

Low-Overhead Dynamic Instruction Mix Generation

using Hybrid Basic Block Profiling

Andrzej Nowak

CERN openlab and EPFL

Andrzej.Nowak@cern.ch

Ahmad Yasin
Intel Corporation

Ahmad.Yasin@intel.com

Paweł Szostek
Criteo

Pawel.Szostek@gmail.com

Willy Zwaenepoel
EPFL

Willy.Zwaenepoel@epfl.ch

Abstract—Dynamic instruction mixes form an important part

of the toolkits of performance tuners, compiler writers, and

CPU architects. Instruction mixes are traditionally generated

using software instrumentation, an accurate yet slow method,

that is normally limited to user-mode code.

We present a new method for generating instruction mixes

using the Performance Monitoring Unit (PMU) of the CPU. It

has very low overhead, extends coverage to kernel-mode

execution, and causes only a very modest decrease in accuracy,

compared to software instrumentation.

In order to achieve this level of accuracy, we develop a new

PMU-based data collection method, Hybrid Basic Block

Profiling (HBBP). HBBP uses simple machine learning

techniques to choose, on a per basic block basis, between data

from two conventional sampling methods, Event Based

Sampling (EBS) and Last Branch Records (LBR).

We implement a profiling tool based on HBBP, and we

report on experiments with the industry standard SPEC

CPU2006 suite, as well as with two large-scale scientific codes.

We observe an improvement in runtime compared to software

instrumentation of up to 76x on the tested benchmarks,

reducing wait times from hours to minutes. Instruction

attribution errors average 2.1%.

The results indicate that HBBP provides a favorable

tradeoff between accuracy and speed, making it a suitable

candidate for use in production environments.

I. INTRODUCTION

An instruction mix [1] is a histogram of the frequency of

execution of instructions for a given architecture and

workload. It can be presented at the granularity of functions,

modules or the entire program. Instruction mixes are

frequently used by application tuners, compiler writers and

CPU architects to study code performance and the

interaction between the hardware, the compiler, the

operating system and the application. We focus on dynamic

instruction mixes, generated at runtime, as opposed to

generated by static analysis.

An instruction mix is easily obtained from a basic block

execution count (BBEC). If we know how many times a

basic block is executed, we also know exactly how many

times each instruction within it is executed. We can

subsequently combine BBECs with disassembly information

to produce an instruction mix or more detailed insights

related to specific instructions.

The conventional approach to obtain such a BBEC is by

means of software instrumentation. This approach is very

accurate, but it is normally limited to user-mode execution,

and the data collection overhead and the resulting increase

in runtime quickly become prohibitive, especially for long-

running programs.

We present Hybrid Basic Block Profiling (HBBP), a

new, non-invasive approach for generating instruction

mixes. HBBP relies on information obtained from the

CPU’s Performance Monitoring Unit (PMU [2]), and thus

does not require any modification or instrumentation of the

program or the operating system. Furthermore, its runtime

(collection) overhead is negligibly small. We demonstrate,

however, that straightforward methods for collecting PMU

data related to BBECs, namely Event Based Sampling

(EBS) and Last Branch Records (LBR), introduce

significant inaccuracies.

HBBP uses simple machine learning techniques to

choose (at analysis time), on a per-basic-block basis, the

most accurate form of data collection. The result is

significantly improved accuracy, close to that of software

instrumentation. As such, HBBP approaches the best of both

worlds, the speed of PMU-based data collection and the

accuracy of software instrumentation.

We incorporate HBBP into a new tool for instruction

mix generation. The tool is composed of two main

components: a collector that computes BBECs, and an

analyzer that combines the BBECs with static information

to produce instruction mixes.

This paper makes the following contributions:

 HBBP - a new and practical approach to procure

instruction mixes, without program modification,

with good accuracy, with negligible runtime

overhead and applicable to kernel-mode code.

 A tool that incorporates HBBP, and allows the

generation of instruction mixes for arbitrary

programs on standard Linux environments.

 An experimental evaluation of the said approach,

which demonstrates near real time performance

and an up to 76x speedup over software

instrumentation, with an average weighted error of

2.1%. The evaluation is performed on SPEC

CPU2006 workloads and on benchmarks

representing large-scale scientific code.

The rest of this paper is structured as follows. In Section

II we present our motivation. Section III describes the

straightforward methods for data collection using PMUs and

their issues. Section IV presents HBBP. Section V presents

our tool that incorporates HBBP. Section VI discusses the

error metrics we use in the evaluation. Section VII presents

our experimental setup. Section VIII reports our

experimental results. Section IX covers related work, and

Section X concludes the paper.

II. MOTIVATION

A. The use of instruction mixes

Architects use instruction mixes during “black box”

discovery to determine which instructions are the most

frequently used in their hardware, in order to be able to

direct their optimization efforts towards the highest potential

benefits for their customers [3].

For compiler writers, instruction mixes offer a high-level

insight into the behavior and correctness of tools and

programs. For example, it is much easier to discover

whether large-scale code vectorizes well using an

instruction mix rather than poring through cumbersome

compiler reports. An instruction mix can also help

determine whether the correct, optimized versions of library

functions are being used at runtime. Finally, large amounts

of long-latency instructions executed at runtime (e.g.,

divisions) can easily be discovered and fixed. In such cases,

instruction mixes are frequently re-generated, as

optimization efforts progress, possibly for various input data

and code paths.

For compiler writers and users alike, BBEC-sourced

instruction mixes enable automated compiler optimization

(PGO or AutoFDO [4]).

Methods used for tuning with performance counters,

such as those based on cycle accounting (e.g., TopDown [5]

in Intel’s VTune or Hierarchical Cycle Accounting [6] [7]),

or those used for fine-grained power consumption

estimations [8], do not provide a good account of the

instructions that a CPU executes. Software developers and

tuners are likely to turn to instruction mixes in such cases.

One direct use is support for vectorization work, especially

assessing possibilities and evaluating outcomes. For

example, knowledge about the location and type of

vectorization instructions already in use in the program

allows locating hotspot candidates for porting from SSE to

AVX to AVX2 to AVX512. Another possible use is loop

optimization – instruction mixes can reveal not only

estimated trip counts but also loop composition and

architectural efficiency, or even approximate FLOP rates.

Yet another use, of particular importance today, is the study

of workloads on accelerators [9]. For example, the Intel

Xeon Phi lacks hardware double precision support for some

important instructions used in scientific code, e.g.,

transcendentals. With an instruction mix, it is possible to

foresee potential problems by finding hotspots of specific

instructions.

B. Obtaining an instruction mix today

Quickly obtaining an accurate instruction mix is

currently a difficult undertaking. Two main groups of

methods exist: software instrumentation and performance

monitoring with hardware support.

In the case of instrumentation, software probes are

injected into the workload under test, typically on basic

block boundaries. This enables the gathering of precise

information [10] at the expense of an increase in runtime.

This cost varies with the workload and the efficiency of the

monitoring tool. It can easily extend the runtime by a factor

of 2-10x, and even 70x in extreme cases, as shown in

column (2) of Table 1. Such an increase in collection speed

can become an optimization showstopper, e.g., for scientific

codes, that need continuous iterative improvement, but

where a single run is indivisible and can last many hours.

Extracting representative, agile benchmarks from such

codes in a reasonable amount of time is often difficult or

impossible. Even when it can be done, changes to the main

code branch – often actively developed by hundreds or

thousands of developers – do not propagate to the

benchmark. A second major problem with instrumentation

methods is that they change the binary code (and thus the

execution path) of the workload. Third, existing tools take

even longer when following execution forks or working

with multi-threaded programs. Fourth, detailed software

instrumentation methods cannot monitor kernel code, or

other code running in Ring 0 on x86 or System mode on

ARM. Thus, any kernel routines triggered by the code under

test remain invisible when using standard software

instrumentation.

In the case of hardware-assisted performance

monitoring, the PMU provides information about the

instructions executed. This information is typically less

accurate than that provided by software instrumentation

[11]. While methods using the PMU produce occasional

interrupts to gather performance data at runtime, they do not

disturb the execution, and the runtime cost is usually

Table 1: A comparison of wall clock runtimes in [s] of select
benchmarks: clean (1), using software instrumentation with SDE (2)

Benchmark (1) Clean (2) SDE

SPEC all 15’897 65’419

(4.11x)

SPEC

povray

224 2710

(12.1x)

SPEC

omnetpp

281 2122

(7.56x)

All other

benchmarks

717 48’725

(68x)

Hydro-post

benchmark

287 21’959

(76.6x)

miniscule, amounting at most for a few percent of the

runtime [12][13].

Some PMUs, such as those in x86 processors, allow the

direct collection of instruction-specific performance events.

For example, a PMU counter can be programmed to count

the number of times a specific computational SSE

instruction is executed. However, only a very limited set of

instructions, such as a few SSE instructions or divisions, can

be monitored in this fashion. The number of such

instructions is, moreover, on the decline with more recent

processor families (see Table 2 and [14]), dictated by a

general trend of reducing PMU complexity.

In this paper we examine improvements to the scope and

the accuracy of PMU-based methods. We demonstrate that

careful use of omnipresent hardware facilities provides

instruction mixes with satisfactory accuracy for all types of

instructions and not just a very limited predefined subset.

III. BASE PMU-BASED METHODS

A. Event Based Sampling

A well-known approach to obtain instruction execution

information is Event Based Sampling (EBS). A PMU

counter is programmed to count occurrences of a specific

event until a threshold is reached. This threshold is called

the Sampling Period. Once the counter overflows, a

Performance Monitoring Interrupt freezes the running code

and samples the location of the Instruction Pointer (IP). In

post-processing, samples are used to build histograms of the

number of executions of each instruction. In usual use cases,

EBS collection overhead is minor, under 1% [13]. However,

as the same study shows, when sampling frequency is

increased (aiming for improved accuracy, for example),

overheads grow. The overheads do not necessarily grow

linearly with the sampling frequency.

To obtain BBECs, we sample on “instructions retired”

events. By default, such samples concern only a single

instruction, appearing at the address of the sampled IP. We

enhance classic EBS by applying every IP sample to all

instructions of the enclosing basic block. If the instruction in

the sample has executed, the whole block, that contains that

instruction, must have executed as well. To obtain proper

instruction counts, we must then divide the number of

samples recorded for a basic block by the instruction length

of that block. In this paper, all further mention of “EBS”

refers to EBS with this improvement.

Amongst other inefficiencies, EBS suffers from two

documented problems [11], [15]. “Skid” causes the reported

IP to be different from the code location that causes the

counter overflow. For example, the CPU might be executing

other instructions concurrently with the one causing the

overflow. As a result, it may be unable to pin-point exactly

the source of the overflow. “Shadowing” causes samples to

disproportionately represent instructions following long-

latency instructions in the execution chain. These issues

might matter less for large functions, but on smaller

functions (e.g., fragmented object-oriented code), and as we

aim for accuracy at the instruction level, these two effects

quickly become roadblocks.

Several actions can be taken to potentially improve

accuracy. First, because of concerns such as skid and

shadowing, it is best to sample on a precise variant of the

“instructions retired” event [11]. However, even precise

variants are affected by these undesirable phenomena,

although to a lesser extent. Second, one can increase the

amount of collected data. This cannot be done by running

multiple simultaneous collections on precise events, because

on x86 CPUs they can only be enabled on one of the

available PMU counters. Realistically, the only parameter

that can be adjusted in the hope of getting more data is the

sampling period. Because of the nature of the skid and

shadowing problems, however, additional samples tend to

pile up in the same code “traps” as before.

B. Last Branch Records

Mainstream x86 processors offer a facility called “Last

Branch Records” (LBR), which records information about

the most recently executed branches. Hardware filtering can

enable the collection of only a subset of such branches.

Here, we use LBR to obtain BBECs, as described below, as

well as by Levinthal and Nowak [7], [11].

A typical LBR record is a stack of 16 entries.

Architecturally, the LBR is a circular hardware buffer,

continually filled with executed branches. Each of the

branches in the LBR stack is stored in the form of a source-

target address pair. Therefore, we know that no branch

occurs between Target[i-1] and Source[i], which in turn

means that every basic block encountered on the way is

executed. We call such a target-source pair a stream.

To obtain BBECs, we sample LBR stacks on a “taken

branches retired” event. The handling routine picks up the

whole LBR stack and stores it away for post-processing.

This technique provides much more information per

sample than EBS. Not only is there information about jump

sources and targets, but there are many more instructions in

each sample, potentially spanning multiple basic blocks

between each target and source and spanning multiple

usable <Target[i-1], Source[i]> streams. An LBR stack

of size N will contain N-1 such streams. Thus, in order to

Table 2: Example evolution of computational instruction-specific

event support on Intel server PMUs

 Westmere

(2010)

Ivy Bridge

(2013)

Haswell

(2015)

DIV (cycles)   
Math SSE

FP
  

Math AVX

FP
N/A  

INT SIMD   
X87   

obtain BBECs and to normalize the N-1 streams to a single

sample, we give each stream a weight of 1/(N-1).

C. Issues with Last Branch Records

LBR sampling provides considerably more information

per sample than EBS, and would therefore be expected to

offer more accurate BBEC results. However, for a number

of basic blocks in a number of workloads, measurements on

multiple systems show significant discrepancies between

BBECs obtained by LBR and their true values obtained by

software instrumentation, sometimes larger than the

discrepancies seen with EBS.

A deeper analysis shows that these discrepancies are

often triggered by a particular branch occurring a

disproportionate number of times (even up to 50% of the

time) in entry[0] of the LBR stack. As there is no

corresponding target[-1], source[0] cannot be used for

the analysis, thereby distorting the results. When we observe

a branch occurring in this fashion, we label the

corresponding basic block with a “bias” flag, indicating that

its analysis by LBR is suspect. These anomalies render LBR

by itself insufficient as a basis for accurate generation of

instruction mixes.
1

A second issue, particularly pronounced with LBR but

also applicable to EBS, is visible on kernel samples. The

Linux kernel includes self-modifying code: it contains probe

and trace points which are patched with NOP instructions

when tracing is disabled. In effect, LBR samples suggest the

execution stream is ignoring some unconditional branch

instructions present in the disassembly. In order to remedy

this, after the run we patch the static kernel binary on disk

with the .text extracted from the live kernel image.

D. Summary of issues with EBS and LBR

Table 3 illustrates the issues with the use of EBS and

LBR for computing BBECs. It shows for the Fitter program

(SSE variant – see Section VIII.C), the BBECs obtained by

EBS and LBR, compared to the true values obtained by

software instrumentation. Clearly, both EBS and LBR

produce major errors on different basic blocks. EBS suffers

on short basic blocks, because of skid and shadowing, while

LBR suffers on blocks with bias.

IV. HBBP

Given the issues with EBS and LBR used in isolation,

HBBP combines the two in an informed way, with very

little extra overhead, with the goal of improving overall

accuracy.

A. Whether to use EBS or LBR?

For each basic block, the data from EBS and LBR need

to be combined to produce a single BBEC. Concretely, we

decide (for each basic block) whether to use either EBS or

1
 Following our report of these anomalies, LBR has been the focus of

improvements in future processor designs by the manufacturer.

LBR data. Therefore, HBBP does not fix the problems with

the individual use of EBS and LBR.

Our intuition, partly based on the knowledge of PMU

implementation and the various delays and asynchronies in

the processor, is that the length of a basic block and the

LBR bias (see Section III.C) have a higher impact on

accuracy than other features. We verify this intuition and

obtain a cutoff value for the length of a block, below which

to use LBR. To arrive at this decision, HBBP learns a rule

from training data. Our focus here is not to perform an in-

depth machine learning study, but rather to formalize our

intuition.

We employ Decision Trees [16], an industry-standard

Machine Learning method to determine HBBP criteria.

Decision Trees are used as a predictive model that

represents combinations of features leading to conclusions.

In the tree structure, nodes are feature cutoff values, and

leaves are conclusions relating to the class of the target

variable. Concretely, we use Classification Trees [16],

which have a range of properties relevant to the task at

hand. In particular, (1) they can handle both numerical and

categorical data; (2) they are simple to interpret (white-box

style); (3) they can be represented visually for easy

“debugging”.

Other popular machine learning models exist, but are

harder to interpret, closer to “black-box” style and generally

less suited for our purpose. For instance, K-NN [17] is an

unsupervised model more suitable for clustering and needs

numeric features. SVMs [18] are more complex, less

adapted to categorical features and do not offer a guarantee

of better performance than Decision Trees.

B. HBBP criteria search

We train our classification trees on approximately 1,100

Table 3: BBEC (in millions) resulting from EBS and LBR in Fitter,

compared to those resulting from software instrumentation. Errors
>25% are marked in red.

BB EBS LBR SDE

1 3.24 3.16 3.01

2 5.59 2.69 6.00

3 3.05 1.84 3.01

4 2.88 3.17 3.00

5 3.48 1.95 3.50

6 2.22 3.44 3.00

7 3.12 1.17 3.01

8 0.38 0.36 0.50

9 3.43 1.63 3.01

10 14.25 10.15 10.46

11 3.31 2.91 3.01

12 2.84 2.91 3.50

13 0.34 0.48 0.50

14 4.75 7.27 6.86

15 8.67 8.32 9.06

basic blocks of training input from non-SPEC benchmarks.

The training labels are set to “EBS” and “LBR”, depending

on which method is closer to the result obtained by software

instrumentation.

As features we use code parameters that could have an

influence on the underlying performance monitoring

subsystem, including, for instance, basic block lengths,

instruction-related information, execution counts and bias

flags, weighted by the number of executions of the basic

block.

The expected output is a rule combining one or more

features, their number being limited for simplicity, to decide

at analysis time which data source to choose for a given

basic block – EBS or LBR.

We generate multiple trees, and we experiment with

varying the number of leaves, the number of children per

node and the weights on different variables. Our final tree is

shown in Figure 1.

Consistently, and in line with expectation, the instruction

length of a basic block has the strongest predictive value.

For instance, in most tests “feature importance” (reported by

Scikit [19]) for block length is higher than 0.7 out of a

maximum of 1.0. The prevailing predictive variable at the

root of the classification tree is therefore the instruction

length of a basic block, and the cutoff value is consistently

close to 18. We use this rule in deciding whether to use EBS

or LBR data: for blocks with 18 instructions or less we

choose values from LBR, while for longer blocks we choose

values from EBS. One somewhat surprising conclusion

from this study is that although the absence of bias points

strongly to LBR (especially on short blocks), on its own bias

does not suffice as a predictive variable. Block length

dominates, dwarfing all other factors, including bias.

V. TOOL

Our tool does not require any modifications to either the

kernel or the Linux “perf” program, runs on any modern

Linux system “out of the box”, and optionally works with

the libpfm4 library [20], translating user-friendly strings to

performance event codes.

A. Collector

The simultaneous collection of EBS and LBR data is not

supported by the Linux kernel. We therefore collect all data

in LBR mode, with two collections running in parallel

during a single execution of a program, triggering on two

different PMU events. We take advantage of the fact that

each CPU core has multiple PMU counters. We program

two counters to collect LBR simultaneously – one sampling

on an “Instructions Retired” event and another on a

“Branches Taken” event. We use the former as our EBS

data source, and the latter as our LBR data source.

The hardware that gathers LBR samples also gathers

additional information, including the “eventing IP”, the IP

on which the hardware thinks a PMU overflow occurred

(much like the IP collected in EBS mode). On interrupts

triggered by the “Instructions Retired” event, we collect this

IP, which becomes our EBS data source. IPs gathered in this

way are used as they would be in standard EBS mode

collection. LBR records produced by the PMU on interrupts

triggered by the “Instructions Retired” event are discarded

during analysis.

On interrupts triggered by the “Branches Taken” event

we store the LBR records, later discarding any other

information, including the “eventing IP”. This is our LBR

data source.

While rather unorthodox by standard PMU use

methodology, this approach works correctly. As a result, the

workload needs to be run only once, the performance impact

of the collection remains low, and the output file contains

the required two types of data.

The exact events used are the following:

 INST_RETIRED:PREC_DIST for EBS collection

(LBR information discarded)

 BR_INST_RETIRED:NEAR_TAKEN for LBR collection

(IP information discarded)

The sampling periods have some influence on the

accuracy as well as on the runtime overhead. Following

recommendations from Nowak et al. [11] and additional

observations, we choose the values for the two respective

events depending on the runtime of the workload (see Table

4). LBR sampling is done with a smaller period than EBS

sampling, because LBR data collection only happens on

branches taken, which are less frequent than all instruction

retirements, on which EBS samples. The memory and

performance overhead of our collector could be optimized

once simultaneous EBS and LBR collections are supported

by the Linux kernel, no longer requiring two parallel LBR

collections.

The collector gathers raw data from “perf” at runtime,

which is later processed to extract EBS and LBR samples,

as well as to include LBR bias information.

Figure 1: A decision tree generated from HBBP data. Figure

abbreviated from Scikit output. “gini” stands for Gini Impurity, which

(in general terms) is a measure of how often an element would be
incorrectly labelled, if labelled randomly. “Samples” represents the

number of training examples in each node.

Additional data collected in the perf.data file includes

process events (e.g. fork, exec, etc.) as well as memory

map changes for subsequent virtual to physical address

conversion.

As in standard “perf”, the typical size of the raw data

files goes up to a GB for a given workload. Post-analysis

files used to generate HBBP views take around 10MB of

space per workload. Both the user space (Rings 1-3) and the

kernel (Ring 0) are monitored.

B. Analyzer

Analysis software, developed in Python and C for speed,

produces dynamic instruction mixes from raw sample input

by processing additional static information. The analyzer

caches key information, including samples or disassembly,

analyzing most workloads in a minute or less.

We implement a custom disassembler based on XED,

the “X86 Encoder Decoder Software Library” [21]. This

choice is dictated by the necessity to extract detailed opcode

information and to achieve analysis speed suitable for

interactive use.

Dynamic (sample) information is mapped onto static

basic block maps. Using the adjusted sample data, we

produce a histogram of BBECs according to HBBP.

The final instruction mix data is output as a pivot table, a

format frequently used for exploratory data analysis, with

user-configurable headers and values in tables. It gives

complete analysis freedom to the user and facilitates

machine processing or report generation. Custom or

traditional views such as top functions, top mnemonics, or

instruction family breakdowns, are produced in a few clicks.

Data can be filtered, aggregated or broken down using

different granularity levels: by thread ID, binary module,

symbol (function), basic block or source line. Furthermore,

to enhance analysis capabilities, the disassembly is

annotated with static properties of the instructions within,

such as:

 the instruction class, ISA, family and category,

 types, numbers, sizes and attributes of operands.

In addition to using direct attributes, we generate

secondary instruction attributes such as memory read and

write flags, packed and scalar flags, etc. We also enable the

easy creation of custom instruction taxonomies based on

instruction properties. For instance, a user-defined

instruction group called “long latency instructions” would

contain instructions such as DIV, SQRT, “XCHG R,M”, or a

group called “synchronization instructions” would have

items such as XADD, LOCK variants [22]. This seamless

mixing of dynamic and static information enables easy

customization and shortens the time to solution for

practitioners, because it becomes easier to tell which parts

of the code are of interest.

VI. EXAMINING ERRORS

A. Reference definition

To provide information useful to programmers, we focus

on instruction mnemonics. The baseline reference method in

terms of speed and accuracy is software instrumentation,

which maintains an internal histogram of every instruction

the workload under test executes. Therefore, the number of

executions per mnemonic is expected to be accurate, and

this number is used as the ground truth value.

B. Error metric definition

When discussing “error”, we refer to the difference

between the reference (𝑉𝑟𝑒𝑓) and measured (𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

values (i.e., absolute inaccuracy) divided by the reference

value, for every instruction mnemonic M. We thus obtain as

error a percentage of the reference value that is over- or

undercounted in the measurement.

𝐸𝑟𝑟𝑜𝑟(𝑀) =
𝑎𝑏𝑠(𝑉𝑟𝑒𝑓(𝑀) − 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑀))

𝑉𝑟𝑒𝑓(𝑀)

Therefore, if we obtain a reference value of 500

executions of MOV, and measure 510 executions of MOV

with HBBP, the error for that mnemonic is reported as

10/500 = 2%.

This metric is relevant, because ultimately it is the

number of mnemonics of a specific kind that is interesting

to the user. Later these numbers can be combined in various

formulas or ratios (e.g., the ratio of computational to

noncomputational instructions).

For aggregated results, we use a derived measure. This

metric provides information about the practical runtime

relevance of observed errors. The average weighted error is

the sum of errors for each mnemonic M multiplied by its

frequency of its occurrence in a given workload:

 𝐴𝑣𝑔. 𝑤. 𝑒𝑟𝑟𝑜𝑟 = ∑ 𝐸𝑟𝑟𝑜𝑟(𝑀) ∗
𝑉𝑟𝑒𝑓(𝑀)

#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠𝑟𝑒𝑓
𝑎𝑙𝑙 𝑀

VII. EXPERIMENTAL SETUP

A. Hardware setup

We evaluate our approach on an Intel Xeon E5-2695 v2

processor (“Ivy Bridge”). This choice is dictated by LBR

support in both hardware and software at the time of

writing, as well as by support for a “Precisely Distributed

Instructions Retired” event, INST_RETIRED.PREC_DIST. We

Table 4: EBS and LBR sampling periods in HBBP

Runtime
EBS sampling

period

LBR sampling

period

Seconds 1 000 037 100 003

~1-2 minutes 10 000 019 1 000 037

Minutes (SPEC

workloads)
100 000 007 10 000 019

stabilize the system for benchmarking. Among other things,

we disable frequency scaling, “turbo mode” and C-states.

B. Software

We use a Linux kernel from the 4.7.2 branch on a 64-bit

RHEL6-compatible system. We disable the NMI watchdog

and all nonessential daemons. We also adjust the maximum

sample rate of perf in order to avoid overloading the system

with samples (throttling), which could generate incorrect

results.

We obtain reference results from the unmodified Intel

PIN tool [23], in the Intel Software Development Emulator

(SDE), v. 7.39 [24]. It is the industry-standard tool that we

find to be most robust, working well with large workloads,

and capable of following execution chains (e.g., execve).

We check PIN results against instruction-specific PMU

counts and PMU-reported total instruction counts, and find

that they match. Like other mainstream instrumentation

tools and earlier work (such as EEL [25]), PIN works in

user mode and cannot capture kernel samples. To remain

fair, except in Section VIII.D, our accuracy comparisons

consider only user mode instructions.

VIII. EXPERIMENTAL RESULTS

We first compare the runtime and the accuracy of HBBP

and software instrumentation. We then compare the

accuracy of HBBP to the accuracy of EBS and LBR used in

isolation. For these comparisons we use the SPEC2006

benchmark suite and workloads from two large-scale

scientific codes. We also use one of these workloads to

show a practical use case of HBBP. We conclude with a

demonstration that HBBP is indeed capable of providing

instruction mixes for kernel code.

A. SPEC CPU2006

Our experiments with HBBP, repeated three times on the

whole suite, last for 4 hours and 25 minutes on average,

which is a 0.5% time penalty vs. a clean run, and close to

the natural float in SPEC runtimes. The same tests take 18

hours 10 minutes for SDE, a fourfold increase. The

maximum slowdown, 12.1x, is observed on povray (see

Figure 2).

Figure 2 also shows average weighted errors for

individual benchmarks.
2
 The overall average weighted error

for HBBP is 1.83%, with errors on individual benchmarks

ranging from 0.2% to 4.4%. The overall average weighted

errors for LBR and EBS are 3.15% and 4.43%, respectively.

Errors for either EBS or LBR are at least 2x larger than

HBBP errors in 2/3 of the cases, and at least 3x larger in 1/4

of the cases. In extreme cases, EBS is 5.3x worse

(HMMER) and LBR 8x worse (GAMESS). In only one

case, LBM, HBBP is worse than LBR, where it has a 1.1%

error, as opposed to 0.5% for LBR. Aside from the fact that

2
 SDE produces incorrect results for x264ref, as evidenced by PMU

counting verification. X264ref is removed from the calculation of the
average weighted error. Results point to a bug in the PIN tool.

errors are very small in both cases, this result stems from a

code sequence in which long latency instructions (disturbing

EBS measurements) immediately precede a long basic

block. The considerable length causes HBBP to choose EBS

as data source.

B. Particle simulation (Test40)

Test40 is an application built on a scientific toolkit

called Geant4 [26, p. 4], written in C++ and commonly used

to simulate the passage of particles through matter. Geant4

is used in aerospace, medicine and particle physics. We

choose it, because it represents an important class of

complex, object-oriented workloads that process data for the

Large Hadron Collider experiments at CERN, while running

in multiple copies on up to 500’000 cores. It is also an

appropriate test: it is difficult to deal with using EBS,

Figure 2: A comparison of SDE and HBBP overhead, and average
weighted errors for HBBP, LBR and EBS on SPEC2006

because its methods are short. Test40 is also used for

compiler studies and regression tests.

Table 5 presents the execution time penalties for running

the application with HBBP and SDE, showing a 9-fold

increase for SDE vs. a 2.3% increase for HBBP. The

average weighted error for HBBP remains below 1%,

demonstrating the good tradeoff achieved by HBBP

between runtime overhead and accuracy.

Figure 3 presents the mnemonic frequencies obtained by

HBBP for the top-20 instruction retiring mnemonics (bars,

left axis), and their errors compared to SDE (dots, right

axis). Figure 4 shows a comparison of errors per mnemonic

between HBBP, EBS and LBR. For instance, for the top 5

instruction retiring mnemonics, LBR errors are between 4%

and 7%, while for HBBP they are under 2%. Further down,

EBS errors reach 15-25% for POP, RET_NEAR and JMP, while

HBBP produces results with less than 1% error.

These results are not an isolated case, and they underline

the need for HBBP, as opposed to raw EBS or LBR, even

with custom enhancements applied.

C. Fitter

Fitter is a scientific program written in C++, fitting

sparse position measurements into tracks of object

movements in 3D space (related to [27]). It is representative

of compact, high-performance code, that is both CPU-

intensive and vectorizable. In production, this code runs in

low-latency environments and must produce results within

1-2µs. However, with SDE, the three variants (x87 scalar,

SSE, and AVX) of the application run 4-120x more slowly,

increasing response time beyond production limits and

necessitating a benchmark extraction.

In the SSE variant, we observe 13% errors on LBR, vs.

2-3% for EBS and HBBP. However, the same benchmark in

AVX mode has 12% errors on EBS, vs. 2% for LBR and

HBBP. Hence, neither EBS nor LBR alone can reasonably

be used to study performance, while HBBP provides good

accuracy for all versions of the benchmark.

When profiling code with profilers such as perf or Intel

VTune, it is often clear where the time is spent, but not how.

Instruction mixes can be particularly useful to study

compute-intensive workloads and vectorization, as in this

case.

The workload is examined in three variants, each having

a different underlying structure for computation: x87 scalar,

SSE and AVX single precision vectors. While working with

a beta version of the Intel compiler, we noticed that AVX

performance was significantly (20x) lower than expected

from previous compilations. Expected values were

determined using earlier compilations and runs, and

supported with data from PIN. We suspected a compiler

regression related to AVX instruction generation, and

possible SSE-AVX transitions (which generate penalties on

some CPUs). However, through the use of HBBP we

concluded that the number of executed vector instructions

was not suspicious. At the same time, the instruction mix

showed a high number of call instructions, which in turn led

us to trace the problem to the lack of inlining. The problem

was thus indeed a compiler regression linked to AVX

support, but not at all a problem with the emission of AVX

instructions.

Table 6 presents our results obtained with this

benchmark. The expected values are shown in the upper half

of the table, and the measured values in the bottom half.

Values for the problematic AVX code are shown in the

column labelled “AVX”, while values for the fixed version

in the rightmost column labelled “AVX fix”.

D. Synthetic kernel benchmark

Instruction mixes in kernel space might be of interest to

device driver writers and OS architects. Such experts are

particularly conscious of the code they write, as it is more

difficult to debug, and the kernel environment puts

constraints on code style (e.g., avoidance of floating point)

and available compiler optimizations.

Table 5: Test40 evaluation

 Clean HBBP SDE

Runtime [s] 27.1 27.7 277.0

Time penalty N/A 2.3% 923%

Avg W Error N/A 0.94% 0%

Figure 3: Test40 instruction execution counts (left) and error

percentages (right), for the top 20 instruction executing
mnemonics

Figure 4: Test40 error percentages for HBBP, LBR and EBS, for

the top 20 instruction executing mnemonics

To show the validity of our approach in kernel space, we

construct a small synthetic prime number search benchmark

in user space. We then insert the same code into a live

kernel as a device driver module, and trigger it from user

space by reads. Calls to kernel code are separated in time to

simulate real behavior. Table 7 shows instruction

frequencies for the user-level code, obtained by both SDE

and HBBP, and for the kernel-level code, obtained by

HBBP. As can be seen, the results are in very good

agreement. Results for EBS and LBR are not shown in

detail, but EBS errors reach 15%, while LBR and HBBP

errors are around 1%.

E. Other reports

We make the following additional short reports on

detection capabilities in a concise manner:

 HBBP was used to correctly detect a vectorization

opportunity and an issue with #omp simd reduction in

CLForward, an online HPC code. HBBP signaled a large

number of scalar instructions. Developers made the code

more compiler-friendly, a large fraction of these scalar

instructions were replaced by a smaller number of

packed instructions, and performance improved by 8%

(see Table 8)

 HBBP was used to search for suspicious convert

instructions (e.g., CVTSI2SD) in random number

generation. Ultimately, it was shown that contrary to a

30% penalty expectation, the issue had only a 5%

impact. Optimization efforts moved elsewhere.

 HBBP was used to characterize heap pressure in the OS

kernel on an HPC simulation. Developers remodeled

calloc() calls and cut 15-20% system time to nearly 0.

IX. RELATED WORK

BBECs can be extracted with minimal overhead at

runtime using a variety of PMU-based sampling methods

surveyed by Nowak et al. [11] and further discussed in this

paper. Modern tuning methods, such as those implemented

in Intel VTune or Gooda [28] use LBRs to generate partial

call graphs and infer execution paths from the gathered data.

However, we use LBR content and disassembly for BBECs,

by sampling on an event which relates to the frequency of

taken branches.

Ammons et al. [29] and Ball et al. [30] focus primarily

on context information added to PMU counters through

instrumentation, for the purpose of monitoring and

predicting workload code paths. These methods may have

overheads under 2x, but are not fully precise and change

counter values during profiling. HBBP is a simpler, purely

PMU-based approach and does not use software context

information nor disturb the workloads (in particular the

caches).

We use PMU counting for cross-reference. It has a

number of documented, verified and understood issues,

described in the works of Weaver [31]–[33], [34] and

Mytkowicz [35], [36].

X. CONCLUSIONS

In this paper we demonstrated HBBP, a method for

obtaining dynamic instruction mixes in near real time, using

modern PMUs. HBBP does not disturb workloads in terms

of the execution path nor runtime and is capable of

providing instruction mixes also for code running in kernel

space. HBBP collection incurs limited runtime overheads,

below 1.3% on average, with an average error below 2.1% -

suitable for tests in production environments and on

applications with long runtimes.

Table 6: Expected vs. Measured values (millions) for the Fitter

benchmark. AVX fix denotes inlining fixed

 x87 SSE AVX AVX fix

E
x

p
ec

te
d

 x87 inst 512 374 367 367

SSE inst 10’898 2’724 0 0

AVX inst 0 0 1’387 1’387

CALLs 107 106 99 99

Time/track 1.71us 0.50us 0.38us 0.38us

M
ea

su
re

d
 x87 inst 493 362 3’425 397

SSE inst 10’886 2’736 0 0

AVX inst 0 0 1’439 1’387

CALLs 103 100 6’150 97

Time/track 1.73us 0.51us 7.78us 0.39us

 AvgW Err 0.96% 2.97% 1.78% 2.65%

Table 7: Instructions in the kernel sample (millions)

Method SDE HBBP

Module
hello

(user space)

hello.ko

(kernel)

hello

(user space)

Function hello_u hello_k hello_u

ADD 1286 1289 1283

CDQE 57 55 53

CMP 550 547 545

IMUL 57 55 53

JLE 191 188 188

JNLE 57 55 56

JNZ 302 304 302

JZ 151 148 150

MOV 823 808 808

MOVSXD 191 188 188

SUB 191 188 188

TEST 151 148 150

Total 4005 3972 3964

Table 8: HBBP view of CLForward vectorization (billions of
instructions). A large number of scalar instructions has been

replaced by a smaller number of packed (vectorized) ones.

INST

SET
PACKING BEFORE AFTER

AVX

16.2 14.3

NONE 0.0 3.3

 SCALAR 14.7 0.4

 PACKED 1.5 10.6

BASE

2.9 1.5

NONE 2.9 1.5

TOTAL 19.2 15.8

ACKNOWLEDGMENT

We thank our colleagues for the invaluable input to this

work: Omar Awile (CERN), Mirela-Madalina Botezatu

(Google), Stephane Eranian (Google), Vincenzo Innocente

(CERN), David Levinthal (Microsoft), Sebastien Valat

(CERN), Liviu Valsan (CERN).

REFERENCES

[1] S. K. S. Ma and L. L. Wear, “Dynamic instruction set evaluation,”

1974, pp. 9–11.
[2] R. L. Sites, “The Alpha AXP Architecture and 21064 Processor,”

IEEE Micro, 1993.

[3] R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan,
“Evaluating MMX technology using DSP and multimedia

applications,” in Proceedings of the 31st annual ACM/IEEE

international symposium on Microarchitecture, 1998, pp. 37–46.
[4] “AutoFDO - GCC Wiki.” [Online]. Available:

https://gcc.gnu.org/wiki/AutoFDO. [Accessed: 16-Nov-2016].

[5] A. Yasin, “A Top-Down Method for Performance Analysis and
Counters Architecture,” presented at the 2014 IEEE International

Symposium Performance Analysis of Systems and Software

(ISPASS), 2014.
[6] A. Nowak, D. Levinthal, and W. Zwaenepoel, “Hierarchical cycle

accounting: a new method for application performance tuning,” in

Performance Analysis of Systems and Software (ISPASS), 2015
IEEE International Symposium on, 2015, pp. 112–123.

[7] D. Levinthal, “Performance Analysis and software optimization for

HPC on Intel Core i7, Xeon 5500 and 5600 family Processors,”
CERN, Jul-2010.

[8] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson, “Fine-

Grain Power Breakdown of Modern Out-of-Order Cores and Its
Implications on Skylake-Based Systems,” ACM Transactions on

Architecture and Code Optimization, vol. 13, no. 4, pp. 1–25, Dec.

2016.
[9] Y. S. Shao and D. Brooks, “Energy characterization and

instruction-level energy model of Intel’s Xeon Phi processor,” in

Proceedings of the 2013 International Symposium on Low Power
Electronics and Design, 2013, pp. 389–394.

[10] S. K. Sadasivam and S. T. Selvi, “Comparative performance study

of SPEC INT 2006 benchmarks on nehalem, sandybridge and
haswell microarchitectures,” in Computer, Information and

Telecommunication Systems (CITS), 2015 International Conference

on, 2015, pp. 1–5.
[11] A. Nowak, A. Yasin, A. Mendelson, and W. Zwaenepoel,

“Establishing a Base of Trust with Performance Counters for

Enterprise Workloads,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15), Santa Clara, CA, 2015, pp. 541–

548.

[12] S. Moore, “A comparison of counting and sampling modes of using
performance monitoring hardware,” Computational Science—ICCS

2002, pp. 904–912, 2002.
[13] G. Bitzes and A. Nowak, “The overhead of profiling using PMU

hardware counters,” CERN openlab report, 2014.

[14] Intel Corporation, “PerfMon Events,” Intel Processor Event

Reference. [Online]. Available:

https://download.01.org/perfmon/index/. [Accessed: 28-Feb-2018].

[15] D. Chen et al., “Taming Hardware Event Samples for Precise and
Versatile Feedback Directed Optimizations,” IEEE Transactions on

Computers, vol. PP, no. 99, p. 1, 2013.

[16] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen,
Classification and regression trees. CRC press, 1984.

[17] N. S. Altman, “An Introduction to Kernel and Nearest-Neighbor

Nonparametric Regression,” The American Statistician, vol. 46, no.
3, pp. 175–185, Aug. 1992.

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Machine

Learning, vol. 20, no. 3, pp. 273–297, Sep. 1995.

[19] L. Buitinck et al., “API design for machine learning software:

experiences from the scikit-learn project,” arXiv:1309.0238 [cs],
Sep. 2013.

[20] S. Eranian, “perfmon2 - libpfm4,” 11-Oct-2016. [Online].

Available: https://sourceforge.net/projects/perfmon2/files/libpfm4/.
[Accessed: 11-Oct-2016].

[21] M. Charney, Intel X86 Encoder Decoder Software Library. 2016.

[22] A. Fog, “Instruction Tables.” Technical University of Denmark, 09-
Jan-2016.

[23] C.-K. Luk et al., “Pin: building customized program analysis tools

with dynamic instrumentation,” in Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and

implementation, New York, NY, USA, 2005, pp. 190–200.

[24] “Intel Software Development Emulator.” [Online]. Available:
https://software.intel.com/en-us/articles/pre-release-license-

agreement-for-intel-software-development-emulator-accept-end-

user-license-agreement-and-download. [Accessed: 01-Feb-2016].
[25] J. R. Larus and E. Schnarr, “EEL: Machine-independent executable

editing,” in ACM Sigplan Notices, 1995, vol. 30, pp. 291–300.

[26] J. Apostolakis, “Geant4—a simulation toolkit,” Nuclear
Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment,

vol. 506, no. 3, pp. 250–303, Jul. 2003.
[27] I. Kisel, I. Kulakov, and M. Zyzak, “Parallel Implementation of the

KFParticle Vertexing Package for the CBM and ALICE

Experiments,” in Computing in High Energy and Nuclear Physics
2012.

[28] Google, Gooda - a pmu event analysis package
(http://code.google.com/p/gooda/). 2012.

[29] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware

performance counters with flow and context sensitive profiling,”
ACM Sigplan Notices, vol. 32, no. 5, pp. 85–96, 1997.

[30] T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of

the 29th annual ACM/IEEE international symposium on
Microarchitecture, 1996, pp. 46–57.

[31] V. M. Weaver and S. A. McKee, “Can hardware performance

counters be trusted?,” in Workload Characterization, 2008. IISWC
2008. IEEE International Symposium on, 2008, pp. 141–150.

[32] V. Weaver, “Can Hardware Performance Counters Produce

Expected, Deterministic Results?,” presented at the 3rd Workshop
on Functionality of Hardware Performance Monitoring, 2010.

[33] V. Weaver, D. Terpstra, and S. Moore, “Non-determinism and

overcount on modern hardware performance counter
implementations,” in Proc. IEEE International Symposium on

Performance Analysis of Systems and Software, 2013.

[34] V. M. Weaver, “Self-monitoring overhead of the Linux perf_ event
performance counter interface,” in Performance Analysis of

Systems and Software (ISPASS), 2015 IEEE International

Symposium on, 2015, pp. 102–111.
[35] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney, “We

have it easy, but do we have it right?,” in Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium on,
2008, pp. 1–7.

[36] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,

“Producing wrong data without doing anything obviously wrong!,”
in ACM Sigplan Notices, 2009, vol. 44, pp. 265–276.

