleration. For inversion modulo the group order, we implement the extended

Euclidean algorithm on Pete for all hardware/software configurations.

4.2 Multi-precision Routines

Because asymmetric cryptography involves computation on integers typically

much larger than the word width of the machine with which they are computed,

multi-precision routines are necessary to perform the finite-field arithmetic essential

for ECDSA. With multi-precision computation, large integers are stored in mem-

ory as arrays of w-bit words, where w is the width of the computational datapath.

Multi-precision computation then proceeds one word at time. For the architectures

evaluated in this study, w = 32. The size of the array necessary to store an n-bit

integer is given by k = dn/we. The computational complexity for the multi-precision

addition routines areO(k). In other words, the addition algorithm run time is linearly

related to the number of words required to represent the field. For multiplication,

the computational complexity is O(k2).

Of the multi-precision routines, inversion and multiplication have the highest

computational complexities; however, software acceleration techniques, such as the

use of three-dimensional coordinate systems, reduce the number of required inver-
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sions [29]. In terms of energy, multiplication is the most costly multi-precision rou-

tine. Therefore, we will begin by briefly reviewing the specific multi-precision mul-

tiplication algorithms used in this study. Because we evaluated the use of prime

and binary fields, our discussion will include both types of computation. For a more

in-depth coverage of the material presented in this section, consult Hankerson et

al. [16].

Algorithm 2 Operand scanning multiplication [30]

Input: A = (ak−1, ..., a1, a0), B = (bk−1, ..., b1, b0)

Output: P = A ∗B = (p2k−1, ..., p1, p0)

1: P ← 0

2: for i from 0 to k − 1 do

3: u← 0

4: for j from 0 to k − 1 do

5: (u, v)← aj ∗ bi + pi+j + u

6: pi+j ← v

7: end for

8: pi+k ← u

9: end for

4.2.1 Prime Field Multiplication

Prime-field multiplication requires a multi-precision integer multiplication fol-

lowed by a reduction operation to map the multiplication result back into the finite

field. Multi-precision integer multiplication can be broadly divided into two cate-

gories: product scanning and operand scanning. Operand scanning, described in

Algorithm 2, is the traditional “school-book” technique, also known as “pencil-and-

paper” multiplication. When implemented in software, operand scanning requires

a nested for-loop with the inner-loop iterating over the multiplicand and the outer-
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loop iterating over the multiplier. Within the inner-loop, the primary arithmetic

computation is given by

(u, v) = aj ∗ bi + pi+j + u (4.1)

assuming P = A ∗ B. In other words, operand scanning requires a succession of

multiply-add operations.

Algorithm 3 Product scanning multiplication [30]

Input: A = (ak−1, ..., a1, a0), B = (bk−1, ..., b1, b0)

Output: P = A ∗B = (p2k−1, ..., p1, p0)

1: (t, u, v)← 0

2: for i from 0 to k − 1 do

3: for j from 0 to i do

4: (t, u, v)← aj ∗ bi−j + (t, u, v)

5: end for

6: pi ← v

7: v ← u, u← t, t← 0

8: end for

9: for i from k to 2s− 2 do

10: for j from i− k + 1 to k − 1 do

11: (t, u, v)← aj ∗ bi−j + (t, u, v)

12: end for

13: pi ← v

14: v ← u, u← t, t← 0

15: end for

16: p2k−1 ← v

Product scanning, like operand-scanning, encompasses a nested-loop structure;

however, it iterates over the result array in the outer-loop and accumulates the

product terms within the inner-loop. For product scanning, described in Algorithm 3,
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the inner-loop computation is given by

(t, u, v) = (t, u, v) + aj ∗ bi−j (4.2)

such that (t, u, v) is the accumulator register set. In other words, product scan-

ning requires a succession of multiply-accumulate operations. Operand scanning

and product scanning require the same number of multiplications; however, when a

multiply-accumulate instruction is available, product scanning requires fewer adds

and stores to memory. If a multiply-accumulate instruction does not exist in the

target architecture, the multiply-accumulate operation must be emulated with mul-

tiplies and adds and uses additional registers, thereby diminishing the overall benefit.

For our baseline architecture, we found operand scanning to perform marginally bet-

ter than product scanning. For that reason, we used product scanning only in the

case of instruction set extensions.

A number of techniques exist for reducing the result of the multiplication (i.e.,

the modulo operation). The naive approach is to perform a multi-precision division

but is far too computationally intense to be considered in practice. Assuming the use

of general Mersenne primes selected by NIST, software routines can take advantage

of modular congruency in order to reduce a multiplication result using substitutions,

additions, and subtractions [31]. For example, consider the prime number used in

192-bit computations:

P192 = 2192 − 264 − 1 (4.3)

Due to modular congruency,

2192 − 264 − 1 ≡ 0 (mod P192)

2192 ≡ 264 + 1 (mod P192)
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In this manner, the upper 192-bits of the multiplication result can be folded

back into the lower 192-bits. The reduction algorithm for the NIST 192-bit prime

is described in Algorithm 4. For completeness, the other NIST primes used in this

study are listed below:

P224 = 2224 − 296 + 1 (4.4)

P256 = 2256 − 2224 + 2192 + 296 − 1 (4.5)

P384 = 2384 − 2128 − 296 + 232 − 1 (4.6)

P521 = 2521 − 1 (4.7)

Note that the terms of the NIST primes have been purposely selected to be

multiples of 232, making the reduction more efficient on a 32-bit processor.1

Algorithm 4 NIST fast reduction modulo P192 [31]

Input: C = (c5, c4, c3, c2, c1, c0)

Output: C modulo P192

1: s1 = (c2, c1, c0), s2 = (0, c3, c3), s3 = (c4, c4, 0), s4 = (c5, c5, c5)

2: T ← s1 + s2 + s3 + s4
3: while T ≥ P192 do

4: T ← T − P192

5: end while

6: return T

The drawback to fast reduction is that each field requires a unique NIST reduction

algorithm. As a consequence, the NIST reduction techniques are not recommended

for hardware implementations. Rather, the preferred method of reduction is Mont-

1This is with the exception of P521; however, the limited number of terms keeps the reduction
fast.
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gomery reduction [32]. When Montgomery reduction is utilized, the reduction steps

can be interleaved with the multiplication steps to form Montgomery multiplication.

Koç et al. provide a comprehensive examination of Montgomery multiplication, in

which the Coarsely Integrated Operand Scanning (CIOS) technique, described in

Algorithm 5, stands out amongst the rest [33].

The CIOS algorithm uses operand scanning for the multi-precision multiplica-

tion and coarsely integrates the Montgomery reduction into the multiplication by

performing the reduction on every iteration of the outer loop. The first inner loop

(lines 3-7) performs the operand-scanning multiplication, which will create a partial

product of length k + 1 words, while the second inner loop (lines 8-20) reduces the

partial product to k words. Thus, the final result is k words long and congruent to

A ∗ B ∗ R−1 (mod P ), where R = 2k∗w. A final correction step is then necessary to

ensure the result is less than the prime, P .

The primary advantage of Montgomery reduction is that the same algorithm

can be used for any arbitrary prime; only the algorithm parameters, such as word

length, must be configured. For our baseline architecture, we implemented the vari-

ous multiplication techniques in C++ and evaluated their performance with a 384-bit

ECDSA operation. The results showed operand scanning with NIST fast reduction

to perform the best with our given HW/SW architecture. We assumed power would

remain fairly constant across the various techniques, and therefore selected operand

scanning with NIST fast reduction for our baseline software suite.

The instruction set extensions (discussed in Section 5.2) were specifically de-

signed to allow computation with an accumulator, so we compared product scanning

with NIST fast reduction to the Finely Integrated Product Scanning (FIPS) Mont-

gomery multiplication using these enhancements. We found that product scanning

with NIST fast reduction outperforms FIPS. Thus, our ISA-extended microarchi-
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tecture uses product scanning with NIST fast reduction for multiplication. For our

fully-accelerated microarchitecture (discussed in Section 5.4), we implemented CIOS

Montgomery multiplication in microcode.

Algorithm 5 Calculate t = MontMult(a, b, n, n′0) (CIOS) [33]

1: t⇐ 0

2: for i from 0 to k − 1 do

3: C ⇐ 0

4: for j from 0 to k − 1 do

5: (C, S)⇐ T [j] + A[j] ∗B[i] + C

6: T [j]⇐ S

7: end for

8: (C, S)⇐ T [k] + C

9: T [k]⇐ S

10: T [k + 1]⇐ C

11: C ⇐ 0

12: m⇐ T [0] ∗ n′0 modulo 2w

13: (C, S)⇐ T [0] +m ∗N [0]

14: for j from 1 to k − 1 do

15: (C, S)⇐ T [j] +m ∗N [j] + C

16: T [j − 1]⇐ S

17: end for

18: (C, S)⇐ T [k] + C

19: T [k − 1]⇐ S

20: T [k]⇐ T [k + 1] + C

21: end for

22: if t ≥ n then

23: return t− n
24: else

25: return t

26: end if
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4.2.2 Binary Field Multiplication

Algorithms 2 and 3 assume the target ISA has an integer multiply instruction that

performs 32-bit by 32-bit multiplication. Unfortunately for binary field-computation,

most processor architectures do not include a carry-less multiplication unit, which

drastically reduces the computational efficiency. The naive method for computing

binary-field multiplication without hardware support involves bit-serial multiplica-

tion such that the multiplier is scanned one bit at a time. In software, this algorithm

is impractical due to the cost of shifting and adding the multiplicand. More advanced

multiplication algorithms attempt to recover some lost efficiency via precomputation

[34]. In other words, some memory space must be traded for increased efficiency.

Algorithm 6 describes the binary-field multiplication used in our software-only

evaluation. W here refers the datapath width of the target machine, while w refers

to the window width of the algorithm. Window width, w, is the number of bits

of the multiplier that are scanned at a time, which dictates the amount of precom-

putation necessary. We found that w = 4 provides a reasonable balance between

precomputation storage and performance for an embedded system. Larger window

widths would speed up multiplication but require more RAM, thereby increasing

power consumption.

As will be discussed in Section 5.2.2, we have extended our target ISA to include

carry-less arithmetic instructions such that Algorithm 3 can be efficiently imple-

mented for binary fields. In such case, the need for precomputation is removed and

binary-field multiplication has a run time comparable to that of prime-field multi-

plication. A comparison of the energy per operation when using binary fields as

opposed to prime fields can be found in Section 7.3.

As with prime fields, binary fields have a set of NIST recommended fast reduc-
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Algorithm 6 Left-to-right comb method with windows of width W [16]

Input: a(x) and b(x) of degree at most m− 1

Output: c(x) = a(x) · b(x)

1: Compute Bu = u(x) · b(x) for all polynomials, u(x) of degree at most w − 1.

2: C ← 0

3: for j from (W/w)− 1 to 0 do

4: for i from 0 to k − 1 do

5: Add Bu to (C[k], C[k − 1], ..., C[j + 1], C[j]), where u = (uw−1, ..., u1, u0)

such that ul is bit (wj + l) of A[i]

6: end for

7: if j 6= 0 then

8: C ← C · xw
9: end if

10: end for

11: return C

tion algorithms. The follow trinomials and pentanomials are considered for binary

reduction polynomials:

f(x) = x163 + x7 + x6 + x3 + 1 (4.8)

f(x) = x233 + x74 + 1 (4.9)

f(x) = x283 + x12 + x7 + x5 + 1 (4.10)

f(x) = x409 + x87 + 1 (4.11)

f(x) = x571 + x10 + x5 + x2 + 1 (4.12)

Unfortunately, the terms in the reduction polynomials do not lie on word bound-

aries as is the case with the NIST primes. Thus, the reduction algorithms for binary

require a significant amount of additional shifting. For example, the reduction algo-

rithm for the 163-bit binary field is described in Algorithm 7. Because binary-field

computation does not need to deal with carries, the reduction time for binary is sim-
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ilar to that of prime, despite the extra shifting. In our work, we found the reduction

for P192 to take on average 97 clock cycles, while the reduction for B163 takes 100

clock cycles. As a comparison, the run time in clock cycles for Algorithm 3 using

ISA extensions is 374 and 376 for P192 and B163, respectively. For a listing of the

reduction algorithms for the other four binary fields, please see Hankerson et al. [34].

Algorithm 7 NIST fast reduction modulo f(x) = 2163 + 27 + 26 + 23 + 1 [34]

Input: c(x) of degree at most 324

Output: c(x) modulo f(x)

1: for i from 10 downto 6 do

2: T ← C[i]

3: C[i− 6]← C[i− 6]⊕ (T � 29)

4: C[i− 5]← C[i− 5]⊕ (T � 4)⊕ (T � 3)⊕ T ⊕ (T � 3)

5: C[i− 4]← C[i− 4]⊕ (T � 28)⊕ (T � 29)

6: end for

7: T ← C[5]� 3

8: C[0]← C[0]⊕ (T � 7)⊕ (T � 6)⊕ (T � 3)⊕ T
9: C[1]← C[1]⊕ (T � 25)⊕ (T � 26)

10: C[5]← C[5] & 0x7

11: Return(C[5], C[4], C[3], C[2], C[1], C[0])

4.2.3 Binary Squaring

One of the more significant advantages that binary-field computation offers is fast

squaring. As shown in Section 2.1.4, the result of a binary square operation is simply

the result of squaring the individual terms in the input polynomial. In a computer

system, this can be accomplished by inserting zeros between the bits of the input

operand as illustrated below:

(am−1, · · ·, a2, a1, a0)→ (am−1, 0, · · ·, 0, a2, 0, a1, 0, a0)
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For our software-only system, the binary-field squaring algorithm is accelerated with

a precomputed table of 8-bit polynomials and associated 16-bit squares. The algo-

rithm then scans the input operand 8-bits at a time, using each 8-bit window to

reference the table. For our ISA-extended system, the carry-less multiplier is used

in lieu of a table, allowing for a 32-bit window when squaring.

As with multiplication, the result of a square operation is reduced using the NIST

fast reduction algorithms. The computational complexity of these optimized squaring

algorithms are O(k) as opposed to O(k2), making binary-field squaring significantly

faster than multiplication.

4.2.4 Field Addition/Subtraction and Inversion

Modular addition and subtraction with prime and binary fields have a computa-

tional complexity of O(k), and therefore, have a minimal impact on the efficiency of

ECC. Consequently, we will only briefly discuss the algorithms used.

For both prime and binary fields, addition is performed by breaking up the ad-

dends into words (i.e., the datapath width) and performing addition at the word

level (i.e., multi-precision). Prime-field computation requires integer addition, which

means arithmetic carries must be properly handled between word boundaries. Also,

arithmetic overflow is possible, so a reduction step is necessary after a prime-field

add. The reduction step for addition is simply a condition subtraction of the prime

modulus from the result. Prime-field subtraction is similar to addition in which a

conditional integer addition of the prime follows a subtraction. For binary-fields,

there are no arithmetic carries, which means no reduction step is necessary, and

addition and subtraction are the same operation [16].

Field inversion is typically performed with variations of either the extended Eu-

clidean algorithm or Fermat’s little theorem. The extended Euclidean algorithm uses
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shifts, additions, and subtractions and is O(k2), while Fermat’s little theorem uses

modular exponentiation and is O(k3). Although its computational complexity is

lower than Fermat’s little theorem, the extended Euclidean algorithm is more chal-

lenging to implement in hardware. Thus, we implement field inversion with Fermat’s

little theorem on our Monte and Billie accelerated architectures and the extended

Euclidean algorithm on the rest [16].

4.3 Software Build/Run-time Environment

We used crosstools-ng 1.18.0 to compile our build environment, which includes the

GNU Compiler Collection (gcc) 4.7.2 and Binutils 2.23. The executable binaries used

for our evaluation were compiled with -O2 and statically linked to Newlib. Unless

stated otherwise, the algorithms mentioned here were developed in C++. For the

instruction set extensions in Section 5.2 and coprocessor instructions in Section 5.4,

we modified the mips-opc.c source file to include these supplementary instructions

and recompiled Binutils.

The run-time environment for our study was a bare-metal (i.e., no OS) environ-

ment representative of a low-power, embedded microcontroller with minimal memory

configuration. Instructions and initialization data are read directly out of ROM. A

minimal amount of RAM is supplied for stack, heap, and miscellaneous data sections.
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5. MICROARCHITECTURES

As discussed in Chapter 3, a significant amount of research and development has

been put towards accelerating asymmetric cryptography. As a result, a number of

specific microarchitectural enhancements have been proposed in literature. In this

study, we evaluate the energy benefit of a few of these enhancements across the spec-

trum illustrated in Figure 1.1. We will now describe the evaluated microarchitectures

in detail, starting with our baseline.

5.1 Baseline

The baseline architecture we modeled, depicted in Figure 5.1, consists of a RISC

processor with 256KB of program ROM and 16KB of RAM. The ECDSA software,

including the necessary C++ libraries, requires just under 128KB of program mem-

ory. Thus, we assume an additional 128KB remains for other embedded system

functions. Also, our baseline system does not include an instruction cache. Our ini-

tial thoughts were that an instruction cache would be more costly in terms of energy,

but as we will see later, we discovered this was not the case.

The RISC processor, from here on referred to as “Pete,” is a classic, five-stage,

pipelined processor without a Memory Management Unit (MMU). Pete executes a

subset1 of the MIPS-II Instruction Set Architecture (ISA) [20]. The program ROM

has a 32-bit, dual-port interface to allow simultaneous access for Pete’s instruction

and data bus. Note that the data bus requires access to the program ROM be-

cause the processor must initially copy the data portion of the program into RAM.

Moreover, we make use of C++ virtual functions in our software, which require an

1The MIPS R© unaligned load and store instructions as well as floating point instructions and
those related to memory management are not included in Pete’s ISA.
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occasional table look-up. The RAM in the baseline system is assumed to have only

a single 32-bit interface for Pete’s data bus because instructions will not be stored in

RAM. For both memories, we assume single-cycle access. The clock rate we selected

for our evaluation has a period of 3 ns, which is greater than the access time required

for all memories, including the program ROM.

Figure 5.1: Baseline: RISC Processor w/ ROM and RAM

5.1.1 Statically Scheduled Multiply

One particularly unique characteristic of the MIPS ISA is the Hi/Lo register set

used for storing multiplication and division results. The use of these registers al-

lows the multiply/divide hardware to lie outside of the integer pipeline, as shown

in Figure 5.1, and therefore operate in parallel with the integer pipeline. For those

unfamiliar with this concept, consider the assembly code below:
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1 mult $t0 , $t1 #i n i t i a t e t0 ∗ t1

#other independent i n s t r u c t i o n s

3 #may be p laced here . . .

mflo $t2 #s to r e lower 32− b i t r e s u l t in t2

5 mfhi $t3 #s to r e upper 32− b i t r e s u l t in t3

The mult instruction initiates the multiplication of t0 by t1, while the mflo and

mfhi instructions store the lower and upper parts of the 64-bit result, respectively.

Therefore, instructions independent of the multiply can be statically scheduled be-

tween the mult and mflo/mfhi instructions. This feature is especially useful for

hiding the cost of loop maintenance for tightly-nested arithmetic loops. The multi-

precision integer algorithms required for asymmetric cryptography particularly ben-

efit from this light instruction-level parallelism.

Fast, parallel multiplication found on many high-performance RISC cores is costly

in terms of area and power [35]. To alleviate the cost of Pete’s 32-bit multiplier, we

designed a multi-cycle multiplication unit using only a single half-word parallel multi-

plication block. After examining the assembly output for our multi-precision integer

routines, it became clear to us that the compiler effectively schedules instructions

to take advantage of the instruction-level parallelism that this architecture can pro-

vide. For this reason, we were able to increase the multiplication latency to four

clock cycles without significantly affecting the execution time of the multi-precision

multiplication routines.
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5.1.2 Karatsuba Multiplier Implementation

To further reduce dynamic power, we based our multi-cycle multiplication unit

on Karatsuba’s divide-and-conquer technique, described by Großschädl et al. [36].

P =(AH ∗BH) ∗ 2n

+ [(AH − AL) ∗ (BL −BH)] ∗ 2n/2

+ (AL ∗BL)

(5.1)

Equation 5.1 expresses Karatsuba multiplication mathematically, such that P is the

product and AH , AL, BH , BL represent the input operands, A and B, split into

high and low parts. The principal advantage of Karatsuba multiplication is that

only three half-word multiplications are needed, as opposed to four with operand

or product scanning methods. It should be noted that the term enclosed by square

brackets in (5.1) can be less than zero, so Karatsuba multiplication introduces signed

arithmetic within an unsigned computation. If the multiplication unit is expected

to handle signed as well as unsigned multiplication, which was the case for our

work, then this will not require an exorbitant amount of extra logic when compared

to other techniques. Figure 5.2 depicts the multi-cycle multiplication unit used in

our baseline architecture. As shown, the primary arithmetic components of our

Karatsuba multiplier include a 17-bit by 17-bit signed parallel multiplication block,

a four-port 49-bit adder, and two 16-bit subtraction units.

Although integer division is not necessary for the algorithms used in this study,

we included a small divider in our evaluation. We found that it was necessary for

debugging and felt it might be necessary in some of the aforementioned application

areas. Moreover, Pete’s integer divider uses a simple binary restoring technique,

so it consumes only a small percentage of the overall logic resources and does not
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Figure 5.2: The Karatsuba Multiply Unit within the baseline architecture.

significantly impact energy consumption [35].

5.2 ISA Extensions

Instruction set extensions are special purpose instructions built into an existing

ISA in order to enhance the execution of a particular algorithm. For many applica-

tions, including DSP, communications, and cryptography, these special purpose in-

structions have shown considerable speedup with very little additional overhead. We
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consider instruction set extensions a “middle-of-the-spectrum” acceleration technique

and therefore feel they warrant consideration in our comparison study. Großschädl

et al. extensively explored the use of instruction set extensions for public-key cryp-

tography on various RISC platforms, including MIPS and SPARC V8 [36, 30]. Their

research covers both GF (p) (prime finite fields) and GF (2m) (binary finite fields). In

our work, we started with support for only GF (p) and then added GF (2m) support

later [37].

Table 5.1: Instruction set extensions for prime fields. Adapted from the work of
Großschädl et al. [30].

Format Operation

MADDU rs, rt (OvFlo, Hi, Lo) ← (OvFlo, Hi, Lo) + rs * rt

M2ADDU rs, rt (OvFlo, Hi, Lo) ← (OvFlo, Hi, Lo) + 2 * rs * rt

ADDAU rs, rt (OvFlo, Hi, Lo) ← (OvFlo, Hi, Lo) + (rs << 32) + rt

SHA (OvFlo, Hi, Lo) ← (OvFlo, Hi, Lo) >> 32

5.2.1 Prime Fields

For prime fields, Großschädl et al. recommend four supplementary instructions

for accelerating all variations of product scanning multiplication (e.g., Comba and

FIPS). These instruction set extensions are summarized in Table 5.1. One thing

to note is the expansion of the Hi/Lo register set to include a third 32-bit register

referred to as the OvFlo register. Those familiar with the MIPS ISA might notice

that the maddu instruction is actually available in later versions of the MIPS ISA.

The difference here is support for higher precision accumulate operations necessary

for product scanning multiplication. The M2ADDU instruction is an optimization

specifically for squaring, while the addau instruction improves the performance of
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the FIPS Montgomery multiplication algorithm and potentially the NIST reduction

algorithms. The SHA instruction is needed for all variations of the product-scanning

algorithm and facilitates access to the OvFlo register [30].

The suggested ISA extensions needed only a minimal amount of modification to

our baseline microarchitecture. Aside from extra decode logic in the main pipeline,

most of the modifications were concentrated within the Karatsuba multiplication

unit. For example, the four-port adder was widened to 50-bits, and extra internal

carry bits were added. The multiplexing logic was modified to support extra data

paths from the result registers (for accumulate) and the operand registers (for the

ADDAU instruction). Additionally, result shifting and stores into the OvFlo register

were added. Figure 5.3 depicts Pete’s multi-cycle multiply-accumulate unit with the

ISA extension modifications highlighted. It should be noted that the multiplication

block remained untouched.

5.2.2 Binary Fields

Recall from Section 2.1.4 that binary-field arithmetic is essentially carry-less com-

putation, i.e., add is simply a bitwise XOR. Because most instruction sets include

an XOR instruction and carry-less addition does not require a reduction operation,

binary-field addition in software is much faster than its prime counterpart. Unfor-

tunately, the same is not true for multiplication because most instruction sets do

not include support for a carry-less multiplication. Consequently, computationally

inefficient methods such as Algorithm 6 must be utilized for binary-field multipli-

cation. As will be shown in the next chapter, this fact alone renders software only

implementations of binary-field ECC impractical for most embedded processors. In

such a case, ISA extensions can provide a dramatic improvement.

For binary-field support, Großschädl et al. recommend only two additional in-
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structions, summarized in Table 5.2. The first instruction, mulgf2, is a 32-bit by

32-bit carry-less multiply, i.e., the binary-field equivalent of the mul instruction in

MIPS. Notice that we represent this operation with ⊗. The second instruction, mad-

dgf2, is a carry-less multiply-accumulate instructions, i.e., the binary-field equivalent

of the maddu instruction in Table 5.1. Here we use ⊕ to mean binary add.

As with prime ISA extensions, we had to modify Pete’s instruction decode unit

and the Karatsuba multiply-accumulate unit. The modifications to the Karatsuba

multiply-accumulate unit are highlighted in Figure 5.4. The most notable change

is the inclusion of a 16-bit by 16-bit carry-less multiplication unit. Rather than

overcomplicating the design with a signed multiplication block that also supports

carry-less multiply, we chose to multiplex between the two multiplications units de-

pending on the computation mode. This decision was partially influenced by our

FPGA prototyping. In an FPGA, integer multiplication is made efficient via hard-

ware multiplication blocks built into the reconfigurable logic. However, an unusual

multiplication unit that also supports carry-less multiply would not synthesize to

these built-in primitives. We even experimented with various lightweight parallel

multiplication techniques in a Virtex-5 but found them to be far too costly in terms

of FPGA resources to be practical.

For the four-port addition unit, we designed a dual-mode adder that supports

normal addition and carry-less addition. We used a similar design for the 16-bit

subtraction units at the top of Figure 5.4. Fortunately, no other modifications to the

datapath were required. For the top-level FSM, we had to add a control signal that

selects the correct computation mode.
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Table 5.2: Instruction set extensions for binary fields. Adapted from the work of
Großschädl et al. [30].

Format Operation

MULGF2 rs, rt (OvFlo, Hi, Lo) ← rs ⊗ rt

MADDUGF2 rs, rt (OvFlo, Hi, Lo) ← (OvFlo, Hi, Lo) ⊕ rs ⊗ rt

Figure 5.3: The Karatsuba Multiply-Accumulate Unit including support for prime-
field ISA extensions. The dashed lines represent data paths that have been added
or modified to accommodate these ISA extensions. Lightly shaded boxes signify
modified components, while darkly shaded boxes indicate additional components.
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Figure 5.4: The Karatsuba Multiply-Accumulate Unit including support for prime-
and binary-field ISA extensions. Lightly shaded boxes signify modified components,
while darkly shaded boxes indicate additional components.
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Figure 5.5: The implementation of a direct-mapped instruction cache. Notice the
tag and data are stored in different memories. Also, the valid bits are stored with
the tag.

60



5.3 Instruction Cache

A surprising result we encountered while evaluating our baseline microarchitec-

ture is the significant energy cost for instruction fetch from the program ROM.

Three factors contribute to the relatively high energy cost of instruction fetch. First,

a RISC processor such as Pete fetches an instruction from memory on every clock cy-

cle, causing a large number of reads from program ROM. Second, the energy cost per

read of a memory is dependent on the size of memory, so larger memories consume

more energy. Finally, compared to the other memory components in the system, the

program ROM is the largest by far.

In an effort to reduce this energy cost, we first modeled our system with an

ideal 4KB direct-mapped instruction cache, using energy estimates from Cacti, a

cache modeling tool developed by HP Labs [38]. In the ideal case, the instruction

cache never misses, so the energy cost for instruction fetch only considers reads

from the cache. Although this scenario is unrealistic, it provides a simple way of

estimating the best case energy benefit we could expect from adding an instruction

cache. Our preliminary results, discussed in detail in Section 7.5, showed close to a

50% improvement in overall energy with an ideal instruction cache for the baseline

and ISA extended microarchitectures. The Monte accelerated architecture, which

will be discussed next, showed far less improvement because instruction fetch is far

less dominant in terms of energy.

5.3.1 Cache Implementation

Next, we designed a real instruction cache in Verilog. We chose to implement the

simple direct-mapped cache, conceptually described in Figure 2.5. The cache blocks

in our design hold four 32-bit words each, i.e., are 16 bytes wide. The number of

cache lines, however, is parameterizable, which allows us to change the size of the
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cache prior to synthesis. The hardware block diagram for our cache is depicted in

Figure 5.5. In the conceptual diagram, an entire cache line, which includes the valid

bit, tag and data block, is stored in a single memory. However, in practice, the tag

and data components of a cache line are typically stored in separate memories. One

advantage of using separate memories for tag and data is that the data memory can

also select the appropriate word. In other words, the data memory and word-select

multiplexor shown in the conceptual diagram can be combined. Because memories

are custom designed, rather than synthesized, this results in a faster, more efficient

cache. Another motivation for separating out the tag and data is that in a more com-

plex system, such as a multi-core processor system, the tag must be read more often

than the data.2 In such cases, the tag memory is either dual-ported or duplicated

altogether.

In Figure 5.5, we show the processor core interface at the top and the interface to

ROM at the bottom. The instruction address from the processor is broken up into

three components: tag, index, and block-offset. The data memory is addressed with

a concatenation of the index and the block offset, while the tag memory is addressed

with just the index. A cache hit is detected by comparing the address tag to the

tag read from the tag memory, i.e., the cache line tag. If the tags match and the

valid bit is set, a hit is signaled to both the cache controller and the processor. In

the case of a hit, the processor will assume the instruction being read from the data

memory of the cache is correct and will begin fetching another instruction. Likewise,

the cache controller will remain idle. In the case of a miss, the processor will stall

the front end of the pipeline (commonly referred to as a pipeline slip), and the cache

controller will begin access to the program ROM. Once the appropriate memory

block has returned from the program ROM, the cache line will be stored in the

2More tag reads are required for cache coherency protocols [21].
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cache, overwriting the existing cache line. In our implementation, this is carried out

with the write-enable signals going from the cache controller to the cache memories.

After the store operation is complete, the hit signal will be updated and the processor

will continue fetching.

Figure 5.6: Pete with an instruction cache. Notice the interface to the program ROM
has been increased to 128-bits.

5.3.2 System Integration

The simplified top-level microarchitecture with the instruction cache is shown in

Figure 5.6. Not only did we add an instruction cache, but we also expanded the

program ROM port to 128-bits, which allows an entire cache line to be filled at once.

In an SoC, the program ROM is fabricated on the same silicon die as the processor

logic, making wider ports to memory far less expensive in terms of energy compared

to off-chip memory. The primary advantage of a 128-bit program ROM port in

our system is a decrease in the miss penalty, which ultimately decreases the energy

wasted while Pete is waiting for the correct cache block. To reduce the number of

wires and further reduce the cost of ROM access, we made the ROM single-ported.
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The changes to the ROM interface and the inclusion of an instruction cache

require a slightly more complicated memory system. The data bus from Pete still

needs 32-bit access to the program memory. Likewise, we have to support instruction

access to non-cached regions in memory. When a processor system is brought out of

reset, the cache is in an unknown state and therefore unusable until the processor

initializes it. This implies that the reset vector (the location in memory where the

processor begins fetching instructions after reset), must be in a non-cached region of

memory. At the end of the reset routine, the instruction cache is initialized, which

involves invalidating each entry in the cache. From there, the processor jumps to

the pre-main routine in the cached address space, where it begins initializing the

software environment.

To make all this work, we added data and instruction buffers to transition from

a 128-bit memory port to a 32-bit bus. Furthermore, we included arbitration in our

ROM controller in order to multiplex the single port. This means that the data

and instruction buses as well as the instruction cache must content for access to the

program ROM. Although this presents a structural hazard in our system, it has no

noticeable impact on performance once the software system has been initialized.

5.3.3 Prefetching

In addition to different cache sizes, we also considered prefetching in our energy

evaluation. In the context of caching, prefetching is a technique that attempts to

reduce cache misses by speculatively fetching cache lines from main memory just

prior to their use. A perfect prefetcher would always fetch the correct cache line

early enough so that it is ready for use when the processor needs it and would

not fetch caches lines that are not used. Fortunately, instruction access is largely

sequential, which means it exhibits a lot of spacial locality and is therefore easy to
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predict. Thus, prefetching improves the performance of our instruction cache and

has the potential to save energy in the process.

We implemented a simple prefetching technique similar to the stream buffer pro-

posed by Norman Jouppi [39]. The stream buffer takes advantage of pipelined mem-

ory systems by prefetching a stream of cache lines rather than just one at a time.

Our prefetcher is essentially a single-entry stream buffer because we assume non-

pipelined access to the program ROM. It works as follows: When the cache detects a

miss, the cache controller will read the requested cache block from ROM and place it

in the cache as normal. Then it will immediately read the next block in the address

space and place it in a prefetch buffer along with a tag that identifies that particular

block. For every instruction reference from the processor, the address tag is also

compared to the tag in the prefetch buffer. If there is a miss in the cache but a hit

in the prefetch buffer, then the prefetch buffer will forward the requested block to

the processor and write it into the cache at the same time. The cache controller will

simultaneously read the next block from ROM and place it in the prefetch buffer. As

long as the prefetch buffer always contains the next need cache block, the processor

never has to stall. Also, the prefetch buffer avoids polluting the cache with blocks

that may never get used.

5.4 Prime-field Accelerator

Continuing towards the right of the spectrum shown in Figure 1.1, we augmented

our microarchitecture with an accelerator designed specifically for GF (p) arithmetic.

Figure 5.7 depicts the top-level diagram of our microarchitecture with the GF (p)

accelerator, referred to as “Monte,” on the left, the memory in the center, and Pete

on the right. Similar to work described by Koschuch et al. [40], Pete and Monte

utilize a shared memory interface in order to reduce any bottlenecks that might be
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Figure 5.7: The prime field accelerated architecture, “Pete with Monte.”

Table 5.3: Coprocessor 2 Instructions used to control Monte

Format Description Operation

CTC2 rt, rd Move to Control Register cop2CR[rd] ← GPR[rt]

COP2SYNC CoProcessor 2 Sync Sync Operation

COP2LDA rt Load A into Operand Buffer OpBuff[A] ← MEM[GPR[rt]]

COP2LDB rt Load B into Operand Buffer OpBuff[B] ← MEM[GPR[rt]]

COP2LDN rt Load N into Operand Buffer OpBuff[N] ← MEM[GPR[rt]]

COP2MUL Modular Multiply ResultBuff ← A * B mod N

COP2ADD Modular Add Result ← A + B mod N

COP2SUB Modular Subtract Result ← A - B mod N

COP2ST Store Result into Memory MEM[GPR[rt]] ← ResultBuff

created with a bus interface. Hence, we extended the 16KB of RAM found in our

baseline architecture to a true dual-port memory to which both Pete and Monte can

read/write.

5.4.1 Coprocessor Interface

To coordinate communication between Pete and Monte, we use the coprocessor

interface defined in the MIPS architecture; specifically we modified Pete to include

Coprocessor 2 instructions (Table 5.3) for the command and control of Monte. The
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first instruction, ctc2, allows Pete to initialize the control registers within Monte.

As will be discussed later, these control registers allow run-time configuration of the

algorithms executing within Monte. The second instruction, cop2Sync, facilitates

synchronization between Pete and Monte, typical of any parallel processing system.

Instructions cop2ldA, cop2ldB, and cop2ldN initiate Direct Memory Access

(DMA) transfers from shared memory to operand buffers within Monte. The start

address in shared memory of A, B, and N is contained within Pete’s General Pur-

pose Register (GPR) rt. Instructions cop2mul, cop2add, and cop2sub initiate

modular multiply, add, and subtract, respectively. The result of the above com-

putation instructions is copied back into memory by the cop2st instruction, which

initiates a DMA transfer from the result buffers within Monte out to shared mem-

ory. It should be noted that the above instructions are multi-cycle instructions with

latencies dependent on the size of the finite field.

The instructions described in Table 5.3 are fetched and decoded by Pete as regular

instructions. Within the decode stage, they are identified as coprocessor instructions

and are forwarded to Monte when they reach the execute stage. As shown in Fig-

ure 5.7, instructions are placed within an instruction queue once passed to Monte

and decoded in instruction order. Similar to out-of-order execution, the coprocessor

instructions are dispatched to one of two functional units. The Finite-Field Arith-

metic Unit (FFAU), described in detailed shortly, is responsible for modular addition,

subtraction, and multiplication, while the DMA handles data movement between the

FFAU buffers and shared memory. The loading of operands and storing of results

are overlapped with computation via a double buffering scheme. Similarly, operand

data is buffered separately from result data to increase buffer bandwidth and avoid

unnecessary stalls in the arithmetic logic, while at the same time not demanding

more ports per buffer. To reduce the number of reads from shared memory, we have
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included forwarding paths from the result buffer to the operand buffer. Consider the

snippet of code below to understand how Monte reorders instruction execution:

1 #assume monte i s i n i t i a l l y i d l e . . .

cop2ldA $a1 #load A from address GPR[ a1 ]

3 cop2ldB $a2 #load B from address GPR[ a2 ]

cop2ldN $a3 #load N from address GPR[ a3 ]

5 cop2mul #A∗B mod N

cop2st $a0 #must wai t u n t i l mul done

7 #in s t r u c t i o n s be low do not depend on prev ious

cop2ldA $t0 #can run ahead o f s t o r e !

9 cop2ldB $t1 #same here

cop2add #A+B mod N

11 cop2st $t3 #must wai t u n t i l add i s done

cop2ldA $t3 #must be forwarded during s t o r e

13 cop2ldB $s0 #can run ahead o f s t o r e

cop2sub #A−B mod N

At line 2, the load instruction will be immediately dispatched to the DMA and a

transfer will be started during the next clock cycle. Meanwhile, the next instructions

will be queued because the instruction at line 3 is not able to dispatch until the

current DMA transfer is complete. After instruction 4 dispatches, a DMA transfer

will be started and instruction 5 will dispatch to the FFAU. Instruction 5 will not

issue (i.e., start execution) until the current DMA transfer has completed. Once

instruction 4 finishes, Monte will swap operand buffers, and instruction 5 will begin

executing. At the same time, instruction 6 will dispatch to the DMA, where it

will wait in a reservation register until instruction 5 completes. Note that the DMA

functional unit contains a reservation register for stores. Loads, however, are initiated

upon dispatch, so a reservation register is not necessary.
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Instruction 6 will wait in the store reservation register until instruction 5 com-

pletes. In the mean time, instructions 8 and 9 will be processed while instruction

5 continues to execute. The multiply is an expensive operation, so instruction 10

will be held up in the instruction queue until the multiplication completes. When

instruction 5 finally finishes, the result buffer will be swapped, and instruction 10

will be dispatched. On the next cycle, instruction 10 will begin because its operands

have already been loaded, and instruction 6 will begin storing the multiplication

result out to memory. Once instruction 6 has completed, the store instruction at

line 11 can dispatch into the reservation register, where it will wait until the add

completes. In the meantime, instruction 12 will dispatch. Now, instruction 12 will

cause a Read-After-Write (RAW) hazard with instruction 11. Instead of executing

instruction 12, a forwarding bit in the DMA unit will be asserted, and instruction

12 will be discarded. Instruction 13 will then dispatch and begin a transfer on the

next clock cycle because it does not pose a RAW hazard. Once instruction 10 and

13 complete, the DMA will begin storing the add result out to shared memory, while

at the same time, copying the data into operand A. Instruction 14 will dispatch but

cannot start until the store has completed the forwarding operation.

5.4.2 Prime-field Arithmetic Unit

For accelerating prime finite-field arithmetic, we designed a microcoded Finite-

Field Arithmetic Unit (FFAU). A zoomed in view of the FFAU in Figure 5.8 reveals

that the major components of our accelerator include an arithmetic core, multiplex-

ing logic, address logic, and a control unit. The arithmetic core is a flexible, 2-stage

pipelined multiply-add unit, which is capable of performing various combinations of

adds and multiplies depending on input control bits. Flip-flops within the arithmetic

core store intermediate carries to allow for efficient pipelining of the back to back
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multiply-adds required by the multi-precision arithmetic. The address logic is noth-

ing more than a few index registers, which generate the operand and result addresses

in parallel with the computation. The multiplexing logic provides the FFAU with

enough flexibility to compute the CIOS Montgomery multiplication algorithm.

The control unit contains a 64-entry microcode table, along with built-in hard-

ware for nested loop structures and other conditional branches. In an attempt to

balance the trade-off between performance and reconfigurability, the control unit

contains a set of control registers, programmable by the ctc2 instruction. Precom-

puted algorithm parameters as well multi-precision integer width must be preloaded

into Monte prior to use. A return address register has been included to allow sub-

routine calls (leaf functions only). The following sections will describe the design of

our FFAU in more detail.

Figure 5.8: The Finite-Field Arithmetic Unit at the center of “Monte”
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The intent of the FFAU is to accelerate the underlying mathematics required

for ECC. In order to fully explore the design space associated with this sort of

acceleration hardware, the HDL code has been written such that the width of the

data path and the size of internally addressable memory can be adjusted prior to

logic synthesis. Other design parameters such as the size of the microprogram can

be adjusted as well. However, for the analysis provided in this study, those design

parameters are held constant unless stated otherwise.

5.4.2.1 Hardware Design

The microarchitecture depicted in Figure 5.9 is capable of executing CIOS Mont-

gomery multiplication, described in Algorithm 5, along with modular addition and

subtraction. Recall from Section 4.2.1, the CIOS algorithm consists of two nested

for-loops. The first loop computes the following:

t = t+ a ∗B

such that t is an integer with a word length of k + 2, a is an integer with a word

length of k, and B is of unity word length and part of b, an integer of the same size

as a. Note that if l is the bit length of the finite-field elements (e.g., 192, 256, or 384)

and w is the bit width of the datapath, then k = l/w. For example, if we want to

process 192-bit integers (minimal security) with a 32-bit datapath, then each integer,

a and b, will be represented by k = 6 words. The second inner loop computes the

following:

t = t+m ∗ n

such that t is as previously defined and n is an integer of k words. m is a single

word value computed just prior to its use on every iteration of the outer loop. In
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Figure 5.9: Top Level Architecture of the FFAU

short, the computation in each of the inner loops involves a multiplication of a large

integer by a single word and the addition of another large integer.

At the center of the FFAU is the arithmetic core. It is capable of clocking in

three w-bit operands and clocking out one w-bit result on every clock cycle. For the

current design, the arithmetic core has two pipeline stages and uses parallel array

multiplication and Carry Save Adder (CSA) row reduction techniques. While it

achieves a throughput of one operation per clock cycle, each operation has a latency

of three cycles. Table 5.4 reveals a subset of the operations the arithmetic core is

capable of performing.

Note that Result is the lower w bits of the computation and Carry is the remain-

ing upper w bits of the computation. The arithmetic core is self draining, meaning

that the control bits from the control unit as well as the store address for the corre-

sponding result propagate through the pipeline, along with the operand data. This

greatly simplifies the required control logic.
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Table 5.4: Arithmetic Core Computational Capabilities

Multiply-Add

(Carry,Result)⇐ A ∗B
(Carry,Result)⇐ A ∗B + C
(Carry,Result)⇐ A ∗B + C + Carry

Add-Subtract

(Carry,Result)⇐ A+B
(Carry,Result)⇐ A+B + C
(Carry,Result)⇐ A+B + C + Carry
(Carry,Result)⇐ −A+B
(Carry,Result)⇐ −A+B + C
(Carry,Result)⇐ −A+B + C + Carry

Clear Pipe

(Carry,Result)⇐ C + Carry
(Carry,Result)⇐ Carry

The key to an efficient design is near 100% utilization of the arithmetic core. In

order to avoid pipeline stalls, three w-bit operands must be fetched from internal

scratchpad RAM, while one w-bit result is stored on every clock cycle. To allow for

the use of dual port RAMs, the memory within the FFAU is split into two memory

modules. The AB memory holds the a, b, and n integers, while the T memory holds

the intermediate result, t. Since the AB memory must hold three k-word integers,

the minimum size of the AB memory is 3k words. For design simplicity and future

expansion, both the AB and T memories were designed to be 4k deep. It should

be noted that this liberal use of memory will only slightly exaggerate the energy

consumption of the FFAU, but for future work, the memory size will be re-examined.

The AB memory requires two read ports, and at least one of those ports must support

write operations in order to load the input data. The T memory module requires

only one read port and one write port for the internal FFAU architecture.
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Result data from the arithmetic core can be stored in either the T memory

or a temporary result register. Part of the control data that propagates with the

computation is the write-enable signal for the T memory module and the load signal

for the temporary result register. The A input to the arithmetic core is multiplexed

to allow input from either the AB memory module or the temporary result register.

The temporary result register is necessary to avoid a structural hazard that would

otherwise exist during the reduction step of the CIOS algorithm when computing

t = t + m ∗ n. Thus, m is stored in the temporary result register during reduction,

thereby allowing the architecture to simultaneously access m and t. As with the A

input, the B input of the arithmetic core is multiplexed, enabling multiplication by

a value from an 8-entry, microcode-selectable RAM module within the control unit.

For the calculation of m, a constant must be pre-loaded into the constant RAM.

The address generation logic is responsible for addressing the read ports for both

memory modules. An index register is dedicated to each read port and can be

independently controlled using the binary codes found in Table 5.5. The width of

the index registers is determined by the depth of the RAM modules, log2(4k), and is

automatically set prior to logic synthesis. The constant bus referenced in the table

is fed by the constant RAM module within the control unit. The write port on

the T memory module is addressable only by the store address pipeline within the

arithmetic core. The store address along with the control signals latched into the

arithmetic core on every clock cycle is supplied by the control unit.

The FFAU control unit, depicted in Figure 5.10, is a microcoded state machine.

It has two additional index registers for handling nested loops, a small RAM for

holding constants, a return address register for simple subroutines, and a command

decoder for supporting multiple operations. The control unit is also capable of mak-

ing branch decisions within a microprogram based on signals from the datapath. As
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Table 5.5: Index Register Control Codes

Code Operation Description

00 Hold no change to value
01 [reg]←const bus load register with value on constant bus
10 [reg]← 0 clear register value
11 [reg]← [reg]+1 increment register value

Figure 5.10: The Control Unit within the FFAU

seen in Figure 5.10, the CIOS algorithm requires a minimal amount of decision logic.

Currently, the microcode ROM is 64 entries deep, which was more than enough to

implement the CIOS algorithm, along with modular addition and subtraction.
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5.4.2.2 Design Trade-offs

Even though this study was tailored for energy efficient finite-field arithmetic,

many of the lessons learned here can be applied to the acceleration of other algo-

rithms. During the design of the FFAU, a number trade-offs were encountered, such

as the trade-off between reconfigurability and efficiency. As more logic is added to

the design to support a wider variety of algorithms, the amount of logic being ef-

fectively utilized for a given algorithm decreases. If the accelerator is being tuned

for a specific algorithm, one would want to provide just enough reconfigurability in

the design to allow for a certain amount of scalability and not much more. After

all, if reconfigurability is the primary design objective, the use of a general purpose

processor should be considered.

To accommodate expansion and dynamic configuration of key size, i.e., the size

of the underlying finite field, the FFAU pulls array bounds from the constant RAM

within the control unit. For this design, the use of microprogramming over hard-

coding the control unit is preferred in order to improve reconfigurability and reduce

control unit complexity. In this case, the control complexity is moved into the mi-

croprogram; however, a good microcode assembler can help improve the situation.

It should be noted that combining a microcoded control unit with a constant RAM

allows for two levels of reconfigurability and reduces the cost associated with the

control store.

Scalability versus efficiency is another trade-off encountered in this study. Con-

sequently, the FFAU is only scalable up to a certain point determined by the size of

scratch memories. The approach for determining memory size taken here is to look at

the largest practical problem size for which this device might be used. Unfortunately

for cryptographic applications, the problem size grows as new attack algorithms are
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developed. A complexity versus performance trade-off exists when considering the

use of the temporary result register. At the cost of additional multiplexing logic and

a control signal, a structural hazard is avoided, thereby reducing potential pipeline

stalls. It should be noted that another solution to the aforementioned structural

hazard is to add a third port to the AB memory; however, this could negatively

effect the scalability of the design.

The aforementioned trade-offs were discussed somewhat independent of the algo-

rithm complexity, but when considering area versus performance, it is beneficial to

examine the computation time in terms of input size. For example, the number of

clock cycles required to complete a CIOS operation on the FFAU is as follows:

cc = 2k2 + 6k + (k + 1)p+ 22 (5.2)

where k is the word length of the field, and p is the latency of an arithmetic core

operation and is directly related to the depth of the pipeline. Optimizations that

reduce the coefficients of higher ordered terms in the complexity equation should be

prioritized for both energy efficiency and performance. Hence to reduce the coefficient

of the quadratic term, the FFAU has logic for scratchpad address generation that is

separate from that of the actual computation. Likewise, the memories are organized

such that three operands can be read at once, rather than stalling while waiting for

a third operand to be read from memory.

Another interesting trade-off that is quantified in (5.2) is clock rate versus pipeline

depth. In this preliminary study, this trade-off was not really considered; instead, a

depth which provided a reasonable clock rate with minimal logic optimization was

chosen. However, assuming an ideal increase in clock rate due to pipelining, it is

fairly straightforward to calculate an optimal pipeline depth for the FFAU using
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(5.2). Obviously, the effect that p has on performance will be algorithm specific. In

this situation, there is a data dependency within the outer loop of the CIOS algorithm

that requires a pipeline stall, hence the coefficient, k. The +1 comes from the fact

that the pipeline must drain before the final result is available. It should be noted

that the data dependency could be removed at the cost of microcode complexity.

5.5 Binary-field Accelerator

As previously discussed, binary fields, GF (2m), are advantageous in the fact that

addition does not require carry propagation. Thus, custom hardware implementa-

tions can perform addition over the entire length of a field element without a signif-

icant impact on clock rate. This lends itself to computationally efficient digit-serial

multiplication with field-specific reduction [41]. Furthermore, binary-field squaring

can be performed simply with a handful of XOR gates when the binary field is fixed

[16]. Therefore, we designed and evaluated a non-configurable, GF (2m) accelerator

for further energy efficiency. Figure 5.11 shows the top-level diagram of “Billie,” the

binary accelerator, with Pete.

Figure 5.11: The binary-field accelerated architecture, “Pete with Billie”
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Table 5.6: Coprocessor 2 Instructions used to control Billie

Format Description Operation

COP2SYNC CoProcessor 2 Sync Sync Operation

COP2LD rt, fs Load into Billie Register BR[fs] ← MEM[GPR[rt]]

COP2ST rt, fs Store into Memory MEM[GPR[rt]] ← BR[fs]

COP2MUL fd, fs, ft Modular Multiply BR[fd] ← BR[fs] × BR[ft]

COP2SQR fd, ft Modular Square BR[fd] ← BR[ft]2

COP2ADD fd, fs, ft Modular Add BR[fd] ← BR[fs] + BR[ft]

5.5.1 Coprocessor Instructions

Prior research has suggested that the control of the binary-field accelerator can

significantly limit performance [42]. Thus, Billie utilizes the MIPS coprocessor in-

terface for command and control to reduce this potential bottleneck. In such cases,

Pete fetches binary-field instructions and feeds them directly to Billie at a high rate.

Similar to the configuration with Monte, Pete and Billie share the dual-port RAM to

eliminate inefficiencies caused by processor-to-accelerator data transfers. Table 5.6

lists the instructions added to Pete’s ISA in support of the binary-field coprocessor.

The cop2sync instruction was previously discussed in Section 5.4 but listed here for

completeness.

Billie is a load-store architecture, so cop2ld and cop2st are used to move data

to and from her 16 entry register file. Specifically, cop2ld loads a multi-precision

field element from memory starting at the address referenced by the rt GPR into the

Billie Register (BR) specified by fs.3 Conversely, cop2st stores a field element from

the fs BR into memory starting at the address referenced by the rt GPR. Continuing

the load-store concept, the binary-field arithmetic instructions pull input data from

and write results back into Billie’s register file. For multiplication and addition,

3The General Purpose Registers (GPRs) are part of Pete’s register file.
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cop2mul and cop2add follow the three-operand instruction format such that fs

and ft are the input operands, and fd is the result operand. Because squaring is a

unary operation, the cop2sqr instruction only requires a two-operand format such

that fs is the input operand, and fd is the result operand.

5.5.2 Microarchitecture

For a preliminary evaluation, we based Billie on the NIST 163-bit binary field.

A zoomed in view of the microarchitecture is illustrated in Figure 5.12. From a high

level, our design for Billie takes a similar approach to the original IBM 360 floating

point unit [43]. Notable features include an instruction queue, register file, load/store

unit and separate functional units for multiplication, squaring and addition.

Figure 5.12: Billie’s coprocessor architecture.
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Coprocessor instructions fetched by Pete are first buffered in Billie’s four-entry

instruction queue. This avoids stalling Pete while the longer-latency binary-field

instructions execute. When an instruction is at the head of the queue, the logic

decodes it and checks for structural and data hazards. A structural hazard exists

when the appropriate functional unit is currently busy, while a data hazard exists

when the input operands have not yet been stored in the register file. If no hazards

exist, the operands will be read from the register file, and the instruction will dispatch

to the corresponding functional unit. On the next clock cycle, the instruction will

begin executing and once complete, will remain in the functional unit until the

result has been written back into the register file. In this architecture, reads from

the register file are prioritized over writes. Thus, write-back of the result will occur

when an instruction is not being dispatched.

To reduce structural hazards, the register file has two read/write ports (i.e., true

dual port). The data paths between the register file and the functional units are 163

bits wide. Multiple functional units require write access to the register file, so the

port multiplexor must also perform arbitration. We chose a simple scheme in which

each functional unit is statically assigned a port for writing into the register file. For

instance, the multiplier and squaring unit both share a port, while the adder and

load/store unit share another. If both functional units assigned to the same port are

ready to write during a given clock cycle, the arbiter will allow one to write and stall

the operation of the other. For simplicity, the priorities of each functional unit are

fixed. In our design, the multiplier and adder have higher priority over the squaring

and load/store units, respectively.

The register file contains sixteen, 163-bit registers to accommodate all interme-

diate computations for a scalar-point multiplication. Because we use sliding-window

algorithms that leverage some precomputation, we require twice the number of reg-
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isters as compared to Guo et al. [42]. However, as will be shown in Section 7.6, the

extra registers yield a significant performance advantage and have the potential to

save energy. The load/store unit is responsible for transferring binary-field elements

between Billie’s register file and shared memory. The interface to shared memory is

32-bits wide, while the interface to the register file is a field width (e.g., 163-bits for

this particular configuration). Thus, the load/store unit serves as a buffer between

these two mismatched ports and is analogous to Monte’s DMA unit.

5.5.3 GF (2m) Arithmetic Units

For GF (p) computation, the propagation of arithmetic carries from the least sig-

nificant bit position to the most within multiplication and addition typically becomes

the clock-rate limiting critical path. From an implementation stand point, full field-

width GF (p) computation is impractical. Thus, field elements are broken up into

smaller words, and computation proceeds at that granularity (i.e., multi-precision).

For GF (2m) computation, carry propagation does not exist, so full field-width ad-

dition is possible and advantageous. Compared to multi-precision computation, full

field-width GF (2m) arithmetic requires less complex logic and scales more easily

to increasing field widths. The hardware scalability is a consequence of data-level

parallelism afforded by the carry-less computation.

The addition and multiplication units within Billie take advantage of this par-

allelism by performing addition over an entire m-bit binary polynomial in a single

clock cycle. Because addition is fast, we employ digit-serial multiplication that iter-

ates over the multiplier, shifting and adding the multiplicand into an accumulator,

accordingly [35]. Specifically, Algorithm 8 describes the multiplication operation in

detail, where a(x) is the multiplicand, b(x) is the multiplier, c(x) is the accumulator,

and D is the digit width. As shown, Step 1 zeros out the accumulator. Initially,
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Step 3 multiplies the least significant digit of the multiplier (B0) by the multiplicand

and adds the result to the accumulator. Concurrently, Step 4 shifts the multiplicand

D bits to the left and reduces the result modulo f(x), the irreducible polynomial.

Note that this algorithm integrates the polynomial reduction into the multiplication.

Steps 3 and 4 repeat with the next significant digit of the multiplier until the mul-

tiplication is complete. The final step reduces the m + D − 1 result to m-bits with

f(x).

Algorithm 8 Digit-serial GF (2m) multiplication [41]

Input: a(x) =
∑m−1

i=0 aix
i, b(x) =

∑dm
D
e−1

i=0 Bix
D·i

Output: c(x) = a(x) · b(x) mod f(x) =
∑m−1

i=0 cix
i

1: c(x)← 0

2: for i from 0 to dm
D
e − 1 do

3: c(x)← Bi · a(x) + c(x)

4: a(x)← a(x) · xD mod f(x)

5: end for

6: return c(x) mod f(x)

For squaring, we employ field-specific hardware that takes advantage of fast bi-

nary squaring discussed in Section 2.1.4 and incorporates the reduction operation.

As an example, Figure 5.13 depicts a hardwired squaring unit for GF (27) assuming

f(x) = x7 + x+ 1.
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Figure 5.13: Binary-field squaring unit, s.t. f(x) = x7 + x+ 1 [16]
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6. METHODOLOGY

We developed fully synthesizable Verilog models for the baseline processor (“Pete”),

ISA-extended processor, and the Finite-Field Accelerator (“Monte”). Front-end syn-

thesis was used to construct the arithmetic components, including the 17-bit by 17-bit

multiplication blocks within Pete, and the 32-bit multiply-add unit within Monte.

Post-synthesis power estimations for core logic on a 45 nm technology node with

a 333MHz clock were performed using Synopsys Prime-Time, a timing and power

analysis tool for CMOS logic [22, 44].

To estimate memory power, we used counters to keep track of the number reads

and writes to and from the memories embedded within the testbench, and we used

Cacti to extract estimates of energy per read/write and leakage power [38]. Unfor-

tunately, no equivalent tool for estimating ROM power exists. As a conservative

estimate, ROM dynamic power was assumed to be equivalent to a comparably sized

RAM, while ROM static power was assumed to be zero.

Each cryptographic operation requires millions of clock cycles and is arduous to

simulate post-synthesis. For power estimations using the techniques discussed above,

we simulated a portion of the algorithm representative of the entire algorithm. To

measure execution times, we emulated each microarchitecture using Verilator, a fast,

two-state Verilog HDL simulator [45].
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7. EVALUATION

7.1 Prime Fields

Figure 7.1 summarizes our results for prime fields by graphing the energy per

operation (a signature followed by a verification) for each of the evaluated microar-

chitectures vs. key size. These results confirm each configuration’s placement in the

diagram in Figure 1.1 and show that special purpose hardware becomes much more

attractive as greater security requirements are demanded. For GF (p) ISA exten-

sions, we observe between 1.32 to 1.45 factor improvement in energy efficiency over

baseline, while for GF (p) acceleration with Monte, we observe a 5.17 to 6.34 factor

improvement. A point in between is the microarchitecture with ISA extensions and a

4KB instruction cache. For such a system, we see a 1.67 to 2.08 factor improvement

in energy compared to baseline.

Furthermore, we observe that the energy consumed increases quite rapidly as the

key size is increased. Examination of the data reveals the increase is substantially

greater than quadratic for the pure software configuration, while for the microar-

chitecture with ISA extensions, the increase is closer to quadratic. The effect of

key size is much more gradual for the energy consumed by the fully accelerated

microarchitecture, coming in just slightly less than quadratic for 192-bit to 256-bit

key sizes. After 256-bit, key size appears to have a greater effect on the accelerated

architecture. This may be due to our choice of algorithm for inversion within Monte

(Fermat’s Little Theorem), which has a O(n3) computational complexity. We plan

to further investigate this issue.

Figure 7.2 displays a side-by-side comparison of the energy, broken down into sub-

components, consumed per 192-bit and 256-bit operation vs. microarchitecture. The

86



��

����

����

����

����

�����

�����

�����

�����

�����

�����

���
���

���
���

���

�
�
�
��
�
��
�
�
�

��������

��������
��������
������������������
��������

Figure 7.1: Energy per Sign + Verify vs. key size and microarchitecture for prime
fields.

results show that a significant portion of the energy consumed by the baseline and

ISA extended microarchitectures is spent in the ROM. In these microarchitectures, an

instruction must be read nearly every cycle; therefore, the ROM is kept very active.

We found that this is a common theme amongst low-power embedded processors [46].

We also note that the ROM energy is much less when Monte is in use. In such

case, Monte’s microcode ROM is producing most of the instructions so the ROM

activity factor is dramatically lowered. For the hardware configuration with a 4KB

instruction cache, we see that a significant portion of the ROM energy is traded for

additional energy in the uncore portion of the system. Here we use the term uncore

to refer to the instruction cache, program ROM controller, and the instruction and

data buffers (discussed in Section 5.3) as well as miscellaneous multiplexing logic

for the program ROM and the RAM. It should be noted that the instruction cache

will improve the energy of the entire software system and not just the cryptographic
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Figure 7.2: Breakdown of energy per Sign + Verify for 192 and 256-bit key sizes into
various sub-components.

algorithms we evaluate here.

Another interesting observation that can be made in Figure 7.2 is that the en-

ergy consumed in the RAM decreases as the level of acceleration increases. This is

partially due to reduced execution time decreasing the amount of energy spent on

leakage power but primarily due to the fact that each acceleration technique aims

to reduce access to memory. For example, product scanning used with the proposed

instruction set extensions requires fewer stores than operand scanning. Similarly,

Monte utilizes smaller, internal buffers and data forwarding to reduce accesses to

shared memory. The instruction cache, however, does not significantly affect the

RAM energy as seen by comparing the ISA extension microarchitectures with and

without the instruction cache.

For further examination, Figure 7.3 shows the energy consumption broken down
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Figure 7.3: Energy per Sign + Verify vs. key size for our baseline with no hardware
acceleration.

into sub-components for the baseline across the five prime fields recommended by

NIST. Figure 7.4 shows the same for the ISA extended microarchitecture and the

microarchitecture with Monte. For the baseline and ISA extended architectures, the

processor core (i.e., Pete) energy changes mostly with execution time, as the power

remains fairly constant while varying the key size. For instance, from 192-bit to

521-bit, Pete’s power goes up by only 6% in the baseline configuration. The change

in core power for the ISA extended microarchitecture was even less.
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            For the Monte configuration, Pete’s power drops considerably (≈23%) compared 

to baseline and continues to decrease as key size is increased. This decrease is because 

Pete spends a significant amount of time stalled, while Monte performs the majority of 

the computation. Even while stalled, however, Pete is still the dominant energy consumer 

as shown in Figure 7.4b. After close examination of the power breakdown provided by 

Synopsys, it became clear that the dominant contributors to Pete’s power is the clock 

network and registers, which still have a high activity factor while stalled.
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(a) ISA extended
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(b) W/ Monte

Figure 7.4: Energy per Sign + Verify vs. key size for the ISA extended microarchi-
tecture and the architecture accelerated with Monte.
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7.2 Binary Fields

While prime fields have a longer history of use, binary fields have been shown to

offer a performance benefit and have a potential energy benefit as well [30]. Thus,

we also evaluate the use of binary fields for ECDSA in our energy study. We start

out with a software-only implementation on our existing microarchitecture, using

Algorithm 6 with w = 4 and the fast reduction routines discussed in Section 4.2.

Then we augment our microarchitecture with binary support by including carry-less

multiply and multiply-accumulate instructions. Figure 7.5 compares our estimated

energy consumption for the microarchitectures with and without binary support for

the 5 NIST recommended binary fields.
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Figure 7.5: Energy per Sign + Verify vs. key size for binary fields.

As shown in Figure 7.5, the software without binary support is less energy efficient

than the ISA extended version by a factor of 6.40 to 8.46. When a carry-less multiplier
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is not part of the microarchitecture, the computational complexity for binary-based

ECC is much higher because the multiplication must be emulated with shifts and

adds. As a result, we do not recommend the use of binary fields without hardware

support. For further evaluation, Figure 7.6 depicts the energy breakdown of a sign

and verify operation for binary field ISA extensions across the NIST fields.
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Figure 7.6: Energy per Sign + Verify vs. key size for binary ISA extensions.

7.3 Prime Fields vs. Binary Fields

In the ISA extended microarchitecture, binary fields have the advantage of carry-

less add and a less computationally complex squaring algorithm (i.e., O(n) as opposed

to O(n2)). Additionally, the same algorithm used for prime field multiplication

(Algorithm 3) can be used for binary field multiplication. The result is a 1.30 to

2.11 factor improvement over prime ISA extensions comparing fields of equivalent

security.
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Figure 7.7 graphs the energy per operation (signature + verification) for prime

and binary fields of equivalent security. One interesting thing to note is the re-

duced computational complexity with binary fields compared to prime fields. At

the smallest key size, the binary field is smaller than the prime field, and the bi-

nary ISA configuration consumes 52.2% less energy. At 256/283-bit, the field sizes

cross over such that the binary field is larger. However, in this case, binary is still

46.5% less energy. At the largest key size, the binary field is considerably larger

than its prime counterpart, and consequently, this configuration yields the lowest

improvement (22.8% less energy).
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Figure 7.7: Energy per Sign + Verify vs. key size, comparing prime and binary fields
of equivalent security.

Figure 7.7 also compares our ECDSA energy estimates of Billie with the other

systems. For full GF (2m) acceleration with Billie, we observe a 1.92 factor improve-

ment over Monte for 163-bit. However, as we move out to larger field sizes, the energy
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cost for Billie converges with that of Monte. Thus, our binary-field accelerator is not

scaling well past 163-bit.
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Figure 7.8: Energy per Sign + Verify vs. key size for Monte (left) and Billie (right)

For a side-by-side comparison, Figure 7.8 shows the energy consumption broken

into subcomponents for both Monte (left) and Billie (right). It is interesting to

note that when Monte is used, Pete is still consuming most of the energy, in spite

of being idle for the majority of the computation. There are two reasons for this:

First, we are not using clock or power gating techniques because Pete is still fetching

instructions for Monte, so Pete’s clock network is still active. Second, Monte has less

logic overhead than Pete, and the size is fixed, regardless of the field being used. Billie

on the other hand, is the primary consumer of energy when used. Unfortunately,

we were unable to effectively model Billie’s register file with Cacti due to its non-

standard access width. Thus, we had to synthesize the register file with flip-flops,

95



which makes for an inefficient implementation. Furthermore, Billie is designed to

scale in hardware with the field size and is consequently much larger than Pete. For

example, the 163-bit implementation requires 45% more area than Pete, while the

571-bit implementation requires five times the area of Pete. However, when ECDSA

is accelerated with Billie, on average only 38% of the execution time is spent on

scalar point multiplication. The rest of the time, Billie is idle, wasting energy, while

Pete performs the additional protocol arithmetic modulo the group order. In future

work, we would like to investigate the use of clock and power gating techniques to

eliminate this inefficiency.

Figure 7.9 depicts the energy consumption broken into subcomponents of all of the

hardware accelerated architectures for both 192/163- and 256/283-bit field sizes. As

illustrated, Billie reduces the RAM energy even further by keeping the entire scalar

point multiplication within her register file. The majority of the RAM accesses when

Billie is used are from Pete while performing arithmetic modulo the group order.

7.4 Power Consumption

Figure 7.10 provides a plot of the overall system power, broken down into static

and dynamic components, for each of the evaluated microarchitectures. Here we

averaged the baseline runs across all binary and prime fields because we saw little

variation in power due to different software configurations. We did the same for the

ISA extended architectures. In fact, we see almost no difference in overall system

power consumption between baseline and the ISA extended architecture (< 1%).

The hardware configuration with the Instruction Cache (IC) on average consumes

14.5% less power than the configuration without the cache. Despite the extra hard-

ware cost of the cache and the subsequent static power increase, the reduction in

ROM instruction reads leads to a significant power reduction overall. The configu-
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Figure 7.9: Breakdown of energy per Sign + Verify for 192/163- and 256/283-bit key
sizes into various sub-components.

ration with Monte reduces the power draw even further (18.6% less power compared

to baseline) by reducing the activity on Pete and the ROM. The systems with Bil-

lie, however, consume the most power overall. As previously mentioned, Billie is

significantly larger than Pete, and the amount of resources Billie consumes grows

approximately linear with field size. Also, we synthesized Billie’s large register file,

using flip-flops instead of RAM, which contributes to the approximately linear in-

crease power.

Although the static power in Figure 7.10 appears to be a minor portion of the

overall power (8.5%), much of the dynamic power includes the clock network. Thus,

our system could still benefit substantially from power and clock gating techniques.

This is especially true for the Billie accelerated systems in which Billie is idle but

still consuming power for 62% of the ECDSA operation.
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Figure 7.10: Static and dynamic power of evaluated microarchitectures.

7.5 Evaluation with Instruction Cache

Due to instruction fetch’s significant contribution to the overall energy per op-

eration, we felt further investigation was warranted. Our initial evaluation was to

model our three systems with an ideal 4KB direct-mapped instruction cache with a

16-byte line size.1 Although this cache model is unrealistic, it reveals the best case

energy benefit for each system. Figure 7.11 shows the energy improvement of each

system with an instruction cache across three key sizes.

Observe that the energy benefit of the instruction cache is much higher for the

microarchitectures without Monte. This is because instruction fetch contributes

much less to the overall energy consumption when using an accelerator. In such a

case, the processor is mostly idle, while the accelerator performs the majority of the

computation. Although Monte fetches internal microinstructions to carry out the

1In this model, we used Cacti to estimate the energy of the entire cache.
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multi-precision computation, the microcode table is only 64 entries and thus has an

insignificant effect on energy. Further proof of this assertion is illustrated by the

fact that the already small energy benefit decreases as the key size increases, i.e.,

as more of the computation is shifted to the accelerator. A final observation is that

the benefit of the instruction cache does not appear to be dependent on the key size

for the microarchitectures without Monte; however, this is simply a result of not

modeling cache misses.
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Figure 7.11: Energy improvement with ideal instruction cache vs. key size.

The next step was to design an instruction cache in Verilog and run a full-system

energy estimation, using Cacti only to estimate the energy of the memories. In this

case, we fixed our workload to a P192 Sign/Verify operation and varied the instruc-

tion cache size from 1KB to 8KB. Additionally, we simulated our cache with and

without a prefetcher. Figure 7.12 shows our results broken down into subcompo-

nents. One surprising result is that there is not a lot of variation between the cache

configurations. Due to a higher number of cache misses, the configurations with the
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Figure 7.12: Energy per 192-bit Sign + Verify with real instruction cache for various
cache configurations. The “-p” indicates the presence of a prefetcher.

smaller caches lose the most amount of energy to the program ROM. However, the

energy consumption of the instruction cache goes up as the cache size is increased,

counteracting the benefit of reduced ROM reads.

For Pete, the general trend is that the energy consumption goes down as cache

size is increased or prefetching is utilized. This is due to the fact that the power of the

processor core does not vary significantly across different cache configurations. Thus,

the configuration with the smallest run time will yield the highest core efficiency.

Although Pete’s power does not vary significantly, it is interesting to note that the

power always goes up as the run time decreased. For instance, from a 1KB cache

to a 4KB cache, Pete’s power increases by 3.23%. This is cause by higher average

activity factors in the logic as Pete spends less time waiting for a miss to be serviced.

The energy consumption of the RAM remains relatively constant throughout the

different configurations, only varying by 11.1%. Because the RAM is fairly small

(16KB), the static power has less of an effect on the overall energy consumption.
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Even for the 1KB, non-prefetcher configuration, the static power contribution to the

RAM energy is only 41.7%. The rest of the RAM energy is based on the number

of reads and writes, which is not affected by the instruction cache configuration.

Although like the processor logic, the general trend of the RAM energy is to decrease

as the run time decreases.

The energy improvement due to prefecting decreases as the cache size increases,

and past 4KB, the prefetcher actually has a negative impact. This phenomenon can

be explained by the decreasing number of cache misses as the cache size is increased.

In the case of a 1KB cache, the prefetcher improves performance by 11.5%, but

with an 8KB cache, it only improves the performance by a mere 2.0%. With larger

caches, there is less opportunity for prefetching to improve performance. As seen

in Figure 7.12, the negative impact of prefetching comes from the increased number

of reads from program ROM as well as the increased power consumption in the

instruction cache. It might be possible to further improve the prefetching algorithm

for use with smaller cache configurations. Also, the benefits of prefetching would

be much greater in a system with high-latency access to main memory [39]. In our

system, however, the miss penalty is only three clock cycles.

It is interesting to note the drop in energy consumption from 2KB to 4KB is much

greater than from 1KB to 2KB. This is primarily due to the fact that the number

of cache misses drops more significantly from 2KB to 4KB. For example, from 1KB

to 2KB, the number of cache misses decreases by only 33.7% as opposed to 65.2%

from 2KB to 4KB. Similarly, from 4KB to 8KB, the decrease is a mere 18.3%. This

tells us that our working set is somewhere around 4KB. Putting the aforementioned

conclusions together, we see that the 4KB instruction cache without a prefetcher has

the lowest energy consumption. Compared to our baseline microarchitecture, this

equates to a 35.8% improvement in energy.
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For further evaluation, we modeled the 4KB instruction cache configuration across

the five NIST prime fields with ISA extensions enabled (Figure 7.13). For prime-field

support, this hardware configuration represents our most energy efficient configura-

tion without the assistance of a separate coprocessor. As we would expect, all of the

components except the ROM access scales.
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Figure 7.13: Energy per Sign + Verify vs. key size for prime ISA extended microar-
chitecture with 4KB instruction cache.

7.6 Performance Evaluation

For reference, we have included Table 7.1, which shows the latency (clock cycles)

per cryptographic operation for various prime-field configurations. The combined

Signature and Verification latency closely models an SSL handshake on the client

side.

Table 7.2 provides the latencies per crytographic operation (clock cycles) for the
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Table 7.1: Latency per operation (100K clock cycles) for prime-field microarchitec-
tures

µarchitecture Key Size Sign Verify Signature + Verification

Baseline 192-bit 26.9 34.27 61.2

Baseline 224-bit 37.2 47.9 85.1

Baseline 256-bit 57.2 72.8 130.0

Baseline 384-bit 133.6 174.9 308.5

Baseline 521-bit 297.2 304.8 602.0

ISA Ext 192-bit 20.5 25.6 46.1

ISA Ext 224-bit 27.5 34.6 62.1

ISA Ext 256-bit 42.7 53.7 96.4

ISA Ext 384-bit 90.9 114.6 205.5

ISA Ext 521-bit 184.0 230.5 414.5

W/ Monte 192-bit 6.0 7.5 13.4

W/ Monte 224-bit 8.3 10.3 18.6

W/ Monte 256-bit 10.9 13.4 24.2

W/ Monte 384-bit 28.2 34.9 63.0

W/ Monte 521-bit 64.5 78.2 142.7

binary-field systems.

To demonstrate the computational efficiency of Billie, Figure 7.14 shows the exe-

cution time of a scalar point multiplication versus the digit size of the multiplier. In

all other results but Figure 7.14 we use a 3-bit digit size for the GF (2m) multiplica-

tion unit. The 3-bit digit size was chosen because it was shown to be energy-optimal

in prior work [41]. For comparison, we graph prior work by Guo et al. that attempts

to eliminate control bottlenecks by integrating an 8-bit microprocessor into their

GF (2m) accelerator [42]. We plot points of prior work that were specifically noted

to be energy optimal and for which we have an equivalent implementation. Note

that we graph results for the sliding-window algorithm as well as the Montgomery
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Table 7.2: Latency per operation (100K clock cycles) for binary-field microarchitec-
tures

µarchitecture Key Size Sign Verify Signature + Verification

Baseline 163-bit 58.8 80.3 139.1

Baseline 233-bit 122.3 166.3 288.6

Baseline 283-bit 182.0 248.7 430.7

Baseline 409-bit 414.4 611.0 1025.5

Baseline 571-bit 1034.9 1420.2 2455.0

ISA Ext 163-bit 9.7 12.5 22.1

ISA Ext 233-bit 18.3 23.5 41.7

ISA Ext 283-bit 24.4 27.4 51.8

ISA Ext 409-bit 55.0 76.6 131.7

ISA Ext 571-bit 136.2 180.0 316.2

W/ Billie 163-bit 1.9 2.3 4.2

W/ Billie 233-bit 3.4 4.0 7.4

W/ Billie 283-bit 4.6 5.4 10.0

W/ Billie 409-bit 9.0 10.6 19.6

W/ Billie 571-bit 16.7 19.7 36.4

scalar point multiplication. In all cases, our Montgomery algorithm implementa-

tion outperforms prior work due to the efficient coprocessor interface we employ.

Additionally, our sliding-window algorithm implementation outperforms both Mont-

gomery implementations by a significant margin. We felt the comparison to prior

work was fair because the functional units in our work are similarly designed [41].

The increased performance of the sliding-window algorithm is responsible for some

of the energy efficiency gain in our work. Increased performance leads directly to a

shorter run time and a shorter run time leads to a lower amount of energy lost due

to static power. The register file in Billie also allows flexibility in algorithm design.

Individually, both the sliding-window algorithm used for single-point multiplication
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(signature) and the twin-point multiplication (verification) fit in the storage space

of Billie, precomputed points included.
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Figure 7.14: Performance for 163-bit scalar point multiply comparing Billie to prior
work [42].

7.7 Double Buffer Evaluation

To quantify the energy savings of Monte’s instruction reordering scheme, we

estimated energy consumption for 384-bit ECDSA with double buffering removed.

The results demonstrate that overlapping data movement with computation amounts

to a 13.5% improvement in energy consumption. The energy savings come from less

idle time for Pete and Monte in addition to a reduction in the number of reads to

shared memory. For the 192-bit key size, we measured a 9.4% reduction in energy

due to double buffering. Therefore, Monte with double buffering scales better with

larger key sizes. This is explained by the increasing time that data movement costs
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as the key size grows.

7.8 Baseline Validation

To validate the energy efficiency of our baseline microarchitecture, we measured

Pete against a similarly configured Microblaze processor (i.e. 5-stage pipeline, no

cache, no MMU, full 32-bit by 32-bit multiplier, binary divider) on the Xilinx Virtex-5

platform [47]. The synthesis results reveal that Pete requires 34.3% more LUT-flip-

flop pairs (i.e. more FPGA fabric); however, Pete requires 75.0% fewer Digital Signal

Processing (DSP) blocks compared to Microblaze. We attribute the difference in re-

source consumption to our Karatsuba multiplier. Muti-cycle multiplication performs

more addition and requires control logic, all of which utilize LUTs, while parallel mul-

tiplication maps well to the DSP hardware blocks on the Virtex-5. This trade-off is

a win in the ASIC realm, which is the target technology for this study. In terms of

performance, Pete outperforms Microblaze by 17.7% for a 384-bit ECDSA signature

and verification operation. Note that this is in spite of a longer latency multiplication

unit, which demonstrates an advantage of a separated multiplication unit over ISAs

without it.

To validate the efficiency of our multiplier, we synthesized Pete for a 45 nm tech-

nology library with various multiplier configurations and measured the power of Pete

with each configuration using the methods further explained in the Methodologies

section. Compared to Pete with a traditional operand-scanning, multi-cycle multi-

plier with the same latency, our measurements showed a 4.69% decrease in dynamic

power and a 3.47% increase in static power. Because dynamic power dominates,

Karatsuba’s technique yielded an average power savings of 3.52%. Compared to

Pete with a parallel pipelined multiplier as found in many of the modern 32-bit

RISC cores, our Karatusba, multi-cycle multiplier demonstrated a 10.6% and 28.4%
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improvement in dynamic and static power, respectively. This equates to a 13.4%

power savings overall. Further investigation is necessary to determine how much

energy savings this yields.

7.9 FFAU Evaluation

This section of the paper provides the results of our FFAU study prior to the

development of the full ECC hardware/software system. The purpose of this study

was to characterize the core computation logic for our accelerator and to determine

the most optimal datapath width in terms of energy and power. To demonstrate the

energy efficiency of the FFAU design, we measured the average power and execution

time of Montgomery multiplication for key sizes of 192-bit, 256-bit, and 384-bit.

These results assume a 100 MHz clock and 0.9V supply voltage for logic and 0.7V for

memory. Table 7.3 provides a breakdown of the average static and dynamic power

consumed by the 8-bit, 16-bit, 32-bit, and 64-bit variants of our design for each

of the Montgomery multiplications. In all cases, dynamic power is the dominant

component. This is primarily due to the small memories, low supply voltage, and

high utilization of the arithmetic logic. The leakage power provides us some insight

into how much power will be consumed if power gating is not utilized while the FFAU

is idle.

Table 7.4 provides the total average power along with execution time and energy

per Montgomery multiplication with respect to the datapath width. When com-

paring integer key sizes from smallest to largest, we note that average power only

increases slightly, whereas the computation time increases quadratically. The in-

crease in average power is mainly due to a linear increase in memory, which accounts

for an increase in leakage power. The significant increase in computation time is

due to the O(n2) nature of the multiplication operation. When comparing datapath
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Table 7.3: Area utilization, static power, and dynamic power vs. datapath width.

Datapath Width Area(cell units) Static Power Dynamic Power
Key Size: 192-bit

8-bit 2,091 32.3 µW 166.2 µW
16-bit 4,244 59.3 µW 311.9 µW
32-bit 11,329 159.1 µW 659.9 µW
64-bit 36,582 530.6 µW 1,472.7 µW

Key Size: 256-bit
8-bit 2,091 34.0 µW 186.2 µW
16-bit 4,244 61.6 µW 310.2 µW
32-bit 11,327 161.4 µW 684.4 µW
64-bit 36,582 532.9 µW 1,613.4 µW

Key Size: 384-bit
8-bit 2,168 35.4 µW 197.1 µW
16-bit 4,322 65.0 µW 321.6 µW
32-bit 11,405 164.3 µW 888.5 µW
64-bit 36,664 535.7 µW 1,686.5 µW

bit widths of the FFAU, the average power increases less than quadratically as the

datapath width doubles. The net result is that the energy per CIOS operation tends

to decrease as the datapath width increases.

To demonstrate this, Figure 7.15 charts the amount of energy consumed per 192-

bit, 256-bit, and 384-bit operation for each of the variants of the FFAU. Due to

the fact that the CIOS algorithm is not perfectly quadratic, the decrease in energy

consumed per operation does not continue. As can be seen for the 192-bit key case

with a 32-bit datapath, at some point increasing the datapath width starts to increase

the energy consumed, leading to an optimal datapath width in terms of energy for

a given key size. We believe this trend continues for larger key sizes; however, the

optimal datapath width is greater than or equal to 64-bits.

The results show that an algorithm with a O(n2) time complexity favors a larger

datapath when considering energy efficiency, while the energy efficiency of a O(n)
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62.4
103.6

218.4

Figure 7.15: Energy per Montgomery multiplication vs. datapath width

algorithm will not be significantly affected by datapath size. Moreover, for an algo-

rithm exhibiting a O(1) behavior, a decrease in datapath size will yield an increase

in energy efficiency.

In order to provide some insight into the relative energy efficiency of the FFAU,

Figure 7.15 also includes the energy per operation estimations for the ARM Cortex-

M3 operating at 100 MHz with a 0.9V supply voltage. Table 7.5 lists the energy

estimations for the ARM processor since they extend beyond the scale of the graph in

Figure 7.15. In terms of performance, the FFAU on average yields a 10x improvement

over the ARM.
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Table 7.4: Average power, execution time, and energy per Montgomery multiplica-
tion vs. datapath width

Width Average Power Ex. Time Energy
Key Size: 192-bit

8-bit 198.5 µW 13,920 ns 2.763 nJ
16-bit 371.2 µW 4,220 ns 1.566 nJ
32-bit 819.0 µW 1,520 ns 1.245 nJ
64-bit 2,004.3 µW 710 ns 1.423 nJ

Key Size: 256-bit
8-bit 220.2 µW 23,510 ns 5.176 nJ
16-bit 371.8 µW 6,710 ns 2.495 nJ
32-bit 845.7 µW 2,150 ns 1.818 nJ
64-bit 2,146.3 µW 830 ns 1.782 nJ

Key Size: 384-bit
8-bit 232.5 µW 50,550 ns 11.755 nJ
16-bit 386.6 µW 13,830 ns 5.347 nJ
32-bit 888.5 µW 4,110 ns 3.652 nJ
64-bit 2,222.3 µW 1,410 ns 3.133 nJ

Table 7.5: Average power and energy per modular multiplication vs. key size for the
ARM Cortex-M3

Key Size Ex. Time Average Power Energy
192-bit 13,870 ns 4,500 µW 62.4 nJ
256-bit 23,010 ns 4,500 µW 103.6 nJ
384-bit 48,530 ns 4,500 µW 218.4 nJ
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8. CONCLUSIONS AND FUTURE WORK

In conclusion, we have provided a thorough analysis of the design space for ultra-

low energy asymmetric cryptography across a broad range of security levels, includ-

ing up to 571-bit key sizes. We began by evaluating the energy per asymmetric

cryptographic operation (ECDSA signature + verification) on an efficient baseline

architecture centered around a pipelined RISC processor. We then included simple,

yet beneficial prime-field instruction set extensions to our microarchitecture and eval-

uated the improvement in terms of energy per operation compared to baseline. Next,

we introduced a reconfigurable, prime-field accelerator to our microarchitecture and

measured the energy per operation against the baseline and the ISA extended archi-

tectures. To reduce the energy impact of instruction fetch from program ROM, we

integrated an instruction cache into our ISA extended architecture and evaluated the

energy benefit. For a comparison of prime and binary fields, we extended our mi-

croarchitecture to include support for binary fields. To do so, we added two carry-less

arithmetic instructions to our extended ISA and compared the results to the prime-

field implementations. Finally, we augmented our system with a non-configurable,

binary-field accelerator and evaluated the energy consumption.

Our analysis showed that the energy benefit of hardware acceleration increases

substantially as the required level of security increases. We also demonstrated that,

depending on the energy cost of instruction reads, the accelerated microarchitecture

can reduce power as well as execution time, which exaggerates the advantages of

hardware acceleration when considering an energy-delay product. We will now take

a moment to discuss on-going research and future work.

Our evaluation has revealed some interesting avenues for future work. First,
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we discovered that over half of Billie’s energy is being consumed in the synthesized

register file. Thus, we would like to evaluate the energy consumption of Billie with

a register file implemented in more efficient memory (SRAM) technology, rather

than flip-flops. To do so, we plan on modeling the register file with HSPICE, using

a 45nm transistor model [48]. Second, we found that when accelerating GF (2m),

the protocol arithmetic modulo the group order (inversion specifically) becomes the

limiting factor, because it does not map to the accelerator. In computer design

terminology, Amdahl’s law strikes again [21]. Therefore, we plan on investigating

various methods for accelerating the modular inversion. Finally, we found that our

binary-field accelerator does not scale well in terms of energy efficiency. This is

primarily due to the increase in power consumption as the field size increases. As

a result, we plan on modeling our system such that we can turn off Billie when she

is not in use. Furthermore, we would like to experiment with divide and conquer

algorithms in software that would facilitate larger field size computation on a smaller

variant of Billie.

Our existing methodologies make use of Cacti to estimate the energy consumed in

our memories, including our ROM. A significant portion of our overall energy is being

consumed in the ROM, and Cacti was never intended to model ROM. We understand

that our use of Cacti for ROM energy estimation introduces inaccuracies in our

evaluation. Although we do not feel the inaccuracies would be impactful enough

to change the conclusions drawn from this study, more detail modeling of ROM

memory would increase our overall confidence in our work and hopefully provide

future insight into energy efficient embedded systems. As discussed in Chapter 6,

the energy consumption of our logic was evaluated at a 45nm technology node. We

would like to perform circuit level modeling of our ROM with Synopsys HSPICE [48].

To do so, we will use the Predictive Technology Model (PTM) provide by Arizona
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State University (ASU) for our 45 nm model card [49].

Currently, our system assumes that non-volatile memory is made up of ROM in

the purist sense. In other words, the ROM is not reprogrammable after fabrication.

For some target devices, such as IMDs, this is an unrealistic assumption. Thus, we

would like to model our system assuming a flash Electronic Erasable Programmable

ROM (EEPROM) memory technology in place of the ROM. This component of

analysis requires an accurate simulation model card of flash technology for a 45nm

technology node. This model card provides the HSPICE simulator with the electrical

characteristics of the flash cells and is essential for accurate modeling of flash memory.
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