
The University of Manchester Research

MaxSim: A Simulator Platform for Managed Applications

DOI:
10.1109/ISPASS.2017.7975286

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Rodchenko, A., Kotselidis, C., Nisbet, A., Pop, A., & Luján, M. (2017). MaxSim: A Simulator Platform for Managed
Applications. In IEEE International Symposium on Performance Analysis of Systems and Software - ISPASS 2017
https://doi.org/10.1109/ISPASS.2017.7975286

Published in:
IEEE International Symposium on Performance Analysis of Systems and Software - ISPASS 2017

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1109/ISPASS.2017.7975286
https://research.manchester.ac.uk/en/publications/6a73bee7-b528-4601-80b0-e7cde3ed6acb
https://doi.org/10.1109/ISPASS.2017.7975286

MaxSim: A Simulation Platform for
Managed Applications

Andrey Rodchenko, Christos Kotselidis, Andy Nisbet, Antoniu Pop, and Mikel Luján
School of Computer Science, The University of Manchester, UK

Email: {Andrey.Rodchenko, Christos.Kotselidis, Andy.Nisbet, Antoniu.Pop, Mikel.Lujan}@manchester.ac.uk

Abstract—Managed applications, written in programming lan-
guages such as Java, C# and others, represent a significant
share of workloads in the mobile, desktop, and server domains.
Microarchitectural timing simulation of such workloads is useful
for characterization and performance analysis, of both hardware
and software, as well as for research and development of novel
hardware extensions.

This paper introduces MaxSim, a simulation platform based
on the Maxine VM, the ZSim simulator, and the McPAT modeling
framework. MaxSim is able to simulate fast and accurately
managed workloads running on top of Maxine VM and its
capabilities are showcased with novel simulation techniques for:
1) low-intrusive microarchitectural profiling via pointer tagging
on the x86-64 platforms, 2) modeling of hardware extensions
related, but not limited to, tagged pointers, and 3) modeling of
complex software changes via address-space morphing.

Low-intrusive microarchitectural profiling is achieved by uti-
lizing tagged pointers to collect type- and allocation-site- related
hardware events. Furthermore, MaxSim allows, through a novel
technique called address space morphing, the easy modeling of
complex object layout transformations. Finally, through the co-
designed capabilities of MaxSim, novel hardware extensions can
be implemented and evaluated.

We showcase MaxSim’s capabilities by simulating the whole
set of the DaCapo-9.12-bach benchmarks in less than a day
while performing an up-to-date microarchitectural power and
performance characterization. Furthermore, we demonstrate a
hardware/software co-designed optimization that performs dy-
namic load elimination for array length retrieval achieving up to
14% L1 data cache loads reduction and up to 4% dynamic energy
reduction. MaxSim is available at https://github.com/arodchen/
MaxSim released as free software.

I. INTRODUCTION

Managed Runtime Environments (MRE) have been widely
adopted in a variety of computing domains ranging from mo-
bile phones to enterprise servers. Managed languages, and Java
in particular, have been utilized not only in application and
middleware domains but also in system programming for the
development of research prototypes such as the Maxine Virtual
Machine (VM) [1], Jikes RVM [2], the Singularity operating
system [3], the Graal compiler [4], and the Truffle [5] Abstract
Syntax Tree (AST) interpreter.

The end of single-core scaling [6], [7] makes the achieve-
ment of further energy and performance improvements, solely
by enhancements in Hardware (HW), an extremely chal-
lenging task. A way to address this challenge is to design
domain-specific HW extensions for certain Software (SW)
tasks in general, and for managed workloads in particular.
In order to design HW extensions that address distinctive

features of managed workloads, such as object orientation and
Garbage Collection (GC), a specialized simulation platform is
necessitated to improve research productivity. Such a platform
must enable close integration of a fast and accurate microar-
chitectural simulator and a modern MRE, while providing a
feedback loop between these two components. In this paper
we present MaxSim: a simulation platform targeting managed
applications.

MaxSim, in contrast to previous efforts, allows fast, ac-
curate, and low-intrusive performance analysis of managed
workloads by employing a novel pointer tagging scheme. Fast,
accurate, and low-intrusive performance analysis is typically
performed by utilization of HW counters [8], [9], which has
three main limitations. First, the frequent accesses to HW
counters can introduce performance overheads. Second, the
association of collected events with high-level information
related to managed workloads can be limited [10]. Finally, HW
counters are not always portable between architectures and
may not be complete for arbitrary purposes. Also in MaxSim,
the simulator has an awareness of the VM, so it is able to
distinguish what code is being executed (GC, non-GC) and
what data is being accessed (thread local storage, stack, heap,
code cache, native).

In detail, this paper contributes the following:

• MaxSim – a novel experimental platform for HW/SW
co-design exploration on the basis of the state-of-the-art
Maxine VM, the ZSim microarchitectural simulator [11],
and the McPAT power, area, and timing modeling frame-
work [12].

• A novel pointer tagging scheme in x86-64 archi-
tectures that is based on Dynamic Binary Translation
(DBT) that: 1) allows the fast, accurate, and low-intrusive
fine-grain microarchitectural profiling of managed work-
loads, and 2) enables the implementation of HW/SW
co-designed optimizations, such as hardware-assisted re-
trieval of array lengths encoded in object pointers. In
addition, the collected profiling information can be also
loaded back to the Maxine VM, creating a full feedback
loop between the simulator and the VM.

• A novel address space morphing technique for simu-
lating complex software changes regarding object layout
transformations such as fields expansion, contraction and
reordering.

The techniques, implemented in MaxSim and described in

this paper, are applicable to other simulators and runtime
systems. However, the selection of the state-of-the-art Maxine
VM and ZSim simulator provides a unique combination of
research productivity, accuracy and speed of simulation.

The paper is organized as follows: Section II presents the
background and describes the key components of MaxSim. It
also presents the validation of ZSim on the DaCapo-9.12-bach
benchmarks [13] executed by Maxine. Section III describes
the MaxSim platform and introduces the novel simulation
and optimization techniques. Section IV presents the use
cases of the proposed platform. Finally, Section V presents
the related work, while Section VI summarizes this paper.
The experimental platform presented in this paper is avail-
able at https://github.com/arodchen/MaxSim released under
the GPLv2 free software license.

II. BACKGROUND

This section provides a comparison of the different research
VMs and simulation techniques. It mainly focuses on the
Maxine VM and the ZSim simulator, since they are the two
main components of the introduced MaxSim platform.

A. Research VMs

MREs are complex SW systems typically consisting of a
baseline compiler or an interpreter, an optimizing compiler,
GC algorithms, facilities for thread synchronization, exception
handling, deoptimization, and other functionalities. All the
aforementioned components of a VM have been extensively
studied by the research community. Ideally, a VM should be
designed in such a way to allow the plug-in of different mod-
ules extending its research and optimization capabilities. Un-
fortunately, this is not always feasible since high performance
and high degrees of modularity are two aspects that counteract
each other. In order to achieve high performance, VMs are
optimized across the components sacrificing modularity.

To that end, VMs broadly fall into two categories: produc-
tion quality and research VMs. Production quality VMs such
as the HotSpot JVM [14] can achieve high performance at the
expense of limited experimentation capabilities due to the lack
of modularity. On the contrary, research VMs such as the Jikes
RVM [2] and Maxine VM [1], compared in Table I, although
do not reach the performance goals of the HotSpot VM, offer
higher degrees of freedom and enable higher productivity due
to their modular design.

Maxine VM was chosen instead of Jikes RVM for the
following reasons:

1) It supports the widely-adopted x86-64 architecture.
2) It is compatible with the JDK7 Class Libraries and

can run to completion the full set of the DaCapo-9.12-
bach [13], SPECjvm2008 [15], pjbb2005 [16] and other
benchmarks.

3) It supports the Graal [4] optimizing compiler, which
is the next-generation optimizing compiler of HotSpot
JVM.

Research VM ISAs Class Libraries Support of Other
Languages

Jikes RVM PowerPC, Apache Harmony -
IA-32 GNU Classpath

Maxine VM x86-64, JDK 7 + (via Graal
ARMv7 and Truffle)

TABLE I: Research VMs comparison.

4) It supports the Truffle [5] optimizing AST interpreter,
that allows the execution of other languages, apart from
Java, such as JavaScript, R, Ruby, and others.

B. Maxine VM
The main design goals of Maxine VM are modularity and

increased research productivity. Maxine VM consists of a
number of interchangeable modules that are accessed through
module interfaces, which are called schemes. The schemes
describe heap and GC functionalities, object layouts, locking
facilities, and other aspects of VMs.

In order to assess the performance of Maxine VM, we com-
pare it against production-quality VMs. To that end, the Max-
ine VM1 with its two optimizing compilers, C1X and Graal
customized for Maxine2, is compared against the production-
quality HotSpot VM with its two optimizing compilers, C2
(ver. 1.8.0.25) and Graal3. The performance comparison of
four VM-compiler-version triplets on the DaCapo-9.12-
bach benchmarks4 is presented in Figure 1, where perfor-
mance is relative to HotSpot-C2-1.8.0.25. Whiskers
represent 95% confidence intervals. As depicted in Figure 1,
the performance of HotSpot-Graal-21075 is compa-
rable to HotSpot-C2-1.8.0.25, while the performance
of the research-oriented Maxine-Graal-8810.11558
and Maxine-C1X-8810.11558 is 57% and 53% of
HotSpot-C2-1.8.0.25, which is considered to be sat-
isfactory for research purposes [1].

As already mentioned, the Maxine VM has two optimizing
compilers, namely C1X and Graal. Theoretically, if the Maxine
VM is optimized across its modules, its peak performance with
Graal should be on-par with that of the HotSpot VM with
the same compiler. From the performance results presented in
Figure 1 we can see that Maxine-Graal-8810.11558
is around 8% faster than Maxine-C1X-8810.11558 in
geomean. However, since C1X is much less complex than
Graal and has much lower compilation times, C1X has been
selected as the optimizing compiler of MaxSim. Regarding the
baseline compiler, the T1X template compiler of the Maxine
VM has been used in MaxSim.

C. Timing Simulation Techniques
Microarchitectural simulation presents a number of chal-

lenges that define trade-offs between simulation speed, sim-
ulation accuracy, and engineering efforts required to modify

1https://github.com/arodchen/maxine rev.8810
2https://github.com/arodchen/graal rev.11558
3http://hg.openjdk.java.net/graal/graal-compiler rev.21075
4eclipse is not present, as it did not pass on

Maxine-Graal-8810.11558

2

0
25
50
75

100

R
el

at
iv

e
Pe

rf
or

m
an

ce
,% HotSpot-C2-1.8.0.25: HotSpot-Graal-21075: Maxine-Graal-8810.11558: Maxine-C1X-8810.11558:

geomean
avrora

batik fop h2
jython

luindex

lusearch
pmd

sunflo
w

tomcat

tradebeans

tradesoap
xalan

Fig. 1: Performance of different VM-compiler-version triplets relative to HotSpot-C2-1.8.0.25 (higher is better).

0
25
50
75

100
120

R
el

at
iv

e
Pe

rf
or

m
an

ce
,%

geomean
avrora

batik
eclipse fop h2

jython
luindex

lusearch
pmd

sunflo
w

tomcat

tradebeans

tradesoap
xalan

1C-ZSim: 1C-Real: 2C-ZSim: 2C-Real: 4C-ZSim: 4C-Real: out of scale:

(out of sc
ale)

(value)

(1
53

) (2
50

)

(3
70

)

Fig. 2: Validation of different simulated HW configurations *-ZSim against real system configurations *-Real.
The depicted performances are relative to 4C-Real (higher is better).

or implement new HW timing models. FPGA-based simula-
tors [17], [18], [19], [20] are the fastest, but their implemen-
tation or extension requires substantial engineering efforts.

SW-based simulators are easier to maintain than the FPGA-
based ones, since they do not require special HW. SW-based
simulators can be subdivided into two groups: full-system
and user-level. The state-of-the-art open-source full-system
simulators [21], [22] are more complex and, typically, slower
(higher simulation times) than user-level ones. The benefit of
using a full-system simulation is the extra accuracy achieved
since more components of the computing stack are simulated.
However, for workloads5 that spend the vast majority of their
time in user-level code, this is not the case.

The user-level SW-based simulators, such as [23], [24],
[11], provide the best research trade-offs in terms of accuracy,
simulation speed, and engineering effort sacrificing the ability
to simulate the kernel code. From the currently available
user-level simulators, only ZSim [11] allows the execution
of arbitrary managed workloads via lightweight user-level
virtualization. For that reason, ZSim was the simulator of
choice for MaxSim.

D. ZSim Simulator

ZSim is an execution-driven simulator based on the Pin [25]
dynamic binary instrumentation and modification tool. One
of the design goals of this simulator is scalability, which
is achieved via the “bound-weave” simulation parallelization
technique. With minor modifications to its user-level virtu-
alization and scheduling techniques6, ZSim was capable of
simulating the full set of the DaCapo benchmarks executed
by the Maxine VM with the C1X optimizing compiler. The
parameters of the simulated systems referenced in this paper

5The DaCapo benchmarks with the exception of avrora are such an
example.

6https://github.com/arodchen/zsim rev.102

Name 1C 2C 4C 1CQ

Cores
type x86-64 Nehalem OOO core at 2.66 GHz
total 4 1
enabled 1 2 4 1

Prefetchers disabled
L1I Caches 32KB, 4-way, LRU, 3-cycle latency
L1D Caches 32KB, 8-way, LRU, 4-cycle latency
L2 Caches 256KB, 8-way, LRU, 6-cycle latency

L3 Cache type 16-way, hashed, 30-cycle latency
size 8MB 2MB

Memory Controller 1, 3 DDR3 channels, 47-cycle latency
DRAM 3GB, DDR3-1066, 1GB DIMM per channel

TABLE II: ZSim configurations.

are described in Table II. The configurations 1C, 2C, and 4C
represent the Intel Nehalem microarchitecture with 1, 2, and
4 enabled cores respectively. Furthermore, 1CQ represents the
1-core CPU with just a Quarter of the 8MB Last Level Cache
(LLC). We use that configuration in order to simulate the case
when only a quarter of the available 4C resources is available
to the workload (if the LLC could be partitioned).

We validated ZSim against a real system with the re-
sults presented in Figure 2. The performance of the simu-
lated models 1C-ZSim, 2C-ZSim, 4C-ZSim is validated
against the performance of the real systems 1C-Real,
2C-Real, 4C-Real respectively, where Real represents an
Intel Core i7 920 (Bloomfiled) CPU based on the Nehalem
microarchitecture. The performance shown is relative to the
4C-Real configuration. Whiskers represent 95% confidence
intervals. It can be seen that the difference in geomean
execution times between the real platform and the simulated
models is from 8% to 12%, which is in alignment with the
ZSim original validation [11]. Furthermore, the performance
scalability pattern (from 1 core to 4 cores) of the simulated
models is consistent with the real system. However, two major
inconsistencies were observed. Firstly, the execution times of

3

eclipse and tradesoap on the one-core model 1C-ZSim
were more than two times greater than the real system
1C-Real. This is due to the different thread scheduling algo-
rithms used: on the real system a Completely Fair Scheduling
(CFS) [26] scheme is employed while on ZSim a simple
round-robin scheduling is used. Secondly, the avrora test on
the Maxine VM spends more than half of its execution time in
the Linux kernel on *-Real configurations. However, ZSim
is capable of simulating only user-level code, significantly
over-estimating avrora’s performance.

III. MAXSIM: A SIMULATION PLATFORM FOR MANAGED
APPLICATIONS

In this section, we describe, in detail, the novel features
of MaxSim along with its capabilities. These features are: 1)
pointer tagging that can be used for light-weight object-based
microarchitectural profiling and/or HW/SW co-designed opti-
mizations, 2) integration with the McPAT framework for power
and energy estimations, and 3) the address space morphing
technique allowing the easy modeling and performance/power
estimation of complex object layout transformations.

A. Pointer Tagging

A pointer tag is a number of bits of an address which
are ignored during memory access operations. In general,
the main use cases of tagged pointers are: 1) capability-
based addressing [27], [28] and security [29], [30], which
can also require tagged memory, and 2) storage of type
information [31], [32], [33]. The shift from 32-bit to 64-bit
architectures enables 16 exabytes of memory to be address-
able, a number which significantly exceeds the amount of
memory needed for applications targeting these architectures.
This fact motivated the support for tagged pointers in modern
commodity architectures: AArch64 with 8-bit pointer tags [34]
and Sparc M7 with up to 32-bit pointer tags [35].

Although x86-64 architectures do not currently support
tagged pointers [36] (Sect. 3.3.7.1), the virtual addressing is
currently limited to 48 bits7 with the high 16 bits replicating
bit 47. MaxSim exploits these high 16 bits on x86-64 archi-
tectures, to encode extra information that can be interpreted
during simulation for various purposes. The main use case is
the assignment of extra information to an object via its pointer.
This extra information can regard either associations with
high-level language features (Section III-A1) or other metadata
for HW/SW co-designed optimizations (Section III-A2).

Typically, associating extra information with objects poses
a trade-off between extra required memory and access time.
Figure 3 presents three options for the storage of object
metadata. The first option is “in object storage”, where the
metadata is stored inside an object in an intrusive manner
which also increases memory footprint. The second option is
“associative array storage” which requires both extra space and
lookup time to retrieve metadata. To that end, if metadata is
accessed read-mainly and frequently (on every memory access

7In the upcoming version of the architecture, the virtual addressing will be
extended to 57 bits [37].

1: In object storage.

2: Associative array storage.

pointer tag object

pointer tag object

pointer tag
metadata

pointer tag object
3: Pointer tag storage.

Fig. 3: Different options for object metadata storage.

operation) and the amount of metadata to be stored can fit in
16 bits, “pointer tag storage” is preferable which is the third
option. Encoding metadata into the available 16 bits of an
object’s address saves memory bandwidth and reduces access
latency.

To enable tagged pointers support in MaxSim, the following
three invariants must be preserved in Maxine VM:

1) All pointers to the same object must be tagged with the
same tag.

2) When a field inside an object is accessed, [tag:base
+ (index * scale) + disp] addressing mode
must be used, where base points to the beginning of
the object and (index * scale) + disp repre-
sents an offset (later on, this will be referred to as
[tag:base + offset]).

3) An object pointer tag is immutable between any fol-
lowing adjacent points in an object’s lifetime: object
allocation, initialization, and evacuation during GC.

The first invariant allows the comparison of tagged pointers
without extensive VM modifications, while the second invari-
ant allows an accessed object’s class field to be identified
using this canonical form. The third invariant implies that
the pointer tag can only be changed in certain places, where
all pointers to an object to be tagged are accessible without
a full scan of all objects. All live objects are untagged
during a stop-the-world VM operation when switching to the
ZSim fast forwarding mode. During the ZSim fast forwarding
mode, execution happens without simulation and extensive
binary modification/instrumentation at near-native speed until
entering the next Region Of Interest (ROI) for simulation.
Untagged object pointers are tagged back during the stop-the-
world VM operation when entering the next ROI and switching
back from the fast forwarding to the normal simulation mode.

Finally, ZSim simulation is based on the Pin dynamic
binary instrumentation and modification tool, and pointers’ tag
detection and untagging is performed via the API shown in
Figure 4. To summarize, pointer tagging allows to: 1) perform
light-weight object-based microarchitectural profiling and, 2)
perform a number of HW/SW co-designed optimizations by
encoding data in tagged pointers.

1) Light-weight Object-based Microarchitectural Profiling:
Simulation-based profiling, an important technique in perfor-
mance analysis, is one of the key features of MaxSim. In
order to enable this functionality, it is essential to bind mi-

4

// Returns true if instruction operand is a memory reference.
BOOL INS OperandIsMemory(INS ins, UINT32 n);

// Returns base, index, scale, displacement
// (address = base + disp + index ∗ scale).
REG INS OperandMemoryBaseReg(INS ins, UINT32 n);
REG INS OperandMemoryIndexReg(INS ins, UINT32 n);
UINT32 INS OperandMemoryScale(INS ins, UINT32 n);
INT64 INS OperandMemoryDisplacement(INS ins, UINT32 n);

// Rewrites memory operand to reference the virtual
// memory location contained in the given register.
VOID INS RewriteMemoryOperand(INS ins, UINT32 memIndex,

REG reg);

Fig. 4: Pin API for tag pointers retrieval and untagging.

croarchitectural events with high-level language information.
This binding is achieved via the pointer tagging mechanism
described in the previous section.

The Maxine VM assigns a tag to a pointer, and ZSim
collects events related to this tag during memory ac-
cess operations. MaxSim currently supports several imple-
mentations of language information association with ob-
ject pointers among which are: ClassIdTagging and
AllocationSiteIdTagging. ClassIdTagging as-
signs object class IDs to all object pointers allowing the
association of microarchitectural events per class. A class ID
is a compact unsigned integer representing the class of an
object and is usually stored in the class information object
which is accessible via a pointer stored in an object’s header.
By storing class ID in the pointer tag, we manage to save
two load operations at the expense of untagging and tag
retrieval, which are two and one shift operations, respectively.
AllocationSiteIdTagging assigns allocation site IDs
to object pointers. An allocation site ID is a compact unsigned
integer representing a pair of an allocation site estimation of
an object and a class ID. Allocation site IDs are requested
from ZSim via magic NOP operations [38], which have NOP
semantics during non-simulated execution. On each allocation
site ID request, ZSim returns a compact ID, which is associ-
ated with an allocated object’s class ID and an allocation site
estimation using stack trace estimation in ZSim. Stack trace
estimation is performed using per-thread circular buffers by
pushing return addresses on function calls and popping them
on function returns.

The state-of-the-art techniques to associate allocation sites
with objects usually require either hashing [39] or storage
of extra information in or adjacent to objects [40]. Such
techniques introduce noticeable overheads and interference
with a normal workload execution. In comparison with the
aforementioned techniques, the proposed technique is much
less intrusive, as it takes just a few lightweight operations
during an object allocation to set a tag.

Figure 5 shows the integration scheme of MaxSim and
the flow of profiling information between its components.
The profiling information is stored in the Protocol Buffers

(8 cores)

ZSim (C++) Maxine VM (Java + C)
Pin

OOO Core Model

Profiling
Data

Protocol
Buffers

Code Cache

Heap
p:[tag(16b):base(48b)]
(tagged pointers);

xchg rcx, rcx (magic NOPs);
ld / st [tag:base + offset];

profGen profUse MaxineInfoGen

ZSimProf.db MaxineInfo.db

MaxSim

...
/*
 * Field profile.
 */
message FieldProf {
 required int32 offset = 1;
 required int64 readCount = 2;
 required int64 writeCount = 3;
 repeated int64 cacheMissCount = 4;
}
...

...
/*
 * Field information.
 */
message FieldInfo {
 required string name = 1;
 required int32 classId = 2;
 required int32 offset = 3;
 ...
}
...

Fig. 5: Handling of profiling information in MaxSim.

format [41], and it consists of two parts. The first part,
stored in the ZSimProf.db file, contains microarchitectural
events collected by ZSim. Examples of such events (memory
accesses and cache misses) related to a class field are shown
in Figure 5. The second part, stored in the MaxineInfo.db
file, contains information necessary to bind collected events
to high-level language information. In Figure 5, for example,
field information (name, class ID, offset) is represented. In
case there are several ROIs during the same simulation, several
ZSimProf.db files and a single MaxineInfo.db file will
be generated.

The profiling is performed during memory access opera-
tions, and collected events are associated with triplets of an
instruction pointer, a pointer tag, and a memory address offset.
Allocation site IDs are reported from ZSim to Maxine via
magic NOPs with an allocation site ID stored in the rcx
register by ZSim.

The detailed collected information can later be uploaded to
Maxine VM to guide optimizations, or it can be printed in a
textual format. The snippet of the textual output is presented in
Figure 6. In this example, AllocationSiteIdTagging
was active, and the profiling information is shown for ob-
jects of HashMap$Entry[] class allocated during a call to
HashMap.<init> method at offset 354 (in the constructor
of HashMap). In total, 1 object of 88 bytes and 19 objects of
152 bytes were allocated reaching a total allocation footprint
of 2976 bytes. Furthermore, 983 memory accesses were
performed with 11 L3 cache read misses and 7 L3 cache write
misses. At offset 80, 33 reads and 9 writes were performed
with 9 L3 cache read misses. Finally, all 9 misses at offset
80 occurred at offset 107 of method HashMap.put. The
presented tagged-based profiling scheme is especially useful

5

// Memory access profiling.
java.util.HashMap$Entry[](...)@

[java.util.HashMap.<init>(...)+354(...)]
(asi:0 mf:2976(s:152(19) s:88(1)) ac:983 ... l3rm:11 l3wm:7):

(o:80 r:33 w:9 ... l3rm:9 l3wm:0)

// L3 cache miss reads profiling.
[java.util.HashMap.put(Object, Object)+107(...)]

(m:9 asi:0 ol:80 oh:80)

Fig. 6: Snippet of profiling information textual output.

for profiling object-oriented SW in which objects can be
relocated (e.g. copying garbage collection), as pointer tags
preserve objects’ identities for profiling.

2) HW/SW Co-designed Optimizations Enabled by Tagged
Pointers: The presence of available bits, when tagged point-
ers are enabled, creates a number of HW/SW co-designed
optimization opportunities. It is possible to encode some
information related to an object in a pointer tag and to
extend functionality of memory access operations via a tag for
performance/power optimizations or security enhancements.
An example of such an optimization is related to array length
encoding in tags and is one of the use-cases of this paper. Its
evaluation is presented in Section IV-B.

B. Integration with the McPAT Framework

To be able to perform energy estimations, we integrated the
energy estimation model (which uses McPAT) from the Sniper
simulator [42] for the same microarchitecture simulated by
ZSim. Conversion of microarchitectural events from the ZSim
to Sniper format was adopted from the ZSim-NVMain simula-
tor [43]. The modeling tool required the collection of a number
of extra microarchitectural events in ZSim such as the number
of predicted branches and floating point microoperations.

C. Simulator/VM Co-operative Address Space Morphing

For many managed languages in general, and for Java in
particular, layouts of objects in memory are not specified
and depend on the VM implementation. Changing layouts of
objects can improve cache locality and decrease memory foot-
print. However, such transformations are difficult to implement
without adding extra complexity or breaking the modularity of
a VM. MaxSim implements a novel address space morphing
technique to perform simulation of complex object layout
transformations, specifically fields expansion, contraction, and
reordering.

As shown in Figure 7, the proposed technique is a co-
operative multi-stage object layout transformation. Further-
more, it leverages the flexibility of Maxine VM to expand
object fields and the ability of ZSim to remap memory
addresses during simulation. Thus, in order to perform fields
reordering and contraction by a factor of N, the following
three stages are performed: 1) all fields except from those
to be contracted are expanded by a factor of N by Maxine
VM, 2) ZSim contracts the heap by a factor of N via address

Original Expanded Contracted

ref.0
prim.1

ref.2

prim.1

ref.0

 refo refe=refox1 refc = refe/2 refr = refc

ref - reference, prim - primitive, b - base, o - offset, [] - address

0x00:

0x10:
0x18:
0x20:
0x28:

ref.2
prim.3

ref.0

ref.2

prim.1

prim.3

Object
Layout

Morphing
Stages Reordered

ref.0
im.1

prim.3

pr-
ref.2

Sizes

Fields
Reordering

Map

0x00 → 0x08

0x10 → 0x00
0x18 → 0x10

mo

prim.3

0x08 → 0x18
0x00 → 0x08

0x18 → 0x00
0x20 → 0x10

me

0x08 → 0x20
0x00 → 0x04

0x0C → 0x00
0x10 → 0x08

mc

0x04 → 0x10
0x00 → 0x04

0x0C → 0x00
0x10 → 0x08

mr

0x04 → 0x10

 primo prime=primox2 primc = prime/2 primr = refc

 fe(1,2) fc(2) fr(mc)Bijection

Addressing [bo+oo] [fe(bo)+fe(oo)] [be/2+be/2] [bc+mc(oc)]

0x08:

Fig. 7: Example of address space morphing in MaxSim.

space remapping, and 3) ZSim remaps the offsets of the fields
according to the provided reordering map.

In the example of Figure 7, the original object layout has
two reference fields, ref.0 and ref.2, and two primitive
fields, prim.1 and prim.3 (the leftmost object layout).
During simulation, it is morphed in three stages to the new
layout (the rightmost object layout) which results in its fields
being reordered, as described by the mo reordering map,
and its references being contracted by a factor of 2. In
order to perform such transformations, four parameters to
three bijections are provided. The first bijection fe from the
Original to the Expanded space takes two arguments:
1 - expansion factor for references, 2 - expansion factor
for primitives. The transformation defined by this bijection
is performed via changing layouts of objects in Maxine VM.
The fields reordering map mo is also modified according to
this bijection. The second bijection fc from the Expanded
to the Contracted space takes the contraction factor as
its argument. This transformation is performed in ZSim by
dividing by 2 bases and offsets of memory access operations to
objects. Furthermore, the fields reordering map me is modified
by dividing by 2 all to-offsets. The third bijection fr from the
Contracted to the Reordered space takes the reordering
map mc from the Contracted stage and performs fields
reordering according to this map resulting in the simulation
of the desired layout. Heap and thread-local allocation buffer
sizes are also doubled in Maxine VM on the Expanded stage.

Another issue that should be considered during simula-
tor/VM co-operative address space morphing is expanded
objects copying and initialization. After expanding primitives
twice in Maxine VM, it will take twice as many dynamic
instructions to perform copying or initialization than it would
take in the case of the final layout presented in the example.
This issue is handled via filtering during simulation of execu-
tion of object copying and initialization which happens in a
loop. In this loop, every second iteration is omitted from the
timing simulation. The indication that loop filtering should be

6

static void setWords(Pointer p, int numWords, Word val) {
// loop prologue
zsimMagicOp(FILTER LOOP BEGIN, p);
for (int i = 0; i < numWords; i++) {

p.writeWord(i ∗ WORD SIZE, val);
}
// loop epilogue
zsimMagicOp(FILER LOOP END);
}

Fig. 8: Example of loop iterations filtering.

enabled or disabled is performed by the VM via magic NOP
operation in the loop’s prologue and epilogue respectively.
An example of such loop, with filtered iterations, is shown
in Figure 8.

In order to validate our proposed address space mor-
phing simulation technique, the following experiment was
performed. Both references and primitives of heap objects
were expanded twice in the Maxine VM via the bijection
fe(2,2). During simulation in ZSim, memory accesses to
expanded fields are projected back to original unexpanded
address space (by contracting twice) via the bijection fc(2),
thus simulating the original object layout8. The execution
times were compared to the simulation of the original object
layout, and the measured execution time geomean difference
was less than 1% for the DaCapo benchmarks validating the
proposed technique.

The simulation of objects’ fields reordering transformation
via address space morphing is driven by a configuration
file passed to MaxSim in the Protocol Buffers format, pre-
sented in Figure 9. Fields reordering is described by the
typeDesc of the type to be simulated having a different
layout. The objects to be simulated as having an alternative
layout are tagged by a transTag. On memory accesses
to objects tagged by a transTag, address remapping is
done during simulation by using an associative array rep-
resented by fieldOffsetRemapPairs, replacing match-
ing fromOffset by toOffset during simulation. This
technique allows fast experimentation with various objects
layouts. It also allows to have different layouts of objects of
a superclass and its subclasses so that the same field can have
different offsets in them.

Expansion and contraction of references and primitives
via address space morphing allow simulating ordinary object
pointers compression [44] in MaxSim. An example of another
transformation which could be implemented and simulated via
the presented technique is a replacement of precisions and
sizes of certain fields to different ones (long to int or double
to float). To summarize, address space morphing allows to
evaluate the performance impact of changing the order and/or
size of fields.

8In this experiment no fields reordering was performed.

// Fields offset remapping pair.
message FieldOffsetRemapPair {

required int32 fromOffset = 1;
required int32 toOffset = 2;

}

// Data transformation information.
message DataTransInfo {

required string typeDesc = 1;
required int32 transTag = 2;
repeated FieldOffsetRemapPair fieldOffsetRemapPairs = 3;
}

Fig. 9: Configuration file in the Protocol Buffer format driving
fields reordering transformation simulation.

IV. USE CASES

This section will present two use cases of MaxSim. The
first one regards the microarchitectural characterization of the
Dacapo benchmarks. The second use-case showcases simula-
tion of the architectural extensions related to the retrieval of
array lengths stored in pointer tags.

A. Characterization of the DaCapo Benchmarks

MaxSim was able to simulate the whole set of the Dacapo-
9.12-bach benchmarks in less than a day, with the results
depicted in Figures 10 and 11. During the characterization
we used two of the configurations of Table II: 1CQ and 4C.
Figure 10 shows the L2 and L3 Load Cache Misses Per
Kilo Instruction (LCMPKI) for both configurations. As shown,
the majority of the Dacapo benchmarks are not cache-miss-
intensive, which corresponds with the previous findings [45].
Figure 11 contains the information on Instructions Per Clock
(IPC) and Consumed Power (CP). The geomean IPC is close
to 1.4, while the CP is between 10 and 60 watts depending on
the configuration. Hatched parts of the bars in Figures 10 and
11 represent parts of the presented metrics related to Garbage
Collection (GC).

B. Evaluation of the HW/SW Co-designed Optimization Re-
lated to Array Length Encoding into Array Object Pointers’
Tags

Implementations of managed languages associate array
lengths with array objects allowing them to perform array
bound checks at runtime. A common way of storing an array
length is inside an array object at some constant offset from a
base pointer. In Maxine VM, array lengths are stored at offset
0x10 of an array object and can be in the range of [0; 231−1].

Having 16-bit pointer tags, it is possible to store a range of
array lengths [0; 216 − 2]. The value 216 − 1 serves as a Not
an Array Length (NaAL) indicator. The retrieval of an array
length can be performed via the method shown in Figure 13.
In our evaluation, this code is emitted in seven instructions
of 25 bytes size with an average execution height of 5.5
instructions. On the contrary, the baseline scheme utilizes just
one instruction of three bytes size.

7

0.0
2.5
5.0
7.5

10.0

0.0
0.5
1.0
1.5
2.0

L
2L

C
M

PK
I

1CQ-L2LCMPKI: 4C-L2LCMPKI: 1CQ-L3LCMPKI: 4C-L3LCMPKI: GC part:

L
3L

C
M

PK
I

geomean
avrora

batik
eclipse fop h2

jython
luindex

lusearch
pmd

sunflo
w

tomcat

tradebeans

tradesoap
xalan

Fig. 10: L2 and L3 Load Cache Misses Per Kilo Instruction (LCMPKI) on the DaCapo-9.12-bach benchmarks on MaxSim.

0.0

0.5

1.0

1.5

2.0

0

15

30

45

60

IP
C

1CQ-IPC: 4C-IPC: 1CQ-CP: 4C-CP: GC part:

C
P,

 W

geomean
avrora

batik
eclipse fop h2

jython
luindex

lusearch
pmd

sunflo
w

tomcat

tradebeans

tradesoap
xalan

Fig. 11: Instructions Per Clock (IPC) and Consumed Power (CP) on the DaCapo-9.12-bach benchmarks on MaxSim.

0
3
6
9

12

0
1
2
3
4

L
1D

C
L

R
ed

uc
tio

n,
 %

1CQ-L1DCL Red.: 4C-L1DCL Red.: 1CQ-DE Red.: 4C-DE Red.:

D
E

 R
ed

uc
tio

n,
 %

geomean
avrora

batik
eclipse fop h2

jython
luindex

lusearch
pmd

sunflo
w

tomcat

tradebeans

tradesoap
xalan

Fig. 12: L1 Data Cache Loads (L1DCL) and Dynamic Energy (DE) Reductions on the DaCapo-9.12-bach benchmarks after
employing the HW/SW co-designed optimization related to array length tagging.

// Retrieving array length.
int retrieveArrayLength(Address t objectAddress) {

TAG t tag = extractTAG(objectAddress);
if (tag != NaAL) {

return (int) tag;
}
return ∗ (int ∗) (objectAddress + 0x10));
}

Fig. 13: Array length retrieval with tagged pointers.

In order to perform the whole code snippet in just one
instruction, corresponding to the last return statement in Fig-
ure 13, we propose the HW extension shown in Figure 14.
The presented HW extension relies on the invariant, preserved
by the VM, that the array length field of an array object
is always accessed via a [tag:base+offset] addressing
mode. Furthermore, the ArrayLengthTagging scheme
has to be enabled. In this scheme, all non-array objects and
arrays with lengths greater than 216 − 2 are tagged with the
NaAL tag, while all the other array objects are tagged with
their lengths. Thus, when an array length is accessed, the
aforementioned tagged address pattern can be identified by
the Address Generation Unit (AGU) in the proposed HW
extension. Upon detecting an access to an array length field,

Base

Offset

AGU

!= NaAL
&

== 0x10
isAL

tagBits

1

1

1

addressBits

offBits

AL addressBits

AGU-LSU
Extensions

AL

Part
of
LSU

Data
Bus

dataBits

Loaded
Value32

32 M
U
L
T
I
P
L
E
X
E
R

32
0x0

Fig. 14: Extensions to Address Generation Unit (AGU) and
Load Store Unit (LSU) for array length retrieval from tagged
pointers.

which is also encoded in a pointer tag, the isAL signal is set.
Consequently, the value AL from the tag bypasses the Load-
Store Unit (LSU) on its way to a consumer.

The values of the matching offset (0x10) and the matching
tag (NaAL) for the presented AGU extension can be fixed or
variable. In the latter case, these values can be set via a control
register, making this scheme more general. If an array length

8

is loaded from a pointer tag then we assume one cycle latency,
which we model in the ZSim simulator.

We evaluate the proposed HW/SW co-designed optimization
on the DaCapo-9.12-bach benchmarks on the 1CQ and 4C
ZSim models of Table II. Figure 12 presents the results for
L1 Data Cache Loads (L1DCL) and Dynamic Energy (DE)
reductions. Although no significant performance gains were
observed, the proposed technique resulted in up to 4% and
2% geomean dynamic energy reduction, and up to 14% and
7% geomean L1 data cache loads reduction.

V. RELATED WORK

The closest platform [46] allowing user-level simulation
of managed workloads is based on the Sniper multicore
simulator [23] and the Jikes RVM [2]. The main limitation
of this platform against MaxSim, is that it only supports 32-
bit Jikes RVM and is not capable of running the full set
of the DaCapo benchmarks. Regarding the simulator, Sniper
uses the instruction-window centric Out-Of-Order (OOO) core
model [47] with an average relative error of 11% for single-
core and 21% for eight-core simulations on the SPLASH-2
benchmarks [48]. It is very close to ZSim’s average relative
error, which on a selection of tests from PARSEC [49],
SPLASH-2, and SPEC OMP2001 [50] is 10% for single-core
and 11% for six-core simulations. The tandem of Sniper and
Jikes was used to explore a number of HW/SW co-designed
techniques. These techniques improve memory bandwidth and
reduce power and energy consumption by preventing write
backs of cache lines containing parts of dead objects and
by preventing fetches-on-writes while initializing cache lines
containing parts of newly allocated objects with zeros [51].

The platform described in [52] is based on the Hotspot JVM
and the full-system Simics simulator [53]. It does not require
any changes to the Hotspot JVM and it can be very helpful
in non-disruptive simulation-based performance analysis. It
has high visibility of the Java high-level information (with
the exception of thread and stack state). The design goal of
that platform was to decouple it as much as possible from
the concrete JVM implementation via a clear interface. Our
platform, on the contrary, followed the co-design approach
of the VM and the simulator development to facilitate extra
functionality.

The ZSim simulator is written in C++, and communication
of high-level information with the Maxine VM happens via
Protocol Buffers. If the simulator was written in Java, the com-
munication between the two components could have happened
via reflection. The simulator called Tejas [54] is written in
Java and can run on any platform the Java VM can execute.
However, it has two limitations: firstly, it is a trace-driven
simulator, and secondly, it uses an intermediate virtual ISA,
which can introduce inaccuracy.

The Virtual Performance Analyzer (VPA) framework [55]
follows the approach of partial selective simulation of HW-
SW interaction and uses a cycle-approximate model. The
motivation of this approach is the observation that I/O opera-
tions are sensitive to delays, and a simulation speed above

10 MIPS should be preserved not to alter the behavior of
the program. The ZSim simulator solves this problem via the
lightweight user-level virtualization technique, achieving for
the OOO model an average simulation speed of 12 MIPS (in
our experiments).

Introspection of target agnostic JIT compilation in the
Smalltalk VM on top of gem5 [56] was shown to be useful for
debugging and power/performance analysis. However, gem5
has a low simulation speed of 200 KIPS. Moreover, with
Graal [4] and Truffle [5] it could be possible to run Smalltalk
and other managed languages on the presented platform in
future.

VI. CONCLUSION

In this paper, we have presented MaxSim: a novel and open-
source experimental platform for HW/SW co-design research
and characterization of managed workloads. MaxSim is based
on the state-of-the-art Maxine VM, the ZSim microarchi-
tectural simulator, and the McPAT power, area, and timing
modeling framework. MaxSim features the simulation of 16-
bit-tagged pointers, which were utilized for: 1) low-intrusive
memory access profiling, 2) tagged pointers modeling on x86-
64 architectures, and 3) experimenting with novel HW/SW
co-designed optimizations by extending semantics of memory
access operations via pointer tagging. In addition, the address-
space morphing technique was presented, which allows mod-
eling and simulation of complex software changes, such as
compressed object pointers optimization and other data layout
transformations. We showcased MaxSim’s capabilities by: 1)
performing an up-to-date microarchitectural characterization
of the full set of the Dacapo benchmarks in less than a day, and
2) presenting a novel HW/SW co-designed optimization that
performs dynamic load elimination for array length retrieval
achieving up to 14% L1 data cache loads reduction and up
to 4% dynamic energy reduction. MaxSim is available at
https://github.com/arodchen/MaxSim released as free software.

ACKNOWLEDGEMENTS

This work is partially supported by EPSRC grants PAMELA
EP/K008730/1, DOME EP/J016330/1, and EU Horizon 2020
ACTiCLOUD 732366 grant. A. Rodchenko is funded by a
Microsoft Research PhD Scholarship, A. Pop is funded by
a Royal Academy of Engineering Research Fellowship, and
M. Luján is funded by a Royal Society University Research
Fellowship.

REFERENCES

[1] C. Wimmer, M. Haupt, M. L. Van De Vanter, M. Jordan, L. Daynès,
and D. Simon, “Maxine: An approachable virtual machine for, and
in, Java,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 9, no. 4, pp. 30:1–20:24, Jan. 2013.

[2] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.
Barton, S. F. Hummel, J. C. Sheperd, and M. Mergen, “Implementing
Jalapeño in Java,” in Proceedings of the 14th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA), 1999, pp. 314–324.

[3] J. Larus and G. Hunt, “The Singularity system,” Communications of the
ACM, vol. 53, no. 8, pp. 72–79, Aug. 2010.

9

[4] “OpenJDK: Graal project,” http://openjdk.java.net/projects/graal/, 2016,
[Online; last accessed 10-Mar-2017].

[5] C. Wimmer and T. Würthinger, “Truffle: A self-optimizing runtime
system,” in Proceedings of the 3rd Annual Conference on Systems,
Programming, and Applications: Software for Humanity (SPLASH),
2012, pp. 13–14.

[6] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, pp. 114–117, April 1965.

[7] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “De-
sign of ion-implanted MOSFET’s with very small physical dimensions,”
IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, Oct
1974.

[8] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove,
and M. Hind, “Using hardware performance monitors to understand the
behavior of Java applications,” in Proceedings of the 3rd Conference on
Virtual Machine Research And Technology Symposium, 2004, p. 5.

[9] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical
profiling: Understanding the behavior of object-oriented applications,”
in Proceedings of the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2004, pp. 251–269.

[10] A. Georges, D. Buytaert, L. Eeckhout, and K. De Bosschere, “Method-
level phase behavior in Java workloads,” in Proceedings of the 19th
Annual ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2004, pp. 270–287.

[11] D. Sanchez and C. Kozyrakis, “ZSim: Fast and accurate microarchi-
tectural simulation of thousand-core systems,” in Proceedings of the
40th Annual International Symposium on Computer Architecture (ISCA),
2013, pp. 475–486.

[12] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “The McPAT framework for multicore and manycore
architectures: Simultaneously modeling power, area, and timing,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 10,
no. 1, pp. 5:1–5:29, Apr. 2013.

[13] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The DaCapo benchmarks: Java benchmarking development and anal-
ysis,” in Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications
(OOPSLA), 2006, pp. 169–190.

[14] M. Paleczny, C. Vick, and C. Click, “The Java HotspotTMserver com-
piler,” in Proceedings of the 1st Java Virtual Machine Research and
Technology Symposium, 2001, pp. 1–12.

[15] “SPECjvm2008 benchmarks,” http://www.spec.org/jvm2008, 2008, [On-
line; last accessed 10-Mar-2017].

[16] “pjbb2005,” http://users.cecs.anu.edu.au/∼steveb/research/
research-infrastructure/pjbb2005, 2005, [Online; last accessed 10-
Mar-2017].

[17] M. Pellauer, M. Adler, M. A. Kinsy, A. Parashar, and J. S. Emer,
“HAsim: FPGA-based high-detail multicore simulation using time-
division multiplexing.” in Proceedings of the 17th IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2011,
pp. 406–417.

[18] A. Khan, M. Vijayaraghavan, S. Boyd-Wickizer, and Arvind, “Fast and
cycle-accurate modeling of a multicore processor,” in Proceedings of
the 2012 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2012, pp. 178–187.

[19] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat, “FPGA-accelerated simulation technologies
(FAST): Fast, full-system, cycle-accurate simulators,” in Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), 2007, pp. 249–261.

[20] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe, K. Mai,
and B. Falsafi, “ProtoFlex: Towards scalable, full-system multiproces-
sor simulations using FPGAs,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 2, no. 2, pp. 15:1–15:32, Jun.
2009.

[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.

[22] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSS: A full system
simulator for multicore x86 CPUs,” in Proceedings of the 48th Design
Automation Conference (DAC), 2011, pp. 1050–1055.

[23] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2011, pp. 52:1–
52:12.

[24] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A distributed parallel
simulator for multicores,” in Proceedings of the 16th IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2010,
pp. 1–12.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2005, pp. 190–200.

[26] “CFS scheduler,” https://www.kernel.org/doc/Documentation/scheduler/
sched-design-CFS.txt, 2014, [Online; last accessed 10-Mar-2017].

[27] R. S. Fabry, “Capability-based addressing,” Communications of the
ACM, vol. 17, no. 7, pp. 403–412, Jul. 1974.

[28] H. M. Levy, Capability-Based Computer Systems, 1984. [Online].
Available: http://homes.cs.washington.edu/∼levy/capabook/

[29] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible infor-
mation flow architecture for software security,” in Proceedings of the
34th Annual International Symposium on Computer Architecture (ISCA),
2007, pp. 482–493.

[30] J. R. Crandall and F. T. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” in Proceedings of the 37th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2004, pp. 221–232.

[31] E. I. Organick, Computer System Organization: The B5700/B6700 Series
(ACM Monograph Series). Academic Press, Inc., 1973.

[32] B. Babayan, “E2K technology and implementation,” in Proceedings from
the 6th International Euro-Par Conference on Parallel Processing (Euro-
Par), 2000, pp. 18–21.

[33] M. E. Houdek, F. G. Soltis, and R. L. Hoffman, “IBM System/38 support
for capability-based addressing,” in Proceedings of the 8th Annual
Symposium on Computer Architecture (ISCA), 1981, pp. 341–348.

[34] “ARM Cortex-A series programmer’s guide for ARMv8-
A,” http://infocenter.arm.com/help/topic/com.arm.doc.den0024a/
DEN0024A v8 architecture PG.pdf, 2015, [Online; last accessed
10-Mar-2017].

[35] K. Aingaran, S. Jairath, G. Konstadinidis, S. Leung, P. Loewenstein,
C. McAllister, S. Phillips, Z. Radovic, R. Sivaramakrishnan, D. Smentek,
and T. Wicki, “M7: Oracle’s next-generation Sparc processor,” IEEE
Micro, vol. 35, no. 2, pp. 36–45, Mar 2015.

[36] “Intel 64 and IA-32 architectures software developers manual. vol-
ume 1: Basic architecture,” http://download.intel.com/design/processor/
manuals/253665.pdf, 2011, [Online; last accessed 10-Mar-2017].

[37] “5-level paging and 5-level EPT white paper,” https://software.intel.
com/sites/default/files/managed/2b/80/5-level paging white paper.pdf,
2016, [Online; last accessed 10-Mar-2017].

[38] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood, “Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” ACM SIGARCH Computer Architecture News, vol. 33,
no. 4, pp. 92–99, Nov. 2005.

[39] R. Odaira, K. Ogata, K. Kawachiya, T. Onodera, and T. Nakatani,
“Efficient runtime tracking of allocation sites in Java,” in Proceedings
of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE), 2010, pp. 109–120.

[40] D. Clifford, H. Payer, M. Stanton, and B. L. Titzer, “Memento mori:
Dynamic allocation-site-based optimizations,” in Proceedings of the
2015 International Symposium on Memory Management (ISMM), 2015,
pp. 105–117.

[41] “Protocol Buffers - Google’s data interchange format (ver. 2.6.1),” https:
//developers.google.com/protocol-buffers/, 2014, [Online; last accessed
10-Mar-2017].

[42] W. Heirman, S. Sarkar, T. E. Carlson, I. Hur, and L. Eeckhout, “Power-
aware multi-core simulation for early design stage hardware/software
co-optimization,” in Proceedings of the 21st International Conference

10

on Parallel Architectures and Compilation Techniques (PACT), 2012,
pp. 3–12.

[43] A. Armejach, A. Cristal, and O. S. Unsal, “Tidy cache: Improving
data placement in die-stacked DRAM caches,” in Proceedings of the
2015 27th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), 2015, pp. 65–73.

[44] A. R. Adl-Tabatabai, J. Bharadwaj, M. Cierniak, M. Eng, J. Fang, B. T.
Lewis, B. R. Murphy, and J. M. Stichnoth, “Improving 64-bit Java IPF
performance by compressing heap references,” in Proceedings of the
International Symposium on Code Generation and Optimization (CGO),
2004, pp. 100–110.

[45] H. Inoue and T. Nakatani, “Identifying the sources of cache misses in
Java programs without relying on hardware counters,” in Proceedings
of the 2012 International Symposium on Memory Management (ISMM),
2012, pp. 133–142.

[46] “Jikes–Sniper page in Sniper online documentation,” http://snipersim.
org/w/Jikes, 2014, [Online; last accessed 10-Mar-2017].

[47] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 3, pp. 28:1–
28:25, Aug. 2014.

[48] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proceedings of the 22nd Annual International Symposium on
Computer Architecture (ISCA), 1995, pp. 24–36.

[49] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and

Compilation Techniques (PACT), 2008, pp. 72–81.
[50] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and

B. Parady, “SPEComp: A new benchmark suite for measuring parallel
computer performance,” in Proceedings of the International Workshop
on OpenMP Applications and Tools: OpenMP Shared Memory Parallel
Programming (WOMPAT), 2001, pp. 1–10.

[51] J. B. Sartor, W. Heirman, S. M. Blackburn, L. Eeckhout, and K. S.
McKinley, “Cooperative cache scrubbing,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation
(PACT), 2014, pp. 15–26.

[52] G. Wright, P. McGachey, E. Gunadi, and M. Wolczko, “Introspection of
a JavaTMvirtual machine under simulation,” Tech. Rep., 2006.

[53] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[54] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter,
“Tejas: A java based versatile micro-architectural simulator,” in 25th
International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), Sept 2015, pp. 47–54.

[55] C.-H. Tu, H.-H. Hsu, J.-H. Chen, C.-H. Chen, and S.-H. Hung, “Per-
formance and power profiling for emulated Android systems,” ACM
Transactions on Design Automation of Electronic Systems, vol. 19, no. 2,
pp. 10:1–10:25, Mar. 2014.

[56] B. Shingarov, “Live introspection of target-agnostic JIT in simulation,”
in Proceedings of the International Workshop on Smalltalk Technologies
(IWST), 2015, pp. 5:1–5:9.

11

