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A Cross-platform Evaluation of Graphics Shader
Compiler Optimization

Lewis Crawford, Michael O’Boyle
School of Informatics, University of Edinburgh, UK

Abstract—For real-time graphics applications such as games
and virtual reality, performance is crucial to provide a smooth
user experience. Central to this is the performance of shader
programs which render images on the GPU. The rise of low-level
graphics APIs such as Vulkan means compilation tools play an
increasingly important role in the graphics ecosystem. However,
despite the importance of graphics, there is little published work
on the impact of compiler optimization.

This paper explores common features of graphics shaders, and
examines the impact and applicability of common optimizations
such as loop unrolling, and arithmetic reassociation. Combi-
nations of optimizations are evaluated via exhaustive search
across a wide set of shaders from the GFXBench 4.0 benchmark
suite. Their impact is assessed across three desktop and two
mobile GPUs from different vendors. We show that compiler
optimization can have significant positive and negative impacts
which vary across optimisations, benchmarks and platforms.

I. INTRODUCTION

High quality graphics are essential in modern user inter-
faces. A key issue is device performance which is critical to
graphics quality especially in real-time applications such as
computer games or augmented reality [1] [2]. Performance
affects not only the visual fidelity of a game, but also how
responsive it feels. To satisfy the ever-increasing demands of
real-time graphics requires hardware acceleration using highly
parallel graphics processing units (GPUs).

Graphics is an extremely important area of computing; the
computer graphics market is projected to be worth $215 billion
by 2024 [3]. Despite the importance of graphics, there are
relatively few papers examining the impact of computer archi-
tecture or the system stack on performance. While there are
many papers on modifying architecture or improving compiler
optimization for compute workloads, the majority of graphics
papers focus on algorithmic issues. This paper examines the
impact of compiler optimizations on graphics workloads and
shows they can significantly impact performance.

Modern computer games are large and complex pieces
of software. Achieving good performance on any particular
target platform requires expert knowledge. Games rely not
only on the software written by a developer, but also content
from 2D or 3D artists. They also depend on GPUs and
drivers from different hardware vendors and third-party game-
engines. The overall software stack is shown in Figure 1.
This complex stack of interconnected software and hardware
makes achieving good performance on one platform without
negatively affecting any others, a challenging task.

The GPU is programmed using small graphics programs
called ”shaders”, which run in parallel as stages of a pro-
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grammable rendering pipeline (see Figure 2). The most com-
putationally intensive part is often the fragment shader, which
determines the RGBA colour of each pixel inside a given
triangle. Little academic work has been done on optimizing
shaders. This is partly due in part to the way that most
of the graphics ecosystem is structured, which requires any
transformations on shaders to occur at a source-to-source level.
Recent graphics technologies such as Vulkan [4] provide
greater access to shader compiler infrastructure. However, due
to its immaturity, there are few tools available. In this paper,
we use LunarGlass [5], an existing source-to-source shader
optimization tool for OpenGL [6]. We examine its impact on
performance across different platforms, and extend it with new
optimizations types, which are equally applicable for Vulkan.
The next section provides a motivating example illustrating
the impact of transformations on different platforms. This is
followed by description of the optimizations explored and a
detailed description of the experimental setup. We characterise
the benchmarks examined and then provide a detailed analy-
sis of the impact of optimzations across platforms. This is
followed by related work and some concluding remarks.

II. MOTIVATING EXAMPLE

Listing 1 shows an example based on a GFXBench 4.0
shader [7] where offline compiler optimizations give per-
formance improvements of up to 45% (see Figure 3). The



Listing 1. Before Optimization
out vecd4 fragColor; in vec2 uv;
uniform sampler2D tex;
uniform vecd4 ambient;
/#+Main Function#/
//9 symmetric weights + sample offsets
const vec4d[] weights = vecd[] (
vec4 (0.01), , vec4(0.01));
const vec2[] offsets = vec2[] (
vec2 (-0.0083), , vec2(0.0083));
float weightTotal = 0.0;
fragColor = vec4(0.0);
for(int i = 0; 1 < 9; i++){
weightTotal += weights([i][0];
fragColor += weights[i] «*
texture (tex,uv+offsets[i]) *3.0xambient;
}
fragColor /= weightTotal;

Listing 2. After Optimization
/#*Main Functionx/
fragColor = vec4(0.0);

vecd fcl = texture(tex,uv+vec2(-0.0083));
vecd fc9 = texture (tex,uv+vec2(0.0083));
vecd t0 = fc5  vecd4 (1.83);

vecd tl = (fc4 + fc6) * vecd (0.63);

vecd t2 = (fc3 + fc7) * vecd (0.42);

vecd t3 = (fc2 + fc8) x vecd (0.15);

vecd t4 = (fcl + fc9) * vecd (0.03);

vecd4 sum = t4 + (£t3 + (t2 + (£t0 + tl1)));
vecd fac = vec4 (0.699301) * ambient;
fragColor = sum * fac;

AMD

NVIDIA  ARM Qualcomm

10

2 0

S —-10
°

9 —20
=x

—30

GFXBench 4.0 Fragment Shader (Sorted)

Fig. 3. Code before and after optimization, with the percentage performance gains on each platform. However, these optimizations are not universally positive,
as seen in the distribution of percentage speed-ups across all GFX 4.0 benchmarks on the ARM Mali-T880 platform here.

example fragment shader repeatedly samples from a 2D image
texture tex at various offsets from the coordinates uv (passed
in from the vertex shader). The weighted sum of these samples
is written to fragColor as the final pixel output.

This code has many optimization opportunities. Firstly,
it contains an unrollable loop with 9 constant iterations.
Once unrolled, the sum for weightTotal contains only
constants, so can be completely evaluated. We can also invert
the weightTotal before applying it, thereby changing 8
additions plus a division into a single multiplication. Each
value summed for fragColor has a common multiple
of 3.0xambient which can be factorised out, leaving 1
multiplication instead of 9. The constant 3.0 can then be
folded into the weightTotal result. Because the weights
are symmetric, pairs of texture samples will share weights as
common multiples which can be factorised out too.

For this example, optimizations provide large performance
impacts, with speed-ups of 7-28% on desktop, and 35-45% on
mobile. This means GPU vendor’s JIT compilers do not catch
every optimization opportunity, and offline compilers can have
a large impact. It also shows that performance impacts can
vary drastically depending on which GPU is used.

Despite this large positive impact here, applying these opti-
mizations to all fragment shaders in the GFX 4.0 benchmark,
gives very variable performance results. In Figure 3, ARM’s
Mali-T880 gains up to 10% and loses of up to 30%. This

shows us improvement is possible in real-world shaders, but
a one-size-fits-all approach often does more harm than good.
Smarter techniques to choose when and how to optimize each
shader for each platform are necessary to reap the performance
rewards but avoid the large performance pitfalls.

III. OPTIMIZATIONS

Here, we describe the source-to-source optimization tech-
niques we explored, and the tools we used to do so.

A. LunarGlass Optimization Framework

To perform the source-to-source optimizations on GLSL [8]
shader code, we used the LunarGlass framework from LunarG.
This is a modified version of LLVM 3.4 [9], with several
extensions for GLSL-specific intrinsic functions, optimization
passes, and a GLSL front and back end. The default optimiza-
tion passes which can be toggled via command-line flags are:

o ADCE - Aggressive dead code elimination.

o Hoist - Flatten conditionals by changing assignments
inside “’if” blocks into select “select” instructions.

e Unroll - Simple loop unrolling for constant loop indices.

e Coalesce - Change multiple individual vector element
insertions into a single swizzled vector assignment.

e GVN - Global value numbering.

o Reassociate - Reorder integer arithmetic to simplify it
(or some floating-point expressions like f x 0).



Several other LLVM optimizations were included, such
as constant folding, common sub-expression elimination, and
redundant load-store elimination. However, we did not exper-
iment with these passes as they were not exposed by default
via command-line flags, and some were necessary passes to
canonicalize instructions for future optimizations.

We took these pre-existing passes, added some extra ones to
handle unsafe floating point arithmetic (see below), and then
used iterative compilation to explore their impacts. Because
only 8 flags were available, it was possible to exhaustively
apply all 256 possible combinations of passes. Many of
these resulted in duplicated source code (see Section V),
so measuring the performance impact of all these generated
outputs was tractable in this case. It may be possible to use
results from this sort of exhaustive analysis to guide better flag
selection heuristics or machine learning in future work.

B. Additional Unsafe Optimizations

In addition to LunarGlass’s default passes, we added sev-
eral extra unsafe floating point optimizations. Many of these
mimicked parts of the integer reassociation pass to perform
simple arithmetic simplifications such as:

ab+ ac — a(b+ c)
a+a+a— 3a
a+b—a—b

We also re-ordered arithmetic operations to group constants
together (for better constant folding and propagation), and
to group scalar operations before turning the results into
vectors. This scalar reassociation was designed to minimize
unnecessary registers slots holding temporary vector results,
when single scalar registers would suffice:

fi(f2v) — (fifo)v

c1(cav) — (ere2)v

Where f;, fo are scalar floats, and c;, co are constants.
This re-ordering also canonicalized the sequence in which the
operands occurred, which could allow for greater common-
sub-expression elimination opportunities in subsequent passes.
Other identities such as multiplying by 1, or adding 0 were
also optimized out, and division by constant operands was
changed into multiplication by the operand’s inverse (which
could be determined at compile time).

The aim of these additional passes was to explore the
impact of unsafe floating point optimizations which could not
be implemented in a conformant GPU driver’s compiler, but
would fit well in an offline optimization framework where the
developer can control when they are used.

C. Artefacts

Because OpenGL drivers only accepted shaders as GLSL
source-code (until the recent SPIR-V extension was stan-
dardized in OpenGL 4.6), we had to use source-to-source
optimizations. However, this lead to artefacts that would

not occur in typical human-written GLSL code, and could
sometimes negatively impact the code’s performance. Such
artefacts included:

a) Scalarized Matric Multiplications: GLSL has prim-
itive types for both vectors and matrices, and humans may
write code such as:

mat4d ml, m2; vecd v;
mat4d m = ml * m2; vecd res = m * V;

When this is processed in LunarGlass, however, the matrices
are divided up into their individual scalar components, and
instead of 2 lines of matrix-vector calculations, tens of lines
worth of scalarized calculations will be generated in Lunar-
Glass’s output GLSL.

b) Unnecessary Vectorization: In LLVM, operands for
addition, multiplication etc. must be of the same type. This
means when adding or multiplying a vector, the operands must
both be vectors. In GLSL, the syntax allows you to multiply
both vectors and matrices by scalars:

float f; vecd v; vecd res = v x f;

Since LunarGlass is based on LLVM, it has to vectorize
these floating point values before multiplying them. This
unnecessarily increases the number of vector constants and
vectorization instructions, so may affect the amount of regis-
ters or constant storage memory for shaders.

¢) Large Basic Blocks: The conditional flattening and
loop unrolling passes result in very large basic blocks in the
generated code. This can put pressure on the register allocators
in the GPU vendor’s compiler.

d) Mobile Shaders: In order to run the desktop OpenGL
shaders on mobile devices (which use OpenGL ES), we first
converted them to SPIR-V using glslang, and then used SPIR-
V Cross to generate GLES compatible shaders. Having passed
through so many compilation tools means the code picked up
slight quirks and artefacts from each one in turn, and was often
very different from the original desktop GLSL shader. As a
result, some of the measurements on mobile may be impacted
by artefacts that are not present on desktop.

IV. EXPERIMENTAL SETUP

This section describes the shaders, execution framework,
hardware, and timing techniques used to measure the perfor-
mance impact of optimizations from Section III

A. Benchmarks

For the timing experiments, we chose fragment shaders from
GFXBench 4.0. This is a graphics hardware benchmarking
suite from Kishonti [7], designed as standard way to compare
the real-time rendering performance of GPUs from different
vendors. The OpenGL version of GFXBench 4.0 contains
several 3D animated scenes designed to use advanced and
expensive rendering techniques to test the GPU’s capability
under heavy loads. Performance on these benchmarks is im-
portant to vendors because they are used to compare against
GPUs from competitors.



We chose GFXBench 4.0 because it is a well-known, self-
contained, cross-platform benchmark that covers a variety of
different and potentially complex situations to test out shader
compilation techniques. However, it is not open source, so
shaders had to be extracted from the graphics driver at run-
time. Because OpenGL’s shaders are submitted to the GPU-
vendor’s compiler stack as GLSL source-code, they can be
easily intercepted via the Linux’s Mesa graphics drivers.

Many of the benchmark’s shaders follow the “iibershader”
pattern, where a single file containing numerous graphics
techniques is customised via preprocessor directives to enable
or disable sections when generating shader instances. As such,
some shaders are identical apart from preprocessor #define
statements, forming families of similar shaders where some
optimizations apply frequently because all include code seg-
ment, despite being specialized in different ways elsewhere.

B. Shader Execution Enviroment

To accurately time shaders, we executed them in an isolated
context. Injecting them back into GFXBench would cause the
performance impact of any single-shader optimizations to be
lost in the noise of other shaders and CPU computations. As
such, we built a custom measurement framework repeatedly
rendered full-screen quads using the specified fragment shader,
and timed the execution of each draw-call.

This work focuses on fragment shaders, as they are required
in every graphics pipeline, are often more complex and varied
than vertex shaders, and their performance can be more easily
isolated from other pipeline stages. All the optimizations in
Section III work for every shader type, but performance data
was only measured for fragment shaders for this paper.

To reduce the overhead of non-fragment shader stages, we
drew only full-screen triangles (clipped to 500*500 quads
during rasterization), so only 3 vertex shader calls are required
for every 250000 fragment shader invocations. Each frame,
1000 triangles (100 on mobile devices) were drawn front-
to-back, and the draw calls were timed using queries to
GL_TIME_ELAPSED. Although these queries can be noisy
and introduce profiling overhead, and better vendor-specific
instrumentation may be available, GL_TIME_ELAPSED pro-
vided a simple cross-vendor comparison metric that was accu-
rate enough for basic performance results. The tests were run
for 100 frames, and then repeated 5 times per shader variant.
These large numbers of samples are used to reduce noise from
environmental factors, profiling overhead, and measurement
inaccuracies in the timer query APL

To run a fragment shader, we require a vertex shader with
a matching interface. Instead of using GFXBench’s vertex
shaders, we automatically generate simplified ones based
on the fragment shader’s inputs. This reduces unnecessary
overheads, provides flexibility to allow for shaders from other
sources, and allows for a simple adjustment of the full-screen
triangle’s depth via a uniform variable in the vertex shader.

Some vendors also require all uniform variables and texture
bindings to be initialised, so we used shader introspection to
ascertain types and sizes for all uniform inputs. The framework

then initialised them automatically to default values (e.g.
0.5 for floats, or a colourfully-patterned opaque power-of-
two image for texture bindings). This is not representative
of typical shader input, and may circumvent some data-
dependent code paths. More complex techniques like input
fuzzing, or extracting real-world inputs from GFXBench via
instrumentation may provide better results, but experiments
would take far longer to run due to a combinatorial explosion
in input values. As such, we used the simple approach of using
constant inputs, which still gives a broad overview of perfor-
mance characteristics without the additional implementation
complexity and run-time overhead.

C. Hardware

Timing experiments were run on 3 PCs and 2 mobile
phones, each with a GPU from a different hardware vendor.

The desktop platforms were fitted with identical hardware
apart from their GPUs. Each had 16GB of RAM, an i7-6700K
CPU, and Ubuntu 16.10 installed. The GPUs and drivers
chosen for each vendor were as follows:

o NVIDIA - GeForce GTX 1080, with OpenGL 4.5 and
NVIDIA proprietry driver version 375.39

e AMD - RX 480 (8GB), with OpenGL 4.5 and Gallium
0.4 on AMD POLARIS10 (DRM 3.3.0/ 4.8.0-37-generic,
LLVM 3.9.1) from Mesa 17.0.0-devel

o Intel - HD Graphics 530 (embedded on the i7-6700K),
with OpenGL 4.5 and Mesa DRI Intel(R) HD Graphics
530 (Skylake GT2) from Mesa 17.0.0-devel

On Mobile, we used an HTC10 (with a Qualcomm GPU),
and a Samsung Galaxy S7 (with an ARM GPU) to test on.
Although GPU timer queries were integrated into desktop
OpenGL 3.3 in 2010, they are only available on mobile via
the EXT_disjoint_timer_query extension these phones were
selected to support this. Both ran Android 7.0, and had the
following GPUs and and CPUs:

e ARM - Mali-T880 MP12 (on Exynos 8890 with quad-
code Mongoose CPU and quad-core Cortex-A53 CPU)

e Qualcomm - Adreno 530 (on Snapdragon 820 with Kryo
quad-core CPU)

V. BENCHMARKS

Graphics shaders are somewhat different in nature from
typical CPU code or other forms of GPGPU code. Here, we
examine the nature of the benchmark shaders, including their
typical complexity, and their susceptibility to the optimization
passes.

A. Static Code Size

Subfigure 4a, roughly illustrates the shaders’ complexities
using “lines of code” as a simple metric. This was measured
after running the shaders through a preprocessor to get a more
accurate idea of their complexity, because most of the raw
GLSL shaders are generated from much larger base shaders
that get split-up and recombined with GLSL preprocessor
directives. This cuts down on the number of unused lines,
but there are often still many unused function definitions left
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over from the larger base shader, that would be removed by
dead-code elimination, but still contribute to the “lines of
code” metric. Non-executable lines such as uniform and input
parameter declaration, comments, white-space, lone brackets
etc. are all ignored in when calculating these numbers too.

A shader’s “lines of code” follows a power-law-like dis-
tribution, with very few lengthy shaders, and a numerous
simpler shaders (many containing only a few lines). However,
even the longest shaders are only around 300 lines. The
majority of shaders are less than 50 lines (which may include
unused function definitions too). This shows us that shaders are
typically much smaller than an average piece of software. The
shaders in the benchmark suite typically consist of long se-
quences of arithmetic, with only a small number of branches in
their control flow. Loops are surprisingly uncommon in these
shaders, and they mostly follow straight lines of execution
with 1-3 branches, and large basic blocks.

B. Dynamic Cycle Count

Subfigure 4b uses ARM’s static shader analyser to calculate
how many cycles each shader takes on ARM’s Mali GPU.
Although this metric is platform-specific, it avoids problems
like loops and unused function definitions that affect the “lines
of code” metric. The ARM cycle count graph’s power-law-like
shape is less pronounced, but the distribution is quite similar.

Both graphs have long tails with a large number of low-
complexity shaders. These simple shaders give less opportu-
nities for compiler optimizations, as there are only a limited
number of lines of code to deal with, and therefore a lower
probability of finding instructions that can be optimized.

C. Uniqueness

Subfigure 4c shows how many unique variants LunarGlass
generates for each shader. For the 8 possible flags, there are
256 potential combinations. In practice, however, most of the
flags do not alter the source code, resulting in large numbers
of duplicate shaders getting outputted. Even the shader with
the most variants only has 48 distinct versions, with most of
the others having less than 10.

Having so few unique variants makes it possible to exhaus-
tively explore the search space, but there are very few data
points for some of the optimization types. Since most shaders
have < 50 lines of code, it is unsurprising that there are so
few unique variants. Also, larger shaders with more interesting
control flow are more likely to be affected by optimizations,
but speed-ups here can sometimes be dwarfed by the long
overall execution time.

VI. RESULTS

This section examines the performance impact of the op-
timizations from Section III on the GFXBench 4.0 fragment
shaders (see IV-A) across all target platforms (see IV-C). We
discuss the effectiveness and applicability of the optimizations,
and the performance variability across GPUs.

A. Overall Performance
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Fig. 5. Average percentage speed-ups across all shaders.

In Figure 5, our technique achieves average speed-ups of
1-4% across all shaders. In contrast, the default LunarGlass
transformations give average slow-downs of 0-0.7%.

For some shaders, optimization leads to more substantial
gains. The 30 most improved shaders on each platform (Fig-
ure 6), show average speed-ups of 4-13%. Some shaders
experience gains as high as 25% (see Figure 7).



Table I. Best static flags for each platform: Flags that maximise the average speed-up across all the benchmark shaders.

Flag
} Platform H ADCE I Coalesce I GVN | Reassociate | 5 Unroll I Hoist [ FP Reassociate | Div to Mul |
Intel v v v v
AMD v v v v
NVIDIA v v - v -
ARM v v v v v - -
Qualcomm 4 - - 4 4
All v v v v
12[[== Best Flags This is due the relative simplicity of many shaders in the
B Best Static Flags benchmark suite (see Section V), the low applicability of many
10} | mm Defautt Flags optimizations (see Figure 8).
- 8 There are also cases where all optimizations cause slow-
?3 downs due source-to-source compilation artefacts (see III-C),
26 or instances where loop unrolling and conditional flattening
2 4 cause huge basic blocks which can strain register allocation
code in the GPU vendor’s compiler.
2 Despite these negative and near-zero cases, where the opti-
0 mal strategy is leaving shaders untouched, there are still non-

Intel

AMD NVIDIA ARM Qualcomm

Fig. 6. Average speed-up for 30 shaders with the highest average per platform.

B. Best Static Flags

The ”best static” flags in these diagrams are chosen by
selecting the flag sequence with the highest average speedup
per platform for all shaders. These flags are shown in Table I,
and represent the optimal compilation settings to use if you
cannot adapt on a per-shader basis. We can see that most
platforms share similar flag preferences (ARM being the
notable exception).

It is interesting note the best flags chosen experimentally
are not the flags enabled by default (apart from for ARM).
The default GVN, integer reassociation, and hoisting passes
are detrimental on average despite being enabled by default.
The ADCE pass never changes the output code, so can be
safely omitted from the minimal optimal flag selection. Also,
the new unsafe floating point passes generally have a positive
enough impact to be included in the best static set of flags for
all platforms (apart from ARM).

This similarity in optimal flags shows a surprising amount
of agreement on which optimizations are beneficial to most
vendors. However, in Subsection VI-D we can see that al-
though vendors share preferences for the presence or absence
of optimizations, the actual performance impact varies.

C. Per-shader Results

Figure 7 shows the performance distributions across all the
individual shaders. All graphs have peaks and troughs on
either end of a large near-zero mid-section. This demonstrates
that frequently, optimization has little effect on shaders, but
there are large performance peaks to strive for, and large
performance troughs to avoid.

These graphs have by the large near-zero tails (particularly
NVIDIA and Intel), where optimizations have little impact.

negligible performance gains available for around 25%.

On AMD, the biggest gains are available from some of the
default passes like loop unrolling, so the default LunarGlass
results are quite close to the optimal speed-ups.

On platforms like Qualcomm and Intel, much of the per-
formance boost comes from the new unsafe floating point
reassociation passes, and the default LunarGlass flags are
closer to zero in these situations. This results in a larger blue
area on the graph, because the main performance gains are
from enabling these optimizations for all shaders, so there is
less requirement to iteratively tune them.

On ARM and NVIDIA, there are large green areas on
the graphs, and small blue ones (the best-static and default
LunarGlass settings are the same on ARM). This indicates that
there is more to be gained from better flag selection heuristics
on these platforms, as a single static set of flags does not
guarantee significant performance improvement here.

All the graphs in Figure 7 and demonstrate that there
are both large performance gains and performance pitfalls of
between 10-30%. In many cases, the combination of boosting
the maximum performance with the new custom passes, and
eliminating poor optimizations means we are able to signifi-
cantly improve over the default LunarGlass results.

D. Per-Flag Results

Here, we examine each flag’s individual applicability and
performance impact for each platform. Figure 8 show how
frequently each flag applies to a shader, and how often using
that flag results in optimal code. Green means it has a positive
impact and denotes the number of times where the flag is
frequently in the best performing codes, red means it has
changed the output code while blue denotes the amount of
code unaffected by the transformation

Figure 9 shows the performance impacts of each flag when
used in isolation. Due to LunarGlass’s compilation artefacts
(see III-C), we use a baseline of LunarGlass running with all
optimizations disabled here, rather than an unaltered shader, to
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the best static set of flags from Table I

ensures we actually measure the optimization pass’s impact,
rather than the effect of the code generation artefacts. All the
performance violins are centred close to zero due to all the
low complexity shaders where the flags either do not affect
the code (see Subfigure 4c), or change the source but do not
impact the execution speed. As such, the extents and general
shape of the violins are more interesting to observe than the
mean values.

1) Aggressive Dead Code Elimination (ADCE): As can be
seen from Subfigure 8h ADCE in practise never changes the
source output. There is no green region showing it has a
positive impact or a red region showing it has any impact. It
should result in exactly zero speed up in the absence of noise,
and can likely be safely omitted for most real-world shaders.
However, this does not imply that dead code elimination
itself has no impact. Trivially dead instructions get removed
regardless of which flags are set, so ADCE’s lack of effect
simply means LLVM’s isTriviallyDead function (plus
extensions for GLSL-specific commands like discard) are
sufficient to remove all the dead code.

2) Global Value Numbering (GVN): GVN applies mainly to
the few more complex shaders with many unique optimization
variants, and generally has negative but near-zero impact. On
Intel, it’s results are very small, but generally negative. On
NVIDIA, it’s effects are centred around zero, but with one
one example of 5% slowdown dragging its average impact
down. Qualcomm, on the other hand, experiences gains of
around 15% in some cases of using this flag, resulting on its
average speedup being positive. Across all platforms, GVN is
in optimal set for less than 50% of the shaders it applies to, so
seldom improves code, even in the few cases where it applies.

3) Reassociate: The integer reassociation pass (Subfig-
ure 8c) is rarely applicable, because integers occur very rarely
in GLSL shaders. Most cases where it has any impact are
actually removing unnecessary additions of zero in floating
point calculations, rather than optimizing integer calculations.
This pass near-zero impact in most cases, and makes things
worse in a few, especially on NVIDIA where performance

dips by 6% in one case. Integer reassociation almost never
occurs in a shader’s optimal set of flags, largely because its
main use cases are eclipsed by the floating point reassociation
pass instead. The low applicability, and chances for slow-down
makes this flag is one of the least beneficial in LunarGlass.

4) Floating Point Reassociate: By contrast, the floating
point reassociation pass applies to > 50% of shaders, and
frequently occurs in their optimal set of flags (see Subfig-
ure 8d). This high applicability gives this pass a wider spread
of values. All platforms except ARM agree on its average
positive impact, with peaks of around 5% improvement on
desktop platforms, and peaks around 25% on Qualcomm.
However, its results are not universally positive, and despite
being Qualcomm’s highest performance peak, it is also its
lowest trough at -15%. On ARM, one 20% slow-down drags
the average low enough omit it from ARM’s best static flags.
The wide spread of results, and the fact this flag appears
shaders’ optimal flag sets around 50% of the time, may
indicate that although this pass’s core ideas result in speed-
ups, further refinement to reduce slow-down cases. Dividing
this pass into smaller components and using better heuristics
may achieve the performance gains without all the pitfalls.

5) Loop Unrolling: Loop unrolling (Subfigure 8g) is sel-
dom applicable (as few shaders contain loops), but is almost
universally positive. On AMD, loop unrolling always improves
performance, and can result in 35% gains. On ARM, despite
some slow-downs, it reaches a peak of 25%, making it the best
flag on ARM as well. On Intel, it’s effect is near-zero, with a
slightly larger slowdown than speed-up. On NVIDIA, is also
near-zero, but with a peak of 5% improvement. Qualcomm is
the only platform that unrolling is not included in its best static
flags (see Table I), and the 8% drop shown in Subfigure 9e
may indicate why (although it also achieves gains in some
cases too, and hovers near-zero for the most part). For most
shaders, unrolling is one of the optimal flags on every vendor,
and is a high-impact, low applicability transformation.

6) Hoist: The hoist flag (Subfigure 8f) applies to around
25% of shaders, but is in the optimal set for less than half
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of them. On most platforms, a single pathologically bad case
drags the average down massively. On Intel, it drops 11%, on
AMD 7%, on NVIDIA 5%, and on ARM it reaches a massive
35% slowdown. Hoisting sometimes improves all platforms,
but these steep pitfalls indicate it should be used with caution,
and good heuristics for when to apply it would be valuable.

7) Constant Division to Multiplication: Changing constant
division to multiplication (see Subfigure 8b) is possible in
>50% of shaders, but is only in the optimal set for around half
of these. This is likely an optimization many vendors perform
already, so this flag may have little impact. It might be a coin-
toss whether results are negative or positive (hinted at by its
symmetrical results in Figure 9), and could occur in optimal
sets because it has a near-zero impact, so can be toggled on
or off safely without slowing down shaders. On Intel (which
has the least measurement noise), its impact is almost zero
in all cases. The results for NVIDA, AMD, and ARM are
symmetrical and centred around zero, with ranges around 4%,
10%, and 10% respectively. However, Qualcomm’s results
range from +25% to —13%. This pass’s wide applicability
makes it difficult to tell whether the graphs show genuine
improvements, or merely each platform’s measurement noise
(which the symmetrical results might back-up).

8) Coalesce: The coalesce flag applies to almost every
shader (see Subfigure 8a) because they frequently insert ele-
ments into vectors. Its results span a wide range, with most av-
erages near-zero, or slightly negative impact (see Qualcomm).
However, this is at odds with its inclusion in the best static
flags in Table I, so the largely symmetrical spread of results
may be due measurement noise again. Occurring in optimal
sets for so many shaders shows it is frequently favourable
to include, although different platforms have slightly different
preferences. NVIDIA prefers it almost always enabled, but on
Qualcomm it is optimal for around 50%, so is less critical.

E. Summary

Only floating point reassociation, loop unrolling, and hoist-
ing have sufficiently large impacts to affect shaders in the
absence of other passes. Also, as there are few distinct variants
for each shader (see Subfigure 4c), the optimal 10% of variants
is often only a single shader, so the optimality in Figure 8
may also be somewhat fickle. However, the larger visible
performance trends, and the number of shaders each type of
optimization pass applies to, gives some interesting insight into
the nature of graphics shaders in general, and how frequently
different optimization opportunities arise.

VII. RELATED WORK

Few recent shader optimization papers exist. Most GPU
papers cover general-purpose computation, whereas graphics
papers typically cover algorithms rather than compilation.
Shader optimization work is primarily industry-driven, as
GLSL compilers are usually found in propriety GPU drivers.
However, ecosystem changes such as Vulkan’s SPIR-V com-
pilation stack may allow researchers more access to this topic.

A. Shader Compilation and Pipeline Abstractions

Previous shader compiler work focuses on graphics pipeline
abstractions rather than performance. This dates back to Cook
suggesting composable “’shade trees” in 1984 [10] . In 1985,
Perlin [11] proposed per-pixel calculations (similar to modern-
day fragment shaders), combining multiple passes for effects.

OpenGL originally exposed GPU hardware via a fixed-
function pipeline. In Quake 3, idTech’s shader language [12]
abstracted this, and allowed multi-pass lighting effects. Similar
multi-pass abstractions were also developed by Peercy et.
al. [13], who used single SIMD instructions, and Proudfoot
et.al. [14] who had multiple instructions per pass. NVIDIA’s
vertex unit became fully programmable in 2001 [15], and this



5 30 a
‘ 2
s 0 - —=5" $ L g T
3 al I i 3 30 ==
3 @ 0)
& - 510 %_2
R _5 B T B
0 T I —‘7 -4
-10 i i -6
ADCE Coalesce GVN Reassoc Unroll  Hoist FReassoc Div ADCE Coalesce GVN Reassoc Unroll Hoist FReassoc Div ADCE Coalesce GVN Reassoc Unroll Hoist FReassoc Div
Flag Flag Flag
(a) Intel (b) AMD (c) NVIDIA
T [
20 20
10 : I
R LAl 1 4 d L g 10 T
{ T T af [
&-10 - & ol A L L A A
® ES |
BN TYTTT7T
-30 -10 ‘

ADCE Coalesce GVN Reassoc Unroll Hoist FReassoc Div
Flag

(d) ARM

ADCE Coalesce GVN Reassoc Unroll Hoist FReassoc Div
Flag

(e) Qualcomm

Fig. 9. Percentage speed-up from individual flags for each platform

trend continued, so modern APIs now expose 5 programmable
pipeline stages to run arbitrary shader programs.

More recent pipelines includes GRAMPS [16] and Piko
[17], which allow for novel topologies. SPARK [18] makes
shaders modular and reusable in libraries. In SPIRE [19],
calculations are performed at arbitrary rates, and an offline
optimizer balances performance and visual quality when se-
lecting which rates and algorithms to use. He et al. [20] then
improve Vulkan performance via its parameter interface.

Another branch of shader compilation research is generating
simplified code approximations which produce visually similar
results. Olano et. al. [21] use lossy simplifications in a level-
of-detail system where distant objects use faster drawing
approximations. Pellacini [22] uses pattern matching rules
to incrementally simplify shaders. Other techniques include
genetic algorithms [23], moving code between pipeline stages
[24], or interpolating texture samples with splines. [25]

B. Compilation for General-purpose GPU Computation

Many GPU papers focus on compilation for general-purpose
computations in languages like OpenCL [26]. This often
covers parallelising or scheduling algorithms, which is less
relevant to the well-established graphics pipeline stages. How-
ever, some topics are relevant for both graphics and compute.

Jang et. al. [27] identify optimizations for AMD GPUs
to improve ALU, texture unit, and thread-pool utilization,
and also explore the effects of loop unrolling. Han and
Abdelrahman [28] focus on reducing branch divergence, and
use branch distribution to factor out common code from
conditional expressions. Other work explores the importance
scalars on GPUs [29]. Techniques such as scalar waving [30]

pack individual scalar calculations into vector instructions. Our
arithmetic reassociation technique to group scalars together
(see Subsection III-B) would synergize well with this.

C. Existing Shader Tools

Many shaders profiling and compilation tools exist.
Khronos’s reference glslang [31] compiler turns Vulkan GLSL
into SPIR-V [32], but contains few optimizations. SPIRV-Tools
[33] includes a basic optimizer which unifies constants, inlines
functions etc. but lacks the capabilities of larger frameworks
like LLVM [9]. Google’s shaderc [34] provides preprocessor
directives and build-system integration around these projects.

SPIRV-Cross [35] is another tool for cross-compiling shader
languages between one another, and performing reflection on
shaders. It currently supports translating SPIR-V to GLSL for
Vulkan, OpenGL, and GLES, HLSL [36] for DirectX, MSL for
Metal [37], and C++ (to help with debugging). Another cross-
compilation project is SPIRV-LLVM [38], but this currently
only supports OpenCL SPIR-V, rather than Vulkan SPIR-V.

The Mesa project [39] provides Linux OpenGL drivers and
includes a GLSL compiler. The glsl-optimizer [40] project
from Unity [41] (a well-known game engine and IDE) modi-
fies Mesa’s shader compiler to optimize shaders for mobile
devices. The Glassy Mesa project implements a variant of
LunarGlass [5] for the Mesa drivers.

VIII. CONCLUSION

This paper introduced the graphics system stack and the
programmable shader pipeline. We assessed the performance
impact of common compiler optimizations on the fragment
shaders of GFXBench 4.0 across 3 desktop and 2 mobile



GPUs. Although shaders undergo vendor-specific compilation,
offline optimizations can still have significant positive and neg-
ative impacts, which vary across optimizations, benchmarks
and platforms. Future graphics compiler technology may ben-

efit

from sophisticated profitability analysis, and automated

machine-learning based techniques are likely to be attractive.
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