Accelerating Network-on-Chip
Simulation via Sampling

Wenbo Dai, Natalie Enright Jerger
Department of Electrical and Computer Engineering, University of Toronto
{daiwenbo, enright} @eecg.toronto.edu

Abstract—Architectural complexity continues to grow as we
consider the large design space of multiple cores, cache archi-
tectures, networks-on-chip and memory controllers for emerging
architectures. Simulators are growing in complexity to reflect
each of these system components. However, many full-system
simulators fail to take advantage of the underlying hardware
resources such as multiple cores; as a result, simulation times
have grown significantly in recent years. Long turnaround times
limit the range and depth of design space exploration that is
tractable.

Communication has emerged as a first class design consider-
ation and has led to significant research into networks-on-chip
(NoC). The NoC is yet another component of the architecture that
must be faithfully modeled in simulation. Given its importance,
we focus on accelerating NoC simulation through the use of
sampling techniques; sampling can provide both accurate results
and fast evaluation. We propose NoCLabs and NoCPoint, two
sampling methodologies utilizing statistical sampling theory and
traffic phase behavior, respectively. Experimental results show
that our proposed NoCLabs and NoCPoint estimate NoC perfor-
mance with an average error of 5% while achieving one order
of magnitude speedup on average.

I. INTRODUCTION

As the number of cores in contemporary processors con-
tinues to scale, the criticality of Network-on-Chip (NoC)
design to overall performance increases accordingly. NoC
designers rely heavily on full-system simulation to faithfully
evaluate their designs. In full-system simulation running multi-
thread applications, the interaction between applications, cache
coherence protocols and the network is fully exercised; the
performance of new designs is accurately evaluated.

Although full-system simulation enjoys the benefit of high
fidelity, it suffers from prohibitively long turnaround times.
Sampled full-system simulation [2], [5], [7], [9] is an effective
technique to reduce simulation turnaround times for single-,
multi-threaded and multiprogrammed applications. In sampled
full-system simulation, only a small but representative portion
of the application is simulated in detail. Performance metrics
measured with the sampled application are used to estimate
the true values of those metrics; the unsampled intervals are
either fast forwarded using functional simulation or skipped
entirely. Existing work applies to a wide range of applications
(single or multi-threaded) and architectures (homogeneous or
heterogeneous); however, they mainly focus on evaluating
micro-architecture designs, and report metrics such as CPI
(single-thread and multiprogrammed applications) or run time
(multi-thread applications). To the best of our knowledge,
there is no existing work exploring sampling methodologies
for NoC simulation. In this paper, we introduce two sampling
methodologies for NoC simulation: NoCLabs and NoCPoint.

They are based on statistical sampling theory and traffic phase
behavior information, respectively.

II. NOCLABS: LATENCY BASED STATISTICAL SAMPLING

Inferential statistical sampling aims to estimate a given
accumulative property of a population by only measuring a
sample. The minimal sample size n needed to represent the
population is quadratically proportional to the target metric’s
variation. We apply statistical sampling theory to NoC simu-
lation. Average packet latency is one of the most commonly
reported metrics; therefore, we base our sample selection on
its variation. We call our technique Latency based Statistical
Sampling for NoC simulation, or NoCLabs.

Full application traffic is first divided into non-overlapping
units of size U; the population size N is the total number of U-
sized units in the full application traffic. Sample size n refers to
the number of units included in the sample. In order to charac-
terize the application traffic in a network-independent manner,
we use the user mode instruction count (UMIC) to measure
the traffic, as the UMIC is stable across different network
configurations for a multi-threaded application. In NoCLabs,
the minimal sample size n to represent the population depends
upon three variables: 1) The coefficient of variance of the
packet latencies per unit in the population, V; 2) Confidence
level (1—); and 3) Confidence interval +e. V' = %, where o
and p are the standard deviation and mean value, respectively.
Confidence level and interval are specified by the NoCLabs
user. Informally, they indicate that one can be (1—«) confident
that the estimated value is within £ of the true value. The
minimal sample size n is defined as: n > (£-V)?, where z is
the 100[1 — §] percentile of the standard normal distribution.
After n is decided, systematic sampling is performed on the
population: one traffic unit out of every k units is picked as a
sample, where k = %

III. NOCPOINT: EXPLOITING TRAFFIC PHASE BEHAVIOR

Prior work [4] shows that application traffic exhibits phase
behavior and there is a correlation between traffic phase and
network performance. To exploit this phenomenon, we propose
NoCPoint sampling methodology. It selects a representative
sample for an application by exploiting its traffic phases. The
two steps of NoCPoint are described as follows:

1) Characterizing and classifying traffic: To determine the
phases that exist in the traffic, one must first characterize
how the traffic behaves both temporally and spatially. In
NoCPoint, we profile each traffic unit U by a row-column
injection-ejection rate vector (IERV). In an IERYV, each element
represents the injection or ejection rate of a row or column
in the network. After the behavior of the full application
traffic is characterized, we use hierarchical clustering to cluster

TABLE 1. SIMULATION CONFIGURATION

Cores 16, P4-like
L1 Cache (I & D) private, 4-way, 32KB each, 64 Byte Blocks
L2 Cache private, 8-way, 512KB each, 64 Byte Blocks
Cache Coherence MOESI distributed directory
4x4 2D-Mesh, adaptive XY/YX routing,
8 VCs, 8 Buffers/VC, 8 Byte flit
4X4 2D-Mesh, dimension-order routing,
4 VCs, 4 Buffer/VC, 4 Byte flit

Network 1

Network 2

15 T T 15

noclabs-netl m—
nopoint-netl

noclabs-net2 C——
nopoint-net2 X3

10 10

error %

| I I | |
a - y ' = 0
9, oL 0,
q.s[/s e, We,.
loge
7

speedup

v

=)

0,

g, %
7 ©
Zise

estmiated metric/simulation speedup

Fig. 1. Accuracy comparisons for NoCLabs and NoCPoint for packet latency,
latency distribution, network power for Networkl and Network2 are
shown. Speedup is also presented. Results are averaged across all applications.

traffic phases. The Manhattan distances between IERVs are
calculated, then classes are formed so that intra-class IERVs
are closer to each other than inter-class IERVs. That is to say,
traffic within the same class manifests similar behavior.

2) Sampling the traffic and measuring the network perfor-
mance: Once the full application traffic has been clustered,
the traffic units within one cluster share similar temporal and
spatial behavior. We sample the traffic by selecting one unit
from each cluster: each chosen unit is the centroid of that
cluster. The last step is to measure network performance by
simulating the sampled traffic. As clusters may vary in size, the
packet latencies of each measured unit are weighted to generate
the overall average packet latency. Other network performance
metrics, such as latency distribution and network power can
also be calculated in a similar way.

IV. EXPERIMENTAL RESULTS

We perform full-system simulation using a cycle-accurate
x86 simulator, FeS2 [6]; the network is simulated with
Booksim [3]. The configuration is listed in Table I. The
simulator switches between detailed timing simulation and
fast functional simulation to simulate sampled intervals and
unsampled intervals respectively. We select applications from
the PARSEC [1] benchmark suite. All applications run with 16
threads, use simsmall input, and run to completion. Only the
regions of interest (ROI) are measured. For NoCLabs, we set
the traffic unit size U as 10,000 user-mode instructions (UMIs)
and use an accuracy requirement of 0.99 confidence level and
+3% confidence interval. For NoCPoint, we empirically set
U as | million UMIs. To estimate network power data, we
use DSENT [8]. DSENT is configured to use a 45nm process
and 1 GHz frequency. To calculate the simulation speedup, we
compare the wall-clock time of the sampled simulation against
that of the full simulation.

Figure 1 shows both the estimation accuracy and simulation
speedup gained by NoCLabs and NoCPoint. For the estima-
tion accuracy, the errors are with respect to the true values

measured from full-system simulation. As network designers
are not only interested in average latencies, but also care about
the network congestion level and power consumption, we also
provide results for latency distribution and power estimation.

NoCLabs and NoCPoint both have high accuracy in net-
work performance estimation. The errors of latency and power
estimation are all less than 3%. The latency distribution
errors are higher (maximal average error is 5%) due to the
accumulation of multiple comparison points. For all the per-
formance estimation errors, we can also notice the coefficient
of variance are less than 1 (with the exception of 1.3 for the
latency estimation with NoCPoint-net2), suggesting a stable
accuracy across all the applications. In terms of simulation
speed, NoCPoint reports a 9.17x speedup with Network?2;
NoCPoint offers an order of magnitude speedup over full-
system simulation. Simulations previously running for a week
now can be finished within a day.

V. CONCLUSION

In this paper, we propose two sampling methodologies
to accelerate NoC simulation: NoCLabs and NoCPoint. They
utilize statistical sampling theory and traffic phase behavior
information respectively. They select and simulate a small
portion of the full application in detail to faithfully evaluate
NoC designs. We evaluate NoCLabs and NoCPoint against the
full system simulation. Network performance metrics including
average packet latency, latency distribution and power are
estimated within 5% of the true values. Meanwhile, we speed
up simulation by one order of magnitude. With a reduced
simulation turnaround time, the range and depth of NoC design
space exploration can be enhanced.

ACKNOWLEDGEMENTS
This work was supported by Intel, the Natural Science and
Engineering Research Council of Canada and the University
of Toronto.

REFERENCES

[1] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[2] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sampled simulation
of multi-threaded applications,” in International Symposium on Perfor-
mance Analysis of Systems and Software, Apr. 2013.

[3] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
J. Kim, and W. J. Dally, “A detailed and flexible cycle-accurate network-
on-chip simulator,” in Proc. of the International Symposium on Perfor-
mance Analysis of Systems and Software, 2013.

[4] Y. Jin, E. J. Kim, and T. M. Pinkston, “Communication-aware globally-
coordinated on-chip networks,” IEEE Trans. Parallel Distrib. Syst.,
vol. 23, no. 2, pp. 242-254, Feb. 2012.

[5] E. K. Ardestani and J. Renau, “Esesc: A fast multicore simulator using
time-based sampling,” in High Performance Comp Arch, 2013.

[6] N. Neelakantam, C. Blundell, J. Devietti, M. M. K. Martin, and C. Zilles,
“Fes2: A full-system execution-driven simulator for x86,” in Architec-
tural Support for Prog Lang and Operating Systems, 2008.

[71 T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Architectural Support
for Programming Languages and Operating Systems, 2002.

[8] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S.
Peh, and V. Stojanovic, “DSENT - a tool connecting emerging photon-
ics with electronics for opto-electronic networks-on-chip modeling,” in
International Symposium on Networks on Chip, 2012.

[9] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Intl Symp on Computer Architecture, 2003, pp. 84-97.

