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Abstract—Dynamic instruction mixes form an important part 

of the toolkits of performance tuners, compiler writers, and 

CPU architects. Instruction mixes are traditionally generated 

using software instrumentation, an accurate yet slow method, 

that is normally limited to user-mode code. 

We present a new method for generating instruction mixes 

using the Performance Monitoring Unit (PMU) of the CPU. It 

has very low overhead, extends coverage to kernel-mode 

execution, and causes only a very modest decrease in accuracy, 

compared to software instrumentation.  

In order to achieve this level of accuracy, we develop a new 

PMU-based data collection method, Hybrid Basic Block 

Profiling (HBBP). HBBP uses simple machine learning 

techniques to choose, on a per basic block basis, between data 

from two conventional sampling methods, Event Based 

Sampling (EBS) and Last Branch Records (LBR).  

We implement a profiling tool based on HBBP, and we 

report on experiments with the industry standard SPEC 

CPU2006 suite, as well as with two large-scale scientific codes. 

We observe an improvement in runtime compared to software 

instrumentation of up to 76x on the tested benchmarks, 

reducing wait times from hours to minutes. Instruction 

attribution errors average 2.1%.  

The results indicate that HBBP provides a favorable 

tradeoff between accuracy and speed, making it a suitable 

candidate for use in production environments. 

I. INTRODUCTION 

An instruction mix [1] is a histogram of the frequency of 

execution of instructions for a given architecture and 

workload. It can be presented at the granularity of functions, 

modules or the entire program. Instruction mixes are 

frequently used by application tuners, compiler writers and 

CPU architects to study code performance and the 

interaction between the hardware, the compiler, the 

operating system and the application. We focus on dynamic 

instruction mixes, generated at runtime, as opposed to 

generated by static analysis.  

An instruction mix is easily obtained from a basic block 

execution count (BBEC). If we know how many times a 

basic block is executed, we also know exactly how many 

times each instruction within it is executed. We can 

subsequently combine BBECs with disassembly information 

to produce an instruction mix or more detailed insights 

related to specific instructions.  

The conventional approach to obtain such a BBEC is by 

means of software instrumentation. This approach is very 

accurate, but it is normally limited to user-mode execution, 

and the data collection overhead and the resulting increase 

in runtime quickly become prohibitive, especially for long-

running programs. 

We present Hybrid Basic Block Profiling (HBBP), a 

new, non-invasive approach for generating instruction 

mixes. HBBP relies on information obtained from the 

CPU’s Performance Monitoring Unit (PMU [2]), and thus 

does not require any modification or instrumentation of the 

program or the operating system. Furthermore, its runtime 

(collection) overhead is negligibly small. We demonstrate, 

however, that straightforward methods for collecting PMU 

data related to BBECs, namely Event Based Sampling 

(EBS) and Last Branch Records (LBR), introduce 

significant inaccuracies.  

HBBP uses simple machine learning techniques to 

choose (at analysis time), on a per-basic-block basis, the 

most accurate form of data collection. The result is 

significantly improved accuracy, close to that of software 

instrumentation. As such, HBBP approaches the best of both 

worlds, the speed of PMU-based data collection and the 

accuracy of software instrumentation.  

We incorporate HBBP into a new tool for instruction 

mix generation. The tool is composed of two main 

components: a collector that computes BBECs, and an 

analyzer that combines the BBECs with static information 

to produce instruction mixes.  

This paper makes the following contributions: 

 HBBP - a new and practical approach to procure 

instruction mixes, without program modification, 

with good accuracy, with negligible runtime 

overhead and applicable to kernel-mode code. 

 A tool that incorporates HBBP, and allows the 

generation of instruction mixes for arbitrary 

programs on standard Linux environments. 

 An experimental evaluation of the said approach, 

which demonstrates near real time performance 

and an up to 76x speedup over software 

instrumentation, with an average weighted error of 

2.1%. The evaluation is performed on SPEC 



 

CPU2006 workloads and on benchmarks 

representing large-scale scientific code. 

The rest of this paper is structured as follows. In Section 

II we present our motivation. Section III describes the 

straightforward methods for data collection using PMUs and 

their issues. Section IV presents HBBP. Section V presents 

our tool that incorporates HBBP. Section VI discusses the 

error metrics we use in the evaluation. Section VII presents 

our experimental setup. Section VIII reports our 

experimental results. Section IX covers related work, and 

Section X concludes the paper. 

II. MOTIVATION 

A. The use of instruction mixes 

Architects use instruction mixes during “black box” 

discovery to determine which instructions are the most 

frequently used in their hardware, in order to be able to 

direct their optimization efforts towards the highest potential 

benefits for their customers [3]. 

For compiler writers, instruction mixes offer a high-level 

insight into the behavior and correctness of tools and 

programs. For example, it is much easier to discover 

whether large-scale code vectorizes well using an 

instruction mix rather than poring through cumbersome 

compiler reports. An instruction mix can also help 

determine whether the correct, optimized versions of library 

functions are being used at runtime. Finally, large amounts 

of long-latency instructions executed at runtime (e.g., 

divisions) can easily be discovered and fixed. In such cases, 

instruction mixes are frequently re-generated, as 

optimization efforts progress, possibly for various input data 

and code paths. 

For compiler writers and users alike, BBEC-sourced 

instruction mixes enable automated compiler optimization 

(PGO or AutoFDO [4]). 

Methods used for tuning with performance counters, 

such as those based on cycle accounting (e.g., TopDown [5] 

in Intel’s VTune or Hierarchical Cycle Accounting [6] [7]), 

or those used for fine-grained power consumption 

estimations [8], do not provide a good account of the 

instructions that a CPU executes. Software developers and 

tuners are likely to turn to instruction mixes in such cases. 

One direct use is support for vectorization work, especially 

assessing possibilities and evaluating outcomes. For 

example, knowledge about the location and type of 

vectorization instructions already in use in the program 

allows locating hotspot candidates for porting from SSE to 

AVX to AVX2 to AVX512. Another possible use is loop 

optimization – instruction mixes can reveal not only 

estimated trip counts but also loop composition and 

architectural efficiency, or even approximate FLOP rates. 

Yet another use, of particular importance today, is the study 

of workloads on accelerators [9]. For example, the Intel 

Xeon Phi lacks hardware double precision support for some 

important instructions used in scientific code, e.g., 

transcendentals. With an instruction mix, it is possible to 

foresee potential problems by finding hotspots of specific 

instructions. 

B. Obtaining an instruction mix today 

Quickly obtaining an accurate instruction mix is 

currently a difficult undertaking. Two main groups of 

methods exist: software instrumentation and performance 

monitoring with hardware support.  

In the case of instrumentation, software probes are 

injected into the workload under test, typically on basic 

block boundaries. This enables the gathering of precise 

information [10] at the expense of an increase in runtime. 

This cost varies with the workload and the efficiency of the 

monitoring tool. It can easily extend the runtime by a factor 

of 2-10x, and even 70x in extreme cases, as shown in 

column (2) of Table 1. Such an increase in collection speed 

can become an optimization showstopper, e.g., for scientific 

codes, that need continuous iterative improvement, but 

where a single run is indivisible and can last many hours. 

Extracting representative, agile benchmarks from such 

codes in a reasonable amount of time is often difficult or 

impossible. Even when it can be done, changes to the main 

code branch – often actively developed by hundreds or 

thousands of developers – do not propagate to the 

benchmark. A second major problem with instrumentation 

methods is that they change the binary code (and thus the 

execution path) of the workload. Third, existing tools take 

even longer when following execution forks or working 

with multi-threaded programs. Fourth, detailed software 

instrumentation methods cannot monitor kernel code, or 

other code running in Ring 0 on x86 or System mode on 

ARM. Thus, any kernel routines triggered by the code under 

test remain invisible when using standard software 

instrumentation. 

In the case of hardware-assisted performance 

monitoring, the PMU provides information about the 

instructions executed. This information is typically less 

accurate than that provided by software instrumentation 

[11]. While methods using the PMU produce occasional 

interrupts to gather performance data at runtime, they do not 

disturb the execution, and the runtime cost is usually 

Table 1: A comparison of wall clock runtimes in [s] of select 
benchmarks: clean (1), using software instrumentation with SDE (2) 

Benchmark (1) Clean (2) SDE 

SPEC all 15’897 65’419 

(4.11x) 

SPEC 

povray 

224 2710 

(12.1x) 

SPEC 

omnetpp 

281 2122 

(7.56x) 

All other 

benchmarks 

717 48’725 

(68x) 

Hydro-post 

benchmark 

287 21’959 

(76.6x) 

 



 

miniscule, amounting at most for a few percent of the 

runtime [12][13].  

Some PMUs, such as those in x86 processors, allow the 

direct collection of instruction-specific performance events. 

For example, a PMU counter can be programmed to count 

the number of times a specific computational SSE 

instruction is executed. However, only a very limited set of 

instructions, such as a few SSE instructions or divisions, can 

be monitored in this fashion. The number of such 

instructions is, moreover, on the decline with more recent 

processor families (see Table 2 and [14]), dictated by a 

general trend of reducing PMU complexity. 

In this paper we examine improvements to the scope and 

the accuracy of PMU-based methods. We demonstrate that 

careful use of omnipresent hardware facilities provides 

instruction mixes with satisfactory accuracy for all types of 

instructions and not just a very limited predefined subset. 

III. BASE PMU-BASED METHODS 

A. Event Based Sampling 

A well-known approach to obtain instruction execution 

information is Event Based Sampling (EBS). A PMU 

counter is programmed to count occurrences of a specific 

event until a threshold is reached. This threshold is called 

the Sampling Period. Once the counter overflows, a 

Performance Monitoring Interrupt freezes the running code 

and samples the location of the Instruction Pointer (IP). In 

post-processing, samples are used to build histograms of the 

number of executions of each instruction. In usual use cases, 

EBS collection overhead is minor, under 1% [13]. However, 

as the same study shows, when sampling frequency is 

increased (aiming for improved accuracy, for example), 

overheads grow. The overheads do not necessarily grow 

linearly with the sampling frequency. 

To obtain BBECs, we sample on “instructions retired” 

events. By default, such samples concern only a single 

instruction, appearing at the address of the sampled IP. We 

enhance classic EBS by applying every IP sample to all 

instructions of the enclosing basic block. If the instruction in 

the sample has executed, the whole block, that contains that 

instruction, must have executed as well. To obtain proper 

instruction counts, we must then divide the number of 

samples recorded for a basic block by the instruction length 

of that block. In this paper, all further mention of “EBS” 

refers to EBS with this improvement. 

Amongst other inefficiencies, EBS suffers from two 

documented problems [11], [15]. “Skid” causes the reported 

IP to be different from the code location that causes the 

counter overflow. For example, the CPU might be executing 

other instructions concurrently with the one causing the 

overflow. As a result, it may be unable to pin-point exactly 

the source of the overflow. “Shadowing” causes samples to 

disproportionately represent instructions following long-

latency instructions in the execution chain. These issues 

might matter less for large functions, but on smaller 

functions (e.g., fragmented object-oriented code), and as we 

aim for accuracy at the instruction level, these two effects 

quickly become roadblocks. 

Several actions can be taken to potentially improve 

accuracy. First, because of concerns such as skid and 

shadowing, it is best to sample on a precise variant of the 

“instructions retired” event [11]. However, even precise 

variants are affected by these undesirable phenomena, 

although to a lesser extent. Second, one can increase the 

amount of collected data. This cannot be done by running 

multiple simultaneous collections on precise events, because 

on x86 CPUs they can only be enabled on one of the 

available PMU counters. Realistically, the only parameter 

that can be adjusted in the hope of getting more data is the 

sampling period. Because of the nature of the skid and 

shadowing problems, however, additional samples tend to 

pile up in the same code “traps” as before. 

B. Last Branch Records 

Mainstream x86 processors offer a facility called “Last 

Branch Records” (LBR), which records information about 

the most recently executed branches. Hardware filtering can 

enable the collection of only a subset of such branches. 

Here, we use LBR to obtain BBECs, as described below, as 

well as by Levinthal and Nowak [7], [11]. 

A typical LBR record is a stack of 16 entries. 

Architecturally, the LBR is a circular hardware buffer, 

continually filled with executed branches. Each of the 

branches in the LBR stack is stored in the form of a source-

target address pair. Therefore, we know that no branch 

occurs between Target[i-1] and Source[i], which in turn 

means that every basic block encountered on the way is 

executed. We call such a target-source pair a stream. 

To obtain BBECs, we sample LBR stacks on a “taken 

branches retired” event. The handling routine picks up the 

whole LBR stack and stores it away for post-processing.  

This technique provides much more information per 

sample than EBS. Not only is there information about jump 

sources and targets, but there are many more instructions in 

each sample, potentially spanning multiple basic blocks 

between each target and source and spanning multiple 

usable <Target[i-1], Source[i]> streams. An LBR stack 

of size N will contain N-1 such streams. Thus, in order to 

Table 2: Example evolution of computational instruction-specific 

event support on Intel server PMUs 

 

 Westmere 

(2010) 

Ivy Bridge 

(2013) 

Haswell 

(2015) 

DIV (cycles)    
Math SSE 

FP 
   

Math AVX 

FP 
N/A   

INT SIMD    
X87    

 



 

obtain BBECs and to normalize the N-1 streams to a single 

sample, we give each stream a weight of 1/(N-1). 

C. Issues with Last Branch Records  

LBR sampling provides considerably more information 

per sample than EBS, and would therefore be expected to 

offer more accurate BBEC results. However, for a number 

of basic blocks in a number of workloads, measurements on 

multiple systems show significant discrepancies between 

BBECs obtained by LBR and their true values obtained by 

software instrumentation, sometimes larger than the 

discrepancies seen with EBS. 

A deeper analysis shows that these discrepancies are 

often triggered by a particular branch occurring a 

disproportionate number of times (even up to 50% of the 

time) in entry[0] of the LBR stack. As there is no 

corresponding target[-1], source[0] cannot be used for 

the analysis, thereby distorting the results. When we observe 

a branch occurring in this fashion, we label the 

corresponding basic block with a “bias” flag, indicating that 

its analysis by LBR is suspect. These anomalies render LBR 

by itself insufficient as a basis for accurate generation of 

instruction mixes.
1
 

A second issue, particularly pronounced with LBR but 

also applicable to EBS, is visible on kernel samples. The 

Linux kernel includes self-modifying code: it contains probe 

and trace points which are patched with NOP instructions 

when tracing is disabled. In effect, LBR samples suggest the 

execution stream is ignoring some unconditional branch 

instructions present in the disassembly. In order to remedy 

this, after the run we patch the static kernel binary on disk 

with the .text extracted from the live kernel image. 

D.  Summary of issues with EBS and LBR 

Table 3 illustrates the issues with the use of EBS and 

LBR for computing BBECs. It shows for the Fitter program 

(SSE variant – see Section VIII.C), the BBECs obtained by 

EBS and LBR, compared to the true values obtained by 

software instrumentation. Clearly, both EBS and LBR 

produce major errors on different basic blocks. EBS suffers 

on short basic blocks, because of skid and shadowing, while 

LBR suffers on blocks with bias. 

IV. HBBP 

Given the issues with EBS and LBR used in isolation, 

HBBP combines the two in an informed way, with very 

little extra overhead, with the goal of improving overall 

accuracy. 

A. Whether to use EBS or LBR? 

For each basic block, the data from EBS and LBR need 

to be combined to produce a single BBEC. Concretely, we 

decide (for each basic block) whether to use either EBS or 

                                                           
1
 Following our report of these anomalies, LBR has been the focus of 

improvements in future processor designs by the manufacturer. 

LBR data. Therefore, HBBP does not fix the problems with 

the individual use of EBS and LBR. 

Our intuition, partly based on the knowledge of PMU 

implementation and the various delays and asynchronies in 

the processor, is that the length of a basic block and the 

LBR bias (see Section III.C) have a higher impact on 

accuracy than other features. We verify this intuition and 

obtain a cutoff value for the length of a block, below which 

to use LBR. To arrive at this decision, HBBP learns a rule 

from training data. Our focus here is not to perform an in-

depth machine learning study, but rather to formalize our 

intuition. 

We employ Decision Trees [16], an industry-standard 

Machine Learning method to determine HBBP criteria. 

Decision Trees are used as a predictive model that 

represents combinations of features leading to conclusions. 

In the tree structure, nodes are feature cutoff values, and 

leaves are conclusions relating to the class of the target 

variable. Concretely, we use Classification Trees [16], 

which have a range of properties relevant to the task at 

hand. In particular, (1) they can handle both numerical and 

categorical data; (2) they are simple to interpret (white-box 

style); (3) they can be represented visually for easy 

“debugging”. 

Other popular machine learning models exist, but are 

harder to interpret, closer to “black-box” style and generally 

less suited for our purpose. For instance, K-NN [17] is an 

unsupervised model more suitable for clustering and needs 

numeric features. SVMs [18] are more complex, less 

adapted to categorical features and do not offer a guarantee 

of better performance than Decision Trees. 

B. HBBP criteria search  

We train our classification trees on approximately 1,100 

Table 3: BBEC (in millions) resulting from EBS and LBR in Fitter, 

compared to those resulting from software instrumentation. Errors 
>25% are marked in red. 

BB EBS LBR SDE 

1 3.24 3.16 3.01 

2 5.59 2.69 6.00 

3 3.05 1.84 3.01 

4 2.88 3.17 3.00 

5 3.48 1.95 3.50 

6 2.22 3.44 3.00 

7 3.12 1.17 3.01 

8 0.38 0.36 0.50 

9 3.43 1.63 3.01 

10 14.25 10.15 10.46 

11 3.31 2.91 3.01 

12 2.84 2.91 3.50 

13 0.34 0.48 0.50 

14 4.75 7.27 6.86 

15 8.67 8.32 9.06 

 



 

basic blocks of training input from non-SPEC benchmarks. 

The training labels are set to “EBS” and “LBR”, depending 

on which method is closer to the result obtained by software 

instrumentation. 

As features we use code parameters that could have an 

influence on the underlying performance monitoring 

subsystem, including, for instance, basic block lengths, 

instruction-related information, execution counts and bias 

flags, weighted by the number of executions of the basic 

block. 

The expected output is a rule combining one or more 

features, their number being limited for simplicity, to decide 

at analysis time which data source to choose for a given 

basic block – EBS or LBR. 

We generate multiple trees, and we experiment with 

varying the number of leaves, the number of children per 

node and the weights on different variables. Our final tree is 

shown in Figure 1.  

Consistently, and in line with expectation, the instruction 

length of a basic block has the strongest predictive value. 

For instance, in most tests “feature importance” (reported by 

Scikit [19]) for block length is higher than 0.7 out of a 

maximum of 1.0. The prevailing predictive variable at the 

root of the classification tree is therefore the instruction 

length of a basic block, and the cutoff value is consistently 

close to 18. We use this rule in deciding whether to use EBS 

or LBR data: for blocks with 18 instructions or less we 

choose values from LBR, while for longer blocks we choose 

values from EBS. One somewhat surprising conclusion 

from this study is that although the absence of bias points 

strongly to LBR (especially on short blocks), on its own bias 

does not suffice as a predictive variable. Block length 

dominates, dwarfing all other factors, including bias.  

V. TOOL 

Our tool does not require any modifications to either the 

kernel or the Linux “perf” program, runs on any modern 

Linux system “out of the box”, and optionally works with 

the libpfm4 library [20], translating user-friendly strings to 

performance event codes.  

A. Collector 

The simultaneous collection of EBS and LBR data is not 

supported by the Linux kernel. We therefore collect all data 

in LBR mode, with two collections running in parallel 

during a single execution of a program, triggering on two 

different PMU events. We take advantage of the fact that 

each CPU core has multiple PMU counters. We program 

two counters to collect LBR simultaneously – one sampling 

on an “Instructions Retired” event and another on a 

“Branches Taken” event. We use the former as our EBS 

data source, and the latter as our LBR data source. 

The hardware that gathers LBR samples also gathers 

additional information, including the “eventing IP”, the IP 

on which the hardware thinks a PMU overflow occurred 

(much like the IP collected in EBS mode). On interrupts 

triggered by the “Instructions Retired” event, we collect this 

IP, which becomes our EBS data source. IPs gathered in this 

way are used as they would be in standard EBS mode 

collection. LBR records produced by the PMU on interrupts 

triggered by the “Instructions Retired” event are discarded 

during analysis. 

On interrupts triggered by the “Branches Taken” event 

we store the LBR records, later discarding any other 

information, including the “eventing IP”. This is our LBR 

data source. 

While rather unorthodox by standard PMU use 

methodology, this approach works correctly. As a result, the 

workload needs to be run only once, the performance impact 

of the collection remains low, and the output file contains 

the required two types of data. 

The exact events used are the following: 

 INST_RETIRED:PREC_DIST for EBS collection 

(LBR information discarded) 

 BR_INST_RETIRED:NEAR_TAKEN for LBR collection 

(IP information discarded) 

The sampling periods have some influence on the 

accuracy as well as on the runtime overhead. Following 

recommendations from Nowak et al. [11] and additional 

observations, we choose the values for the two respective 

events depending on the runtime of the workload (see Table 

4). LBR sampling is done with a smaller period than EBS 

sampling, because LBR data collection only happens on 

branches taken, which are less frequent than all instruction 

retirements, on which EBS samples. The memory and 

performance overhead of our collector could be optimized 

once simultaneous EBS and LBR collections are supported 

by the Linux kernel, no longer requiring two parallel LBR 

collections. 

The collector gathers raw data from “perf” at runtime, 

which is later processed to extract EBS and LBR samples, 

as well as to include LBR bias information.  

 

Figure 1: A decision tree generated from HBBP data. Figure 

abbreviated from Scikit output. “gini” stands for Gini Impurity, which 

(in general terms) is a measure of how often an element would be 
incorrectly labelled, if labelled randomly. “Samples” represents the 

number of training examples in each node. 



 

Additional data collected in the perf.data file includes 

process events (e.g. fork, exec, etc.) as well as memory 

map changes for subsequent virtual to physical address 

conversion.  

As in standard “perf”, the typical size of the raw data 

files goes up to a GB for a given workload. Post-analysis 

files used to generate HBBP views take around 10MB of 

space per workload. Both the user space (Rings 1-3) and the 

kernel (Ring 0) are monitored. 

B. Analyzer 

Analysis software, developed in Python and C for speed, 

produces dynamic instruction mixes from raw sample input 

by processing additional static information. The analyzer 

caches key information, including samples or disassembly, 

analyzing most workloads in a minute or less. 

We implement a custom disassembler based on XED, 

the “X86 Encoder Decoder Software Library” [21]. This 

choice is dictated by the necessity to extract detailed opcode 

information and to achieve analysis speed suitable for 

interactive use.  

Dynamic (sample) information is mapped onto static 

basic block maps. Using the adjusted sample data, we 

produce a histogram of BBECs according to HBBP. 

The final instruction mix data is output as a pivot table, a 

format frequently used for exploratory data analysis, with 

user-configurable headers and values in tables. It gives 

complete analysis freedom to the user and facilitates 

machine processing or report generation. Custom or 

traditional views such as top functions, top mnemonics, or 

instruction family breakdowns, are produced in a few clicks. 

Data can be filtered, aggregated or broken down using 

different granularity levels: by thread ID, binary module, 

symbol (function), basic block or source line. Furthermore, 

to enhance analysis capabilities, the disassembly is 

annotated with static properties of the instructions within, 

such as: 

 the instruction class, ISA, family and category, 

 types, numbers, sizes and attributes of operands. 

In addition to using direct attributes, we generate 

secondary instruction attributes such as memory read and 

write flags, packed and scalar flags, etc. We also enable the 

easy creation of custom instruction taxonomies based on 

instruction properties. For instance, a user-defined 

instruction group called “long latency instructions” would 

contain instructions such as DIV, SQRT, “XCHG R,M”,  or a 

group called “synchronization instructions” would have 

items such as XADD, LOCK variants [22]. This seamless 

mixing of dynamic and static information enables easy 

customization and shortens the time to solution for 

practitioners, because it becomes easier to tell which parts 

of the code are of interest. 

VI. EXAMINING ERRORS 

A. Reference definition 

To provide information useful to programmers, we focus 

on instruction mnemonics. The baseline reference method in 

terms of speed and accuracy is software instrumentation, 

which maintains an internal histogram of every instruction 

the workload under test executes. Therefore, the number of 

executions per mnemonic is expected to be accurate, and 

this number is used as the ground truth value. 

B. Error metric definition 

When discussing “error”, we refer to the difference 

between the reference (𝑉𝑟𝑒𝑓) and measured (𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) 

values (i.e., absolute inaccuracy) divided by the reference 

value, for every instruction mnemonic M. We thus obtain as 

error a percentage of the reference value that is over- or 

undercounted in the measurement.  

 

𝐸𝑟𝑟𝑜𝑟(𝑀) =
𝑎𝑏𝑠(𝑉𝑟𝑒𝑓(𝑀) − 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑀))

𝑉𝑟𝑒𝑓(𝑀)
 

 

Therefore, if we obtain a reference value of 500 

executions of MOV, and measure 510 executions of MOV 

with HBBP, the error for that mnemonic is reported as 

10/500 = 2%. 

This metric is relevant, because ultimately it is the 

number of mnemonics of a specific kind that is interesting 

to the user. Later these numbers can be combined in various 

formulas or ratios (e.g., the ratio of computational to 

noncomputational instructions). 

For aggregated results, we use a derived measure. This 

metric provides information about the practical runtime 

relevance of observed errors. The average weighted error is 

the sum of errors for each mnemonic M multiplied by its 

frequency of its occurrence in a given workload: 

 

 𝐴𝑣𝑔.  𝑤. 𝑒𝑟𝑟𝑜𝑟 = ∑ 𝐸𝑟𝑟𝑜𝑟(𝑀) ∗
𝑉𝑟𝑒𝑓(𝑀)

#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑟𝑒𝑓
𝑎𝑙𝑙 𝑀

 

 

VII. EXPERIMENTAL SETUP 

A. Hardware setup 

We evaluate our approach on an Intel Xeon E5-2695 v2 

processor (“Ivy Bridge”). This choice is dictated by LBR 

support in both hardware and software at the time of 

writing, as well as by support for a “Precisely Distributed 

Instructions Retired” event, INST_RETIRED.PREC_DIST. We 

Table 4: EBS and LBR sampling periods in HBBP 

Runtime 
EBS sampling 

period 

LBR sampling 

period 

Seconds 1 000 037 100 003 

~1-2 minutes 10 000 019 1 000 037 

Minutes (SPEC 

workloads) 
100 000 007 10 000 019 

 



 

stabilize the system for benchmarking. Among other things, 

we disable frequency scaling, “turbo mode” and C-states. 

B. Software 

We use a Linux kernel from the 4.7.2 branch on a 64-bit 

RHEL6-compatible system. We disable the NMI watchdog 

and all nonessential daemons. We also adjust the maximum 

sample rate of perf in order to avoid overloading the system 

with samples (throttling), which could generate incorrect 

results.  

We obtain reference results from the unmodified Intel 

PIN tool [23], in the Intel Software Development Emulator 

(SDE), v. 7.39 [24]. It is the industry-standard tool that we 

find to be most robust, working well with large workloads, 

and capable of following execution chains (e.g., execve). 

We check PIN results against instruction-specific PMU 

counts and PMU-reported total instruction counts, and find 

that they match. Like other mainstream instrumentation 

tools and earlier work (such as EEL [25]), PIN works in 

user mode and cannot capture kernel samples. To remain 

fair, except in Section VIII.D, our accuracy comparisons 

consider only user mode instructions. 

VIII. EXPERIMENTAL RESULTS 

We first compare the runtime and the accuracy of HBBP 

and software instrumentation. We then compare the 

accuracy of HBBP to the accuracy of EBS and LBR used in 

isolation. For these comparisons we use the SPEC2006 

benchmark suite and workloads from two large-scale 

scientific codes. We also use one of these workloads to 

show a practical use case of HBBP. We conclude with a 

demonstration that HBBP is indeed capable of providing 

instruction mixes for kernel code. 

A. SPEC CPU2006 

Our experiments with HBBP, repeated three times on the 

whole suite, last for 4 hours and 25 minutes on average, 

which is a 0.5% time penalty vs. a clean run, and close to 

the natural float in SPEC runtimes. The same tests take 18 

hours 10 minutes for SDE, a fourfold increase. The 

maximum slowdown, 12.1x, is observed on povray (see 

Figure 2).  

Figure 2 also shows average weighted errors for 

individual benchmarks.
2
 The overall average weighted error 

for HBBP is 1.83%, with errors on individual benchmarks 

ranging from 0.2% to 4.4%. The overall average weighted 

errors for LBR and EBS are 3.15% and 4.43%, respectively. 

Errors for either EBS or LBR are at least 2x larger than 

HBBP errors in 2/3 of the cases, and at least 3x larger in 1/4 

of the cases. In extreme cases, EBS is 5.3x worse 

(HMMER) and LBR 8x worse (GAMESS). In only one 

case, LBM, HBBP is worse than LBR, where it has a 1.1% 

error, as opposed to 0.5% for LBR. Aside from the fact that 

                                                           
2
 SDE produces incorrect results for x264ref, as evidenced by PMU 

counting verification. X264ref is removed from the calculation of the 
average weighted error. Results point to a bug in the PIN tool. 

errors are very small in both cases, this result stems from a 

code sequence in which long latency instructions (disturbing 

EBS measurements) immediately precede a long basic 

block. The considerable length causes HBBP to choose EBS 

as data source. 

B. Particle simulation (Test40) 

Test40 is an application built on a scientific toolkit 

called Geant4 [26, p. 4], written in C++ and commonly used 

to simulate the passage of particles through matter. Geant4 

is used in aerospace, medicine and particle physics. We 

choose it, because it represents an important class of 

complex, object-oriented workloads that process data for the 

Large Hadron Collider experiments at CERN, while running 

in multiple copies on up to 500’000 cores. It is also an 

appropriate test: it is difficult to deal with using EBS, 

Figure 2: A comparison of SDE and HBBP overhead, and average 
weighted errors for HBBP, LBR and EBS on SPEC2006 

 
 



 

because its methods are short. Test40 is also used for 

compiler studies and regression tests.  

Table 5 presents the execution time penalties for running 

the application with HBBP and SDE, showing a 9-fold 

increase for SDE vs. a 2.3% increase for HBBP. The 

average weighted error for HBBP remains below 1%, 

demonstrating the good tradeoff achieved by HBBP 

between runtime overhead and accuracy. 

Figure 3 presents the mnemonic frequencies obtained by 

HBBP for the top-20 instruction retiring mnemonics (bars, 

left axis), and their errors compared to SDE (dots, right 

axis). Figure 4 shows a comparison of errors per mnemonic 

between HBBP, EBS and LBR. For instance, for the top 5 

instruction retiring mnemonics, LBR errors are between 4% 

and 7%, while for HBBP they are under 2%. Further down, 

EBS errors reach 15-25% for POP, RET_NEAR and JMP, while 

HBBP produces results with less than 1% error.  

These results are not an isolated case, and they underline 

the need for HBBP, as opposed to raw EBS or LBR, even 

with custom enhancements applied.  

C. Fitter 

Fitter is a scientific program written in C++, fitting 

sparse position measurements into tracks of object 

movements in 3D space (related to [27]). It is representative 

of compact, high-performance code, that is both CPU-

intensive and vectorizable. In production, this code runs in 

low-latency environments and must produce results within 

1-2µs. However, with SDE, the three variants (x87 scalar, 

SSE, and AVX) of the application run 4-120x more slowly, 

increasing response time beyond production limits and 

necessitating a benchmark extraction. 

In the SSE variant, we observe 13% errors on LBR, vs. 

2-3% for EBS and HBBP. However, the same benchmark in 

AVX mode has 12% errors on EBS, vs. 2% for LBR and 

HBBP. Hence, neither EBS nor LBR alone can reasonably 

be used to study performance, while HBBP provides good 

accuracy for all versions of the benchmark. 

When profiling code with profilers such as perf or Intel 

VTune, it is often clear where the time is spent, but not how. 

Instruction mixes can be particularly useful to study 

compute-intensive workloads and vectorization, as in this 

case.  

The workload is examined in three variants, each having 

a different underlying structure for computation: x87 scalar, 

SSE and AVX single precision vectors. While working with 

a beta version of the Intel compiler, we noticed that AVX 

performance was significantly (20x) lower than expected 

from previous compilations. Expected values were 

determined using earlier compilations and runs, and 

supported with data from PIN. We suspected a compiler 

regression related to AVX instruction generation, and 

possible SSE-AVX transitions (which generate penalties on 

some CPUs). However, through the use of HBBP we 

concluded that the number of executed vector instructions 

was not suspicious. At the same time, the instruction mix 

showed a high number of call instructions, which in turn led 

us to trace the problem to the lack of inlining. The problem 

was thus indeed a compiler regression linked to AVX 

support, but not at all a problem with the emission of AVX 

instructions. 

Table 6 presents our results obtained with this 

benchmark. The expected values are shown in the upper half 

of the table, and the measured values in the bottom half. 

Values for the problematic AVX code are shown in the 

column labelled “AVX”, while values for the fixed version 

in the rightmost column labelled “AVX fix”. 

D. Synthetic kernel benchmark 

Instruction mixes in kernel space might be of interest to 

device driver writers and OS architects. Such experts are 

particularly conscious of the code they write, as it is more 

difficult to debug, and the kernel environment puts 

constraints on code style (e.g., avoidance of floating point) 

and available compiler optimizations.  

Table 5: Test40 evaluation 

 Clean HBBP SDE 

Runtime [s] 27.1 27.7 277.0 

Time penalty N/A 2.3% 923% 

Avg W Error N/A 0.94% 0% 

 

 

Figure 3: Test40 instruction execution counts (left) and error 

percentages (right), for the top 20 instruction executing 
mnemonics 

 

Figure 4: Test40 error percentages for HBBP, LBR and EBS, for 

the top 20 instruction executing mnemonics 

 



 

To show the validity of our approach in kernel space, we 

construct a small synthetic prime number search benchmark 

in user space. We then insert the same code into a live 

kernel as a device driver module, and trigger it from user 

space by reads. Calls to kernel code are separated in time to 

simulate real behavior. Table 7 shows instruction 

frequencies for the user-level code, obtained by both SDE 

and HBBP, and for the kernel-level code, obtained by 

HBBP. As can be seen, the results are in very good 

agreement. Results for EBS and LBR are not shown in 

detail, but EBS errors reach 15%, while LBR and HBBP 

errors are around 1%. 

E. Other reports 

We make the following additional short reports on 

detection capabilities in a concise manner: 

 HBBP was used to correctly detect a vectorization 

opportunity and an issue with #omp simd reduction in 

CLForward, an online HPC code. HBBP signaled a large 

number of scalar instructions. Developers made the code 

more compiler-friendly, a large fraction of these scalar 

instructions were replaced by a smaller number of 

packed instructions, and performance improved by 8% 

(see Table 8) 

 HBBP was used to search for suspicious convert 

instructions (e.g., CVTSI2SD) in random number 

generation. Ultimately, it was shown that contrary to a 

30% penalty expectation, the issue had only a 5% 

impact. Optimization efforts moved elsewhere. 

 HBBP was used to characterize heap pressure in the OS 

kernel on an HPC simulation. Developers remodeled 

calloc() calls and cut 15-20% system time to nearly 0. 

IX. RELATED WORK 

BBECs can be extracted with minimal overhead at 

runtime using a variety of PMU-based sampling methods 

surveyed by Nowak et al. [11] and further discussed in this 

paper. Modern tuning methods, such as those implemented 

in Intel VTune or Gooda [28] use LBRs to generate partial 

call graphs and infer execution paths from the gathered data. 

However, we use LBR content and disassembly for BBECs, 

by sampling on an event which relates to the frequency of 

taken branches. 

Ammons et al. [29] and Ball et al. [30] focus primarily 

on context information added to PMU counters through 

instrumentation, for the purpose of monitoring and 

predicting workload code paths. These methods may have 

overheads under 2x, but are not fully precise and change 

counter values during profiling. HBBP is a simpler, purely 

PMU-based approach and does not use software context 

information nor disturb the workloads (in particular the 

caches). 

We use PMU counting for cross-reference. It has a 

number of documented, verified and understood issues, 

described in the works of Weaver [31]–[33], [34] and 

Mytkowicz [35], [36]. 

X. CONCLUSIONS 

In this paper we demonstrated HBBP, a method for 

obtaining dynamic instruction mixes in near real time, using 

modern PMUs. HBBP does not disturb workloads in terms 

of the execution path nor runtime and is capable of 

providing instruction mixes also for code running in kernel 

space. HBBP collection incurs limited runtime overheads, 

below 1.3% on average, with an average error below 2.1% - 

suitable for tests in production environments and on 

applications with long runtimes. 

Table 6: Expected vs. Measured values (millions) for the Fitter 

benchmark. AVX fix denotes inlining fixed  

  x87 SSE AVX AVX fix 

E
x

p
ec

te
d

 x87 inst 512 374 367 367 

SSE inst 10’898 2’724 0 0 

AVX inst 0 0 1’387 1’387 

CALLs 107 106 99 99 

Time/track 1.71us 0.50us 0.38us 0.38us 

M
ea

su
re

d
 x87 inst 493 362 3’425 397 

SSE inst 10’886 2’736 0 0 

AVX inst 0 0 1’439 1’387 

CALLs 103 100 6’150 97 

Time/track 1.73us 0.51us 7.78us 0.39us 

 AvgW Err 0.96% 2.97% 1.78% 2.65% 

Table 7: Instructions in the kernel sample (millions) 

Method SDE HBBP 

Module 
hello 

(user space) 

hello.ko 

(kernel) 

hello 

(user space) 

Function hello_u hello_k hello_u 

ADD 1286 1289 1283 

CDQE 57 55 53 

CMP 550 547 545 

IMUL 57 55 53 

JLE 191 188 188 

JNLE 57 55 56 

JNZ 302 304 302 

JZ 151 148 150 

MOV 823 808 808 

MOVSXD 191 188 188 

SUB 191 188 188 

TEST 151 148 150 

Total 4005 3972 3964 

Table 8: HBBP view of CLForward vectorization (billions of 
instructions). A large number of scalar instructions has been 

replaced by a smaller number of packed (vectorized) ones.  

INST 

SET 
PACKING BEFORE AFTER 

AVX 
 

16.2 14.3 

 
NONE 0.0 3.3 

 SCALAR  14.7 0.4 

 PACKED  1.5 10.6 

BASE 
 

2.9 1.5 

 
NONE 2.9 1.5 

TOTAL 19.2 15.8 
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