
An Automated Framework for Characterizing
and Subsetting GPGPU Workloads

Vignesh Adhinarayanan and Wu-chun Feng
Department of Computer Science, Virginia Tech

Blacksburg, VA 24061, U.S.A.
{avignesh, wfeng}@vt.edu

Abstract—Graphics processing units (GPUs) are becoming
increasingly common in today’s computing systems due to their
superior performance and energy efficiency relative to their cost.
To further improve these desired characteristics, researchers
have proposed several software and hardware techniques. Eval-
uation of these proposed techniques could be tricky due to the
ad-hoc nature in which applications are selected for evaluation.
Sometimes researchers spend unnecessary time evaluating re-
dundant workloads, which is particularly problematic for time-
consuming studies involving simulation. Other times, they fail
to expose the shortcomings of their proposed techniques when
too few workloads are chosen for evaluation.

To overcome these problems, we propose an automated
framework that characterizes and subsets GPGPU workloads, de-
pending on a user-chosen set of performance metrics/counters.
This framework internally uses principal component analysis
(PCA) to reduce the dimensionality of the chosen metrics and
then uses hierarchical clustering to identify similarity among
the workloads. In this study, we use our framework to identify
redundancy in the recently released SPEC ACCEL OpenCL
benchmark suite using a few architecture-dependent metrics.
Our analysis shows that a subset of eight applications provides
most of the diversity in the 19-application benchmark suite.
We also subset the Parboil, Rodinia, and SHOC benchmark
suites and then compare them against each another to identify
“gaps” in these suites. As an example, we show that SHOC
has many applications that are similar to each other and could
benefit from adding four applications from Parboil to improve
its diversity.

I. INTRODUCTION

Accelerators such as graphics processing units (GPUs) are
becoming increasingly common in today’s high-performance
computing (HPC) systems due to their superior performance
and energy efficiency relative to their cost. This can be seen
from the increasing share of accelerators in the TOP500 list
which ranks supercomputers in terms of performance. In the
latest June 2015 list, a total of 90 systems use accelerators
up from 75 systems six months ago [1].

To meet the computational and energy efficiency demands
put forth by HPC applications, researchers have proposed
several software and hardware solutions for GPUs. However,
the current ad-hoc approach to evaluate such research tech-

niques is fraught with danger. Typically, a random set of ap-
plications relevant to the HPC community is put together and
used for such studies. Alternatively, a pre-existing benchmark
suite such as Parboil [2], Rodinia [3], [4], or SHOC [5] is
used for evaluation, without much thought into the nature of
the applications included in these suites. A rigorous evalua-
tion requires a diverse set of applications that is representative
of the targeted domain. However, simply increasing the num-
ber of applications for evaluation is generally a bad idea for
time-consuming studies that involve simulation. Furthermore,
this approach may end up (unintentionally) over-emphasizing
certain types of workloads.

To combat the above problem, at least to some extent, the
SPEC committee put together the SPEC ACCEL benchmark
suite [6]. This suite consists of 19 OpenCL applications
and 12 OpenACC applications, which are supposed to be
representative of the HPC domain and to stress the various
components of an HPC accelerator, i.e., GPU. However, it
is not clear whether this suite is well balanced and avoids
redundancy in its coverage of the application space.

In this study, we study the 19 applications from the
SPEC ACCEL OpenCL suite, identify redundancy among
these applications, and subset the suite using the well-
known principal component analysis (PCA) and clustering
analysis techniques. We also perform this subsetting for other
prominent and well-established GPGPU workloads from Par-
boil, SHOC, and Rodinia. Then, we compare applications
across suites to identify areas where these suites could be
improved. In all, we provide a way to systematically identify
relevant and well-balanced applications for evaluating various
techniques targeted at the GPU. Our major contributions are
the following:

• A set of architecture-dependent metrics that are most im-
portant for characterizing high-performance computing
(HPC) GPGPU workloads for the purpose of evaluating
modern accelerators.

• A methodology that captures best approaches from
previous studies in order to systematically study GPGPU
workloads.

1



• A concrete illustation of redundant workloads in the
production-oriented SPEC ACCEL benchmark suite and
the academia-oriented Rodinia, Parboil, and SHOC
benchmark suites as well as a proposed subsetting of
these benchmark suites to eliminate such redundancy.

• Recommendations for expanding the existing bench-
mark suites if they lack specific application coverage.

Our major findings are noted as follows. First, it is
possible to successfully subset GPGPU workloads with
architecture-dependent metrics. We validate this with the
publicly available speedup results for SPEC ACCEL for 18
different hardware platforms by comparing speedup results
calculated with the original SPEC ACCEL suite against the
subsetted suite. Second, SPEC ACCEL and Parboil exhibit
the highest diversity, while Rodinia and SHOC not only
show lower diversity, but also more redundant workloads.

The rest of the paper is organized as follows. We discuss
related work in Section II and distinguish our work from
others in this field. We describe our hardware and the
workloads used in Section III and explain our methodology in
Section IV. The characterization, subsetting, and comparison
results are presented in Section V and we conclude in
Section VI.

II. RELATED WORK

While there exists a significant body of work in the area
of characterizing and subsetting workloads, they differ from
one another in the specific task they seek to accomplish, the
hardware platforms they are targetted at, the domain they
focus on, the metrics, and the techniques they use. In this
section, we discuss how these works differ from one another
and how our work differs from these.

First, we classify the related work in terms of the task they
seek to accomplish. Characterization focuses on studying
each application within a benchmark suite based on a certain
metric of interest. This may be followed up with a diversity
analysis, where applications within a benchmark suite are
compared against one another to find the ones that are similar
or dissimilar to each other. Subsetting goes one step further
in composing a well-balanced and well-represented suite
by employing a formal methodology to analyze redundancy
and remove applications that do not provide any additional
information (or value). This is also usually followed by a
validation step, which would show that we indeed have a
representative suite after subsetting. Input selection is closely
related to the above, where the emphasis is on selecting
representative input instead of selecting representative appli-
cations. Finally, the comparison and expansion task looks at
several different benchmark suites to identify gaps in existing
or emerging workloads. Table I chronicles the effort made in
this field. The emphasis in our work is on the subsetting

and expansion tasks for less-explored devices such as the
graphics processing unit (GPU) and for the associated high-
performance computing (HPC) domain, which has not been
done previously.

While previous work has explored dimensionality-
reduction techniques such as principal component analy-
sis (PCA) [7], correlation elimination [11], genetic algo-
rithm [11], and Plackett and Burmann (P&B) design tech-
nique [10] in combination k-means and hierarchical cluster-
ing techniques [7], the combination of PCA and hierarchical
clustering has proven to be the most successful [10]. We
adopt and apply these best practices in our work. While
micro-architecture independent metrics have proven to be
more successful in CPUs for the subsetting task, the limited
support for GPU application profiling does not allow such
detailed level of profiling. Therefore, we use architecture-
dependent metrics in our work. We validate our subsetting
approach using the SPEC ACCEL results reported to and
publicly available from SPEC. This is similar to the technique
proposed by Phansalkar et al. [13] where the SPEC rating
calculated from the original benchmark suite is compared
against the subsetted benchmark suite. By adopting the best
approaches used in previous studies and applying them to
GPGPU workloads, we expand on existing literature by
focusing on a new domain.

Next, we distinguish our work from previous work on
workload characterization in the GPGPU space. Kerr et al.
characterized CUDA workloads from the NVIDIA CUDA
SDK and Parboil benchmark suite for the purposes of opti-
mizing these applications [18]. Goswami et al. went further
by performing diversity analysis on CUDA SDK, Parboil,
and Rodinia on the GPGPU-Sim simulator [19] rather than
on real hardware. Che et al. performed a diversity analysis
on the Rodinia benchmark suite and compared the breadth of
their benchmark suite against the Parsec workloads. Our work
goes beyond the above in that we perform the subsetting task,
which involves removing redundant workloads in a suite to
make it well balanced, and a validation task in our method-
ology. To illustrate the efficacy of our automated frameowrk,
we work on the recently released production-oriented SPEC
ACCEL in addition to the academic benchmarks noted above.
Finally, we note that our work is performed on a real and
modern hardware systems.

III. EXPERIMENTAL SETUP

In this section, we describe the hardware platform and the
workloads used in this study.

A. Hardware Platform

We characterize several CUDA workloads on a NVIDIA
Kepler GK110 GPU [20]. The block diagram for this GPU

2



TABLE I: Summary of Related Work

Paper Task H/W Benchmarks Metrics Method Validation

Eeckhout et
al. [7]

Diversity Analysis
& Input Selection

Alpha (CPU) SPECint95, TPC-D µ-arch
dependent PCA +

Hierarchical
Clustering

Same clusters formed
for different µ-arch
configuration

Phansalkar
et al. [8]
and Joshi
et al. [9]

Subsetting Alpha AXP-2116
(CPU)

SPEC CPU 2000,
MiBench, MediaBench µ-arch

independent

PCA + K-Means Predict IPC and cache
miss rate for entire suite

Yi et
al. [10]

Subsetting CPU Simulation SPEC CPU 2000 µ-arch
dependent PCA, P&B, 5 non-

statistical methods
Mean speedup on
different architectures
with and without
subsetted suite

Hoste et
al. [11], [12]

Comparison Alpha 21164A
(CPU)

BioInfoMark,
BioMetrics workload,
CommBench,
MediaBench, MiBench,
SPEC CPU 2000

µ-arch
independent

PCA/Genetic
Algorithm + K-
Means with BIC

N/A

Phansalkar
et al. [13]

Subsetting Sun UltraSPARC,
x86, Itanium,
IBM Power
(CPUs)

SPEC CPU 2006, SPEC
CPU 2000

µ-arch
dependent PCA +

Hierarchical
clustering/K-Means

SPEC score without
subsetting vs SPEC
score with subsetting

Hoste et
al. [14]

Comparison (Phase-
level)

Intel Pentium 4
(CPU)

BioInfoMark, BioMet-
rics, MediaBench, SPEC
CPU 2000

µ-arch
independent

PCA/Genetic
Algorithm + K-
Means with BIC

N/A

Isen et
al. [15]

Comparison IBM J9 VM
(Embedded)

MIDPmark,
MorphMark, Caffeine,
EEMBC Java, Real
mobile applications

VM-level
metrics

PCA/Genetic
Algorithm +
Hierarchical
clustering

N/A

Jia et
al. [16]

Subsetting Intel Westmere
(CPU)

BigDataBench µ-arch
dependent PCA +

Hierarchical
clustering/K-Means

No validation

Panda et
al. [17]

Diversity Analysis Intel Xeon E5345
(CPU)

TPC-H, SPEC CPU
2006, SPECjbb2013 µ-arch

independent

PCA +
Hierarchical
clustering/K-Means

No validation

Kerr et
al. [18]

Characterization Ocelot GPU
simulator

CUDA SDK, Parboil µ-arch
dependent N/A N/A

Goswami
et al. [19]

Characterization
and Diversity
Analysis

GPGPU-Sim CUDA SDK, Parboil,
Rodinia

µ-arch
agnostic PCA +

Hierarchical
clustering

N/A

Che et
al. [4]

Diversity Analysis
& Comparison

NVIDIA
GTX480 (GPU)

Parsec, Rodinia µ-arch
dependent PCA +

Hierarchical
clustering

N/A

This paper Subsetting & Com-
parison

NVIDIA Kepler
GTX Titan
(GPU)

SPEC ACCEL, SHOC
Parboil, Rodinia

µ-arch
dependent PCA +

Hierarchical
clustering

SPEC score without
subsetting vs SPEC
score with subsetting

is shown in Fig. 1.

INSTRUCTION CACHE

WARP SCHEDULER

INSTRUCTION DISPATCH UNIT

REGISTER FILE

CORE
DP UNIT LD/ST SFU

INTERCONNECT

SHARED L1 R/O DATA CACHE

TEXTURE UNITS

INT FLOAT

SMX

(a) Streaming Multiprocessor

SMX SMX SMX SMX SMX SMX SMX

SMX SMX SMX SMX SMX SMX SMX

L2 CACHE

GIGATHREAD ENGINE

PCI EXPRESS 3.0 INTERFACE

MEMORY CONTROLLER

OFF-CHIP DRAM

(b) Full chip

Fig. 1: Block diagram of NVIDIA Kepler

This GPU consists of 15 streaming multiprocessor (SMX)
units. Each SMX consists of an instruction cache, four warp

schedulers which are responsible for scheduling warps (a
group of threads) to the SMX, and eight instruction dispatch
units which decides on the instruction to be scheduled in
a given clock cycle. There are 192 CUDA cores in each
SMX and each has its own integer and single-precision
floating point arithmetic logic units (ALUs). Each ALU can
perform an add, multiply, or a fused-multiply operation. Each
SMX also has double-precision (DP) units, special function
units (SFU), and load/store (LD/ST) units for executing
corresponding instructions. Apart from these instructions,
the GPU is also capable of executing branch instructions,
atomic instructions, and shuffle instructions. Each SMX also
has a 65,536 x 32-bit register file, 6 KB configurable shared
memory and L1 cache, a 48 KB read-only data cache, and
several texture units. Common to all the SMXs, there is a
1563 KB L2 cache, six memory controllers, and a 6 GB off-
chip DRAM.

3



B. Workloads

In this study, we subset four different GPGPU benchmark
suites, namely SPEC ACCEL, SHOC, Parboil, and Rodinia.
For the SPEC ACCEL benchmark suite, instead of using
the OpenCL version available via SPEC, we use CUDA-
equivalent version from the original sources. This is because
of the rich set of performance counters and metrics available
for CUDA programs on NVIDIA architecture via nvprof
interface. Considering the importance of choosing the right
set of metrics in performing the analysis, we chose the
CUDA version over the OpenCL version for SPEC ACCEL.
For the other 3 benchmark suites, several implementations
of available and we choose the CUDA implementation for
reasons mentioned above.

The description of each application in SHOC, Parboil, and
Rodinia is presented in in Table II, Table III, and Table IV
respectively. SPEC ACCEL benchmarks are a subset of these
applications, so we do not describe it separately.

TABLE II: Summary of SHOC benchmarks

Benchmark Description Size
BFS [21] Breadth-first search S4
FFT [22] 512-pt 2-D fast Fourier transforms S4
MD Molecular dynamics application that calcu-

lates Lennard-Jones potential
S3

MD5-Hash Hashing function S4
Reduction Sum of elements in an array S4
Scan [23] Performs prefix sum calculations S4
GEMM General matrix-matrix multiplication S4
Sort [24] Performs a fast radix sort on several key-

value pairs
S4

Spmv [25] Sparse matrix-vector multiplication (CSR
scalar, CSR vector, and ELLPACKR)

S4

Stencil2D 2-D 9-pt stencil computation S3
Triad [26] Performs streaming dot-product multiplica-

tion
S4

QTC [27] Quality threshold clustering S4
S3D Computes the rate of a chemical reaction S4

TABLE III: Summary of Parboil benchmarks [2]

Benchmark Description Size
BFS Breadth-first search 1M nodes
CUTCP Distance-cutoff Coulombic potential Default
HISTO Saturating Histogram Medium
LBM Lattice-Boltzmann method fluid dy-

namics
Default

MM Dense matrix-matrix multiply Default
MRI-G Magnteic resonance imaging on a reg-

ular grid
Default

MRI-Q Magnetic resonance imaging in non-
cartesian space

Small

SAD Sum of absolute differences Default
SPMV Sparse-matrix dense-vector multiplica-

tion
Medium

STENCIL 3-D stencil operation Small
TPACF Two-point angular correlation

F=function
Default

TABLE IV: Summary of Rodinia benchmarks

Benchmark Description
Backprop Train weights in neural network using backward

propagation technique
BFS [21] Breadth-first search
B+ Trees [28] Traverses a B+ tree
CFD [29] Computational fluid dynamics for unstructured

grids
Gaussian Gaussian elimination method for solving equa-

tions
Heart Wall [30] Track changing shape of a mouse’s heart
HotSpot [31] Solves differential equation to generate proces-

sor’s heatmap
K-Means Clustering of data points
LavaMD [32] N-body algorithm
Leukocyte [33] Computing maximal gradient inverse coefficient

of variation to track leukocyte
LUD LU decomposition for solving a system of linear

equations
MummerGPU Local sequence alignment
Mycocyte [34] Structured grid application to simulate mycocyte

cells
NN Nearest neighbor algorithm
NW Needleman-Wunsch algorithm for DNA se-

quence alignment
Particle Filter [35] Estimates the location of an object from noisy

data
Path Finder Find the shortest path between two points in a

2-D grid
SRAD [34] Speckle reducing anisotropic diffusion for re-

moving speckles in image
Stream Cluster Online clustering algorithm

IV. METHODOLOGY

We use the following methodology to subset GPGPU
workloads. First, we collect a set of suitable micro-
architectural events or metrics to characterize an application.
We use principal component analysis (PCA) to remove redun-
dancy in the collected metrics. The we group similar metrics
together using a clustering technique. Each of these steps and
the rationale behind the choices we made are described next.

A. Metrics

The next two steps, i.e., dimensionality reduction and clus-
tering analysis have been thoroughly studied in the past and
making the right choice of techniques for these steps is easier.
Choosing the right metric to characterize an application, on
the other hand is specific to the end goal of the study and
the target architecture.

Ideally, one would want a benchmark suite such as SPEC
ACCEL to stress the different components of an architecture.
Therefore, we look at the various components available in
our target architecture shown in Figure 1, and pick the most
relevant metric for each component. The chosen metrics are
summarized in Table V. We group these metrics into four
major categories as described below:

4



TABLE V: Relevant metrics for understanding the impact of workload on the microarchitecture

Category Hardware unit Abbr Metrics

Front End Instruction Cache IPC Number of instructions executed per cycle (ipc)
Instruction Dispatch Unit ISS Number of instructions issued per cycle (issued ipc)

Execution Units Core (Int) INT Number of integer instructions executed per cycle (inst integer)
Core (Float) FP SP Number of single-precision instructions executed per cycle (inst fp 32)
DP Unit FP DP Number of single-precision instructions executed per cycle (inst fp 64)
LD/ST Unit LD ST Number of compute load/store instructions executed per cycle (inst compute ld st)
SFU SFU Number of single-precision floating-point special operations per cycle

(flop count sp special)
Control CTRL Number of control instructions such as jump, branch, etc. per cycle (inst control)
Other instructions MISC Number of miscellaneous instructions executed per cycle (inst misc)

On-chip
Data Transfer

L1 Cache and
Shared Memory

L1 SH Utilization level of L1 cache and shared memory combined relative to the peak
utilization (l1 shared utilization)

Texture Cache TEX Utilization level of texture cache relative to the peak utilization (tex utilization)
L2 Cache L2 Utilization level of L2 cache relative to the peak utilization (l2 utilization)

Off-chip
Data Transfer

Memory controller and
DRAM

DRAM Utilization level of DRAM relative to the peak utilization (dram utilization)

Front End: This category includes all metrics associated
with the scheduling of instructions. The relevant metrics are
the number of instructions that were issued and the number of
instructions that were executed. The warp scheduler, while an
important component, does not have any key relevant metric
that can be measured in our GPU.

Instruction Mix: This includes such metrics as integer
instructions, floating point instructions (single precision and
double precision), control instructions, special purpose in-
structions, and miscellaneous instructions such as shuffle and
atomic operations. All metrics are measured on a per-cycle
basis.

On-chip Data Transfer: This is related to the portion of
the memory hierarchy present on the chip. The utilization of
shared memory, L1 cache, L2 cache, and texture memory is
measured here.

Off-chip Data Transfer: This is related to the portion of
the memory hierarchy present off the chip. The utilization of
DRAM is measured.

To collect the above metrics, we use NVIDIA’s nvprof in-
terface. The metrics are collected for each GPU kernel within
an application. If an application spans multiple kernels, we
pick the longest running one to represent that application.

While some of the metrics chosen in this step are depen-
dent on each other, we leave the task of removing correlated
metrics to the next step.

B. Principal Component Analysis

We use the principal component analysis (PCA) technique
for dimensionality reduction. The advantages of using a PCA
are two fold: (i) they remove redundancy in the collected
metrics and (ii) they help in reducing the number of variables

to be used in further steps as most of the useful information
regarding an application can be obtained from a few principal
components.

At a higher level, the goal of this technique is to rotate the
m axes associated with a raw data set so that the projection
on n axes shows a high variation. These n transformed axes
can then be used to represent the original information with
fewer variables at the cost of a minimal loss in information.

A key decision to make in this step is the amount of
principal components to retain for the subsequent stage. To
retain most of the information available in the raw variables,
we choose to limit the loss of variance to utmost 10%. We
therefore retain 6 principal components to achieve this target.

To avoid giving overdue importance to raw variables with
high numerical value, we normalize all variables to have a
mean of zero and a standard deviation of one before we begin
this step.

C. Hierarchical Clustering

Two clustering schemes are commonly used - hierarchical
clustering and K-means. The disadvantage of using k-means
is that one must decide on the value of k apriori. Therefore,
we use the hierarchical clustering scheme to group similar
applications together.

In this technique, we identify the data points that are close
to each other in each iteration. At the end of the iteration the
closest pair is grouped together. To calculate the distance
between two clusters, we use the single linkage distance
technique, which is the distance between the closest points
in the two clusters. This technique has been successfully
employed in the past for workload characterization and we
base our decision on past successful usage.

5



Once the clusters are formed, we present the resultant
clusters in the form of a dendogram. Applications that are
similar to each other are connected by shorter line segments
while dissimilar applications are connected by longer line
segments in this diagram.

D. Automated Application Subsetting

Using the techniques described above we automatically
subset the benchmark applications as follows:

• First, the user selects the applications and problem size
for each application and writes a execution script to run
all these applications.

• The user also selects metrics for his study from a
list of metrics provided by nvprof tool (nvprof
--query-events).

• We run the applications with nvprof and collect the
selected metrics.

• The kernel with the highest execution time within an
application is selected to represent each application.

• A Python script normalizes the collected metrics and
performs a principal component analysis on the data.

• Top ’n’ PCs (n=6 here) are used to perform a hierarchi-
cal clustering.

• The clustered workloads are presented in the form of a
dendogram using Python’s data analytics packages.

V. RESULTS AND DISCUSSION

In this section, we characterize and subset the SPEC
ACCEL benchmark suite. We validate our subsetting method-
ology and apply the method to SHOC, Rodinia, and Parboil
benchmark suites. We compare the diversity of each of these
suites and identify “gaps” in them.

A. SPEC ACCEL

We present a high-level characterization of the SPEC
ACCEL based on compute- and memory-centered metrics
separately. Then we analyze redundancy in SPEC ACCEL
and identify a smaller subset of applications that provide
sufficient diversity while keeping the suite well balanced. We
also formally verify our subsetting methodology.

Characterizing SPEC ACCEL: Fig. 2 shows the instruc-
tion mix for the applications belonging to this suite. We see
a diverse mix of applications such as: (i) LBM, which has
high percentage of single-precision floating-point operations
(ii) lavaMD, which predominantly performs double-precision
floating-point operations (iii) histogram, which is mostly
based on integer operations (iv) BFS, which uses many
control-flow operations and (v) Needleman-Wunsch with

plenty of load/store operations. Applications such as BFS
and Gaussian elimination also perform many miscellaneous
operations that do not fit in the above categories.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
 d

is
tr

ib
u

ti
o

n

Single Precision Float Double Precision Float Integer

Control Flow Load/Store Misc

Fig. 2: Instruction mix for SPEC ACCEL benchmark suite

Applications such TPACF and stencil have very similar
instruction mix, but they vary significantly in their memory
behavior which is shown in Fig. 3. Our diversity analysis
and subsetting procedure should consider them dissimilar.
Applications such as LUD and Gaussian elimination, which
have similar instruction mix as well as memory behavior,
should be considered similar.

0

1

2

3

4

5

6

7

8

9

U
ti

liz
at

io
n

 L
ev

el

L1 L2 DRAM

Fig. 3: Memory Utilization for SPEC ACCEL benchmark
suite

Subsetting SPEC ACCEL: The diversity of these appli-
cations is presented in the form of a dendogram in Fig. 4.
The x-axis of the dendogram is the linkage distance which
is a measure of similarity and the y-axis is the applications.
Applications that are similar to each other are connected by
lines with a shorter distance. For example, NW, K-Means,
LUD, BFS, and Gaussian are all linked by short lines and
they form a dense cluster. These five applications may be
replaced by a single application to make the suite uniformly
balanced. Stencil, on the other hand, is unique and not
connected by a short line with any other application. We
have formed eight clusters and color coded them in Fig. 4.
Choosing one application from each of these clusters will

6



0 10 20 30 40 50

MRI-Q(Parboil)

CUTCP(Parboil)

LavaMD(Rodinia)

Gaussian(Rodinia)

BFS(Parboil)

LUD(Rodinia)

Kmeans(Rodinia)

NW(Rodinia)

LBM(Parboil)

CFD(Rodinia)

Stencil(Parboil)

Histo(Parboil)

BplusTree(Rodinia)

HotSpot(Rodinia)

SRAD(Rodinia)

SpMV(Parboil)

TPACF(Parboil)

HeartWall(Rodinia)

Fig. 4: Dendogram for SPEC ACCEL benchmark suite. The x-axis represents linkage distance.

help form a balanced suite. Representative subsets with four,
six, and eight applications are shown in Table VI.

TABLE VI: Representative subset of SPEC ACCEL

Four apps TPACF, Stencil, LUD, CUTCP
Six apps TPACF, Histo, Stencil, LBM, LUD, CUTCP
Eight apps TPACF, Histo, Stencil, CFD, LBM, LUD,

CUTCP, MRI-Q

Validating the subsetting approach: We show that the
chosen metrics and the methodology is appropriate for the
given task using the following validation technique. We ob-
tain the SPEC rating, which is the speed up obtained relative
to a reference machine, for eighteen machines populated with
different accelerators. Then, we calculate a new speed up
value from only the subset of eight applications obtained
via the subsetting procedure. If our selected subset is truly
representative of the entire suite, then the new speed up score
will be nearly the same as the score calculated from the entire
benchmark suite. The original and the new speed up values
for the eighteen machines whose results have been submitted
to SPEC are presented in Table VII.

We achieve an overall error rate of 6.94% when we
use subsetting. This indicates that our chosen subset of
benchmarks can reasonably predict the performance of
the entire suite. Forming such smaller subsets will help
reduce evaluation time for newer architectures. We did expect
a small difference in the obtained speedup. This is because
our chosen subset is bias free. meaning it does not favor a
specific kind of application. But the original suite was biased

TABLE VII: Speedup results with and without subsetting

Accelerator Original
Speedup

New
Speedup

Error
(%)

NVIDIA Tesla C2070 0.98 0.98 0.45
NVIDIA Tesla K20 #1 1.52 1.50 0.69
NVIDIA Tesla K20 #2 1.44 1.43 1.04
Intel Xeon E5620 0.25 0.25 1.97
NVIDIA GTX 680 1.15 1.11 3.37
NVIDIA Tesla K40m 1.92 1.99 3.93
NVIDIA GTX TITAN #2 2.17 2.28 4.89
NVIDIA Tesla K40c #3 1.87 1.96 5.05
NVIDIA Tesla K40c #1 1.98 2.09 5.53
NVIDIA Tesla K20c 1.68 1.77 5.65
NVIDIA Tesla K20Xm 1.72 1.84 6.69
NVIDIA Tesla K20 #3 1.29 1.20 6.69
NVIDIA GTX TITAN #1 2.41 2.58 7.16
NVIDIA Tesla K40c #2 1.90 2.05 7.76
Intel Xeon E5-2697 v3 2.09 1.90 9.05
AMD Radeon HD 7970 1.71 1.95 13.67
AMD Radeon R9 290 1.41 1.61 13.87
Intel Xeon Phi 5110P 0.44 0.32 27.36
Average error 6.94

to certain types of applications as seen from the presence of
dense clusters in our dendogram.

The prediction accuracy is relatively low for nearly all
platforms whose vendor is different from our experimental
platform (2 out of 2 AMD and 2 out of 3 Intel accelerators).
In fact, the bottom four platforms, in terms of prediction
error, are all from a different vendor. This is understand-
able because certain metrics such as special floating point
operations may not even be meaningful for these architec-

7



tures. This stresses the importance of using architecture-
independent metrics for characterization and subsetting. We
plan to evaluate architecture-independent metrics once binary
profiling tools such as PIN becomes available for GPUs in
the future. However, we also note that architecture-dependent
metrics work for the various NVIDIA GPUs spanning even
two microarchitecture generations.

B. SHOC, Rodinia, and Parboil Benchmark Suites

In this section, we present the subsetting results for
SHOC, Rodinia, and Parboil benchmark suites. We omit the
high-level characterization of instruction mix and memory
utilization for these benchmarks due to space constraints.

Subsetting SHOC benchmark suite: Figure 5 shows the
dendogram representation of the clusters formed from the
top six principal components for the SHOC benchmark suite.
SHOC has many applications that are very similar to each
other with linkage distance lower than five for many pairs of
applications (Lower value for linkage distance is indicative of
similarity between applications) . Representative subsets of
size four, six, and eight applications are shown in Table VIII.

TABLE VIII: Representative subset of SHOC

Four apps Sort, BFS, GEMM, SpMV (vector)
Six apps Sort, BFS, SpMV (scalar), Scan, GEMM,

SpMV (vector)
Eight apps Sort, BFS, SpMV (scalar), Triad, Scan,

GEMM, SpMV (vector), Stencil2D

The following are some of the observations we make from
the dendogram.

Observation 1: GEMM, FFT, and MD, while being fun-
damentally different algorithms, all exhibit similar execution
behavior. One among the three is sufficient in the level
1 primitives (i.e., basic parallel algorithms) of the SHOC
benchmark suite if the end goal is architecture evaluation.

Observation 2: CSR scalar representation of the SpMV
benchmark is similar to the Triad application and the CSR
vector representation of SpMV is similar to Reduction and
Stencil applications. Thus by including SpMV in a study,
three other level 1 applications can be removed.

Observation 3: The two “real-world” level 2 applications
S3D and QTC already belong to different clusters (i.e, they
show widely differing behaviors). Other real-life applications
exhibiting characteristics of Sort, BFS, Scan, and Stencil2D
is currently lacking.

Subsetting Rodinia benchmark suite: Fig. 6 shows the
dendogram representation of the clusters formed for the
Rodinia benchmark suite. Based on this dendogram, we

TABLE IX: Representative subset of Rodinia

Four apps Hotspot, CFD, LUD, Stream Cluster
Six apps Hotspot, Backprop, CFD, LUD, LavaMD,

Stream Cluster
Eight apps Hotspot, Backprop, Leukocyte, CFD, LUD,

LavaMD, Stream Cluster, B+ Trees

arrive at representative subsets of size four, six, and eight
applications which is shown in Table IX.

We make the followin observations regarding the Rodinia
benchmark suite.

Observation 4: One of SRAD and HotSpot, one of
heartwall and Backprop, one of leukocyte and CFD, One
among NW, BFS, KMeans, Particle Filter, Gaussian, LUD,
and NN, and either StreamCluster or Bplus tree provides
sufficient diversity for the benchmark suite.

Observation 5: Applications belonging to the same
“dwarf” category may differ widely in their behavior, where
dwarf is a fundamental computation and communication
idiom. Similarly, applications belonging to different dwarf
categories (ex. BFS, NW) exert the microarchitecture in a
similar fashion.

Subsetting Parboil benchmark suite: Figure 7 shows the
dendogram representation of the clusters formed from the top
six principal components for the Parboil benchmark suite.
Based on this dendogram, we arrive at representative subsets
of size 4, 6, and 8 applications which is shown in Table X.

TABLE X: Representative subset of Parboil

Four apps TPACF, Stencil, SGEMM, CUTCP
Six apps BFS, TPACF, Stencil, SGEMM, MRI-

Gridding, CUTCP
Eight apps LBM, BFS, TPACF, Stencil, SAD,

SGEMM, MRI-Gridding, CUTCP

The following obervations are made regarding the parboil
benchmark suite.

Observation 6: The linkage distances of all the clusters
are ten or more. Compared with the other benchmark suites,
this is significantly higher indicating that a diverse set of
applications are covered by this suite.

Expanding the existing benchmark suites: We put to-
gether all the benchmark suites we have examined so far
together and perform a diversity analysis of the ensemble.
This will help in identifying gaps in existing benchmark
suites. Fig. 8 shows the dendogram of the ensemble with
ten clusters formed and color coded.

Table XI shows the coverage of each of the three bench-
mark suites separately. Parboil has applications represented
in nine out of the ten clusters formed whereas SHOC had

8



0 5 10 15 20 25 30 35

Stencil2D

Reduce

SpMV(CSR-Vector)

MD

S3D

FFT

GEMM

Scan

QTC

Triad

SpMV(ELLPACKR)

SpMV(CSR-Scalar)

BFS

Sort

Fig. 5: Dendogram for SHOC benchmark suite. The x-axis represents the linkage distance.

0 5 10 15 20 25

BplusTree

StreamCluster

LavaMD

NN

LUD

Gaussian

ParticleFilter

Kmeans

BFS(Rodinia)

NW

CFD

Leukocyte

Backprop

HeartWall

HotSpot

SRAD

Fig. 6: Dendogram for Rodinia benchmark suite. The x-axis represents the linkage distance.

representation in only four cluster. We show what happens
to the coverage of each benchmark suite when we change
the number of clusters formed. In general, Parboil shows the
most variety.

TABLE XI: Coverage of existing benchmark suites

SHOC - Three out of six
Six clusters Rodinia - Four out of six

Parboil - Six out of six
SHOC - Three out of eight

Eight clusters Rodinia - Four out of eight
Parboil - Eight out of eight
SHOC - Four out of ten

Ten clusters Rodinia - Five out of ten
Parboil - Nine out of ten

Observation 7: Parboil shows the most coverage among
Parboil, Rodinia, and SHOC.

Based on the above study, we make recommendations
for filling in the “gaps” in the the three benchmark suites,
especially SHOC and Rodinia. These recommendations are
summarized in the Table. XII. The boldfaced applications are

the ones that need to brought in from other sources.

TABLE XII: Expanding existing benchmark suites

SHOC Sort, BFS, GEMM, SpMV (vector), Sten-
cil, LBM, TPACF, SGEMM, MRI-Gridding,
CUTCP (all from parboil)

Rodinia Hotspot, Backprop, CFD, LUD, Stream Clus-
ter, SAD, Stencil, SGEMM, MRI-Gridding,
CUTCP (all from parboil)

Parboil LBM, BFS, TPACF, Stencil, SAD, SGEMM,
MRI-Gridding, CUTCP, Histo, backprop (Ro-
dinia)

VI. CONCLUSION

We identified metrics for subsetting GPGPU workloads.
Using PCA and clustering, we subset the SPEC ACCEL
benchmark suite. Making use of results reported to SPEC, we
validated our metric and methodology. After this validation,
we performed subsetting on other popular GPU benchmark
suites such as SHOC, Rodinia, and Parboil using the same
set of metrics and methodology. We compared the different

9



0 10 20 30 40 50

CUTCP

MRI-Q

MRI-Gridding

SGEMM

SAD

Stencil

Histo

SpMV

TPACF

BFS

LBM

Fig. 7: Dendogram for Parboil benchmark suite. The x-axis represents the linkage distance.

suites, identified gaps in them, and offered solution to fill
in the missing application types. We hope that our results
will help in choosing the appropriate set of applications for
evaluating newly proposed techniques for GPUs in the high-
performance computing domain.

ACKNOWLEDGMENT

This work was supported in part by NSF I/UCRC IIP-
0804155 and IIP-1266245 via the NSF Center for High-
Performance Reconfigurable Computing.

REFERENCES

[1] “TOP500 Supercomputer Site.” http://www.top500.org.
[2] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,

N. Anssari, G. D. Liu, and W.-M. Hwu, “Parboil: A Revised Bench-
mark Suite for Scientific and Commercial Throughput Computing,”
Center for Reliable and High-Performance Computing, 2012.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous Com-
puting,” in Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC), pp. 44–54, Oct 2009.

[4] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A Characterization of the Rodinia Benchmark Suite with
Comparison to Contemporary CMP Workloads,” in Proceedings of the
2010 IEEE International Symposium on Workload Characterization
(IISWC), pp. 1–11, IEEE Computer Society, 2010.

[5] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter, “The Scalable Heterogeneous
Computing (SHOC) Benchmark Suite,” in Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing
Units (GPGPU), pp. 63–74, ACM, 2010.

[6] G. Juckeland, W. C. Brantley, S. Chandrasekaran, B. M. Chapman,
S. Che, M. E. Colgrove, H. Feng, A. Grund, R. Henschel, W. mei
W. Hwu, H. Li, M. S. Mller, W. E. Nagel, M. Perminov, P. Shelepugin,
K. Skadron, J. A. Stratton, A. Titov, K. Wang, G. M. van Waveren,
B. Whitney, S. Wienke, R. Xu, and K. Kumaran, “SPEC ACCEL:
A Standard Application Suite for Measuring Hardware Accelerator
Performance,” in PMBS@SC, vol. 8966 of Lecture Notes in Computer
Science, pp. 46–67, Springer, 2014.

[7] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Workload
Design: Selecting Representative Program-Input Pairs,” in Proceedings
of the 2002 International Conference on Parallel Architectures and
Compilation Techniques, pp. 83–94, 2002.

[8] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring
Program Similarity: Experiments with SPEC CPU Benchmark Suites,”
in Proceedings of the 2005 International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 10–20, March 2005.

[9] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John, “Measuring
Benchmark Similarity Using Inherent Program Characteristics,” IEEE
Transactions on Computers, vol. 55, p. 782, 2006.

[10] J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. Lilja, and L. John, “Evaluat-
ing benchmark subsetting approaches,” in Workload Characterization,
2006 IEEE International Symposium on, pp. 93–104, Oct 2006.

[11] K. Hoste and L. Eeckhout, “Comparing benchmarks using key
microarchitecture-independent characteristics,” in Workload Charac-
terization, 2006 IEEE International Symposium on, pp. 83–92, Oct
2006.

[12] K. Hoste and L. Eeckhout, “Microarchitecture-Independent Workload
Characterization,” Micro, IEEE, vol. 27, pp. 63–72, May 2007.

[13] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of Redundancy
and Application Balance in the SPEC CPU2006 Benchmark Suite,” in
Proceedings of the 34th Annual International Symposium on Computer
Architecture (ISCA), pp. 412–423, ACM, 2007.

[14] K. Hoste and L. Eeckhout, “Characterizing the Unique and Diverse
Behaviors in Existing and Emerging General-Purpose and Domain-
Specific Benchmark Suites,” in Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and software (IS-
PASS), pp. 157–168, April 2008.

[15] C. Isen, L. John, J. P. Choi, and H. J. Song, “On the representativeness
of embedded java benchmarks,” in Proceedings of the 2008 IEEE Inter-
national Symposium on Workload Characterization (IISWC), pp. 153–
162, Sept 2008.

[16] Z. Jia, J. Zhan, L. Wang, R. Han, S. Mckee, Q. Yang, C. Luo,
and J. Li, “Characterizing and Subsetting Big Data Workloads,” in
Proceedings of the 2014 IEEE International Symposium on Workload
Characterization (IISWC), pp. 191–201, Oct 2014.

[17] R. Panda and L. John, “Data analytics workloads: Characterization and
similarity analysis,” in Proceedings of the 2014 IEEE International
Performance Computing and Communications Conference (IPCCC),
pp. 1–9, Dec 2014.

[18] A. Kerr, G. Diamos, and S. Yalamanchili, “A Characterization and
Analysis of PTX Kernels,” in Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC), pp. 3–12, Oct
2009.

[19] N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring GPGPU
Workloads: Characterization Methodology, Analysis and Microarchi-
tecture Evaluation Implications,” in Proceedings of the 2010 IEEE In-
ternational Symposium on Workload Characterization (IISWC), pp. 1–
10, Dec 2010.

[20] Nvidia Corporation, Tesla K20 GPU Active Accelerator: Board Spec-
ification, Jan. 2013.

10

http://www.top500.org


0 10 20 30 40 50

CUTCP(Parboil)
MRI-Q(Parboil)

MRI-Gridding(Parboil)
SGEMM(Parboil)

Backprop(Rodinia)
Stencil2D(SHOC)

Reduce(SHOC)
CSR-Vector(SHOC)

LavaMD(Rodinia)
Scan(SHOC)

MD(SHOC)
S3D(SHOC)
FFT(SHOC)

GEMM(SHOC)
Kmeans(Rodinia)
ELLPACKR(SHOC)

CSR-Scalar(SHOC)
Gaussian(Rodinia)

ParticleFilter(Rodinia)
BFS(Parboil)

LUD(Rodinia)
NN(Rodinia)
Triad(SHOC)
QTC(SHOC)

BFS(Rodinia)
NW(Rodinia)

HotSpot(Rodinia)
SRAD(Rodinia)
SpMV(Parboil)

TPACF(Parboil)
HeartWall(Rodinia)

LBM(Parboil)
CFD(Rodinia)

Leukocyte(Rodinia)
BFS(SHOC)

StreamCluster(Rodinia)
Histo(Parboil)

BplusTree(Rodinia)
Stencil(Parboil)

SAD(Parboil)
Sort(SHOC)

Fig. 8: Diversity analysis for all benchmark suites put together to identify opportunities for expansion.

[21] L. Luo, M. Wong, and W.-m. Hwu, “An effective gpu implementation
of breadth-first search,” in Proceedings of the 47th Design Automation
Conference, DAC ’10, (New York, NY, USA), pp. 52–55, ACM, 2010.

[22] V. Volkov and B. Kazian, “Fitting fft onto the g80 architecture, 2008,”
E63.

[23] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens, “Scan prim-
itives for gpu computing,” in Proceedings of the 22Nd ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH
’07, (Aire-la-Ville, Switzerland, Switzerland), pp. 97–106, Eurograph-
ics Association, 2007.

[24] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting
algorithms for manycore gpus,” in Parallel Distributed Processing,
2009. IPDPS 2009. IEEE International Symposium on, pp. 1–10, May
2009.

[25] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on cuda,” tech. rep., Nvidia Technical Report NVR-2008-004, Nvidia
Corporation, 2008.

[26] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F.
Lucas, R. Rabenseifner, and D. Takahashi, “The hpc challenge (hpcc)
benchmark suite,” in Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, SC ’06, (New York, NY, USA), ACM, 2006.

[27] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen, “Direct
numerical simulation of turbulent combustion: fundamental insights
towards predictive models,” Journal of Physics: Conference Series,
vol. 16, no. 1, p. 65, 2005.

[28] J. Fix, A. Wilkes, and K. Skadron, “Accelerating braided b+ tree
searches on a gpu with cuda,” in 2nd Workshop on Applications
for Multi and Many Core Processors: Analysis, Implementation, and
Performance (A4MMC), in conjunction with ISCA, 2011.

[29] A. Corrigan, F. F. Camelli, R. Lhner, and J. Wallin, “Running
unstructured grid-based cfd solvers on modern graphics hardware,”

International Journal for Numerical Methods in Fluids, vol. 66, no. 2,
pp. 221–229, 2011.

[30] L. G. Szafaryn, K. Skadron, and J. J. Saucerman, “Experiences
accelerating matlab systems biology applications,” in Proceedings of
the Workshop on Biomedicine in Computing: Systems, Architectures,
and Circuits, pp. 1–4, Citeseer, 2009.

[31] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron,
and M. Stan, “Hotspot: a compact thermal modeling methodology for
early-stage vlsi design,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 14, pp. 501–513, May 2006.

[32] L. G. Szafaryn, T. Gamblin, B. R. De Supinski, and K. Skadron, “Expe-
riences with achieving portability across heterogeneous architectures,”
Proceedings of WOLFHPC, in Conjunction with ICS, Tucson, 2011.

[33] M. Boyer, D. Tarjan, S. T. Acton, and K. Skadron, “Accelerating
leukocyte tracking using cuda: A case study in leveraging manycore
coprocessors,” in Proceedings of the 2009 IEEE International Sym-
posium on Parallel&Distributed Processing, IPDPS ’09, (Washington,
DC, USA), pp. 1–12, IEEE Computer Society, 2009.

[34] L. G. Szafaryn, K. Skadron, and J. J. Saucerman, “Experiences
accelerating matlab systems biology applications,” in Proceedings of
the Workshop on Biomedicine in Computing: Systems, Architectures,
and Circuits, pp. 1–4, Citeseer, 2009.

[35] M. A. Goodrum, M. J. Trotter, A. Aksel, S. T. Acton, and K. Skadron,
“Parallelization of particle filter algorithms,” in Proceedings of the
2010 International Conference on Computer Architecture, ISCA’10,
(Berlin, Heidelberg), pp. 139–149, Springer-Verlag, 2012.

11


	Introduction
	Related Work
	Experimental Setup
	Hardware Platform
	Workloads

	Methodology
	Metrics
	Principal Component Analysis
	Hierarchical Clustering
	Automated Application Subsetting

	Results and Discussion
	SPEC ACCEL
	SHOC, Rodinia, and Parboil Benchmark Suites

	Conclusion
	References

