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Abstract—Graphics Processing Units (GPUs) critically rely on
a complex system software stack comprising kernel- and user-
space drivers and Just-in-time (JIT) compilers. Yet, existing
GPU simulators typically abstract away details of the software
stack and GPU instruction set. Partly, this is because GPU
vendors rarely release sufficient information about their latest
GPU products. However, this is also due to the lack of an
integrated CPU/GPU simulation framework, which is complete
and powerful enough to drive the complex GPU software envi-
ronment. This has led to a situation where research on GPU
architectures and compilers is largely based on outdated or
greatly simplified architectures and software stacks, undermining
the validity of the generated results. In this paper we develop a
full-system system simulation environment for a mobile platform,
which enables users to run a complete and unmodified software
stack for a state-of-the-art mobile Arm CPU and Mali-G71 GPU
powered device. We validate our simulator against a hardware
implementation and Arm’s stand-alone GPU simulator, achieving
100% architectural accuracy across all available toolchains. We
demonstrate the capability of our GPU simulation framework
by optimizing an advanced Computer Vision application using
simulated statistics unavailable with other simulation approaches
or physical GPU implementations. We demonstrate that perfor-
mance optimizations for desktop GPUs trigger bottlenecks on
mobile GPUs, and show the importance of efficient memory use.

Index Terms—Computer simulation

I. INTRODUCTION

GPU simulation is central to driving GPU research and
development. It is used for early design space exploration
and architecture tuning [1]–[3], evaluation of GPU compilation
techniques [4], application development and optimization [5],
and in virtual platforms for system software development [6].
While Central Processing Unit (CPU) simulation techniques
have reached maturity, GPU simulation often suffers from
the following problems: (a) instruction sets are not accurately
modeled, but approximated by an artificial, low-level inter-
mediate representation [7], [8], (b) GPU simulators do not
model existing commercial GPUs, but only simplified GPU
architectures [9], (c) instead of using vendor provided driver
stacks and compilers, GPU simulators often rely on simplified
system software, which may behave entirely differently to orig-
inal tools [10], [11], and (d) GPUs are treated as standalone
devices, not modeling any CPU-GPU transactions [12]. This
has led researchers using GPU simulation to rely on tools
providing questionable accuracy [13].
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Fig. 1: MatrixMul: Different versions of Arm’s OpenCL
compiler result in substantially different code for the G-71.

For example, many existing GPU simulators including
gem5-GPU [14], GpuTejas [15], Multi2Sim [10], GPGPU-
Sim [16], and Multi2Sim-Kepler [11] claim cycle-accuracy.
However, despite their claimed cycle-accuracy all of these
simulators show significant differences in the reported cycle
count (or other reported performance metrics) compared to
actual hardware. In extreme cases, these errors can be in
excess of over 100%. Other GPU simulators have either not
been evaluated against hardware reference platforms or do not
attempt to model any available GPU. Available instruction-
accurate simulators, i.e. those without a cycle-level timing
model, also show significant errors. For example, Barra [17]
exhibits up to 81.6% difference in instruction counts compared
to those reported by measurements on a real GPU.

Further error is introduced by the use of outdated or non-
standard GPU tool chains required by several simulators. We
compiled a set of OpenCL kernels with different versions of
the vendor supplied compiler1 (v5.6, 5.7. 6.0, 6.1, 6.2) for
the Arm Mali-G71. Fig. 1 shows that we observed major
differences between compiler versions, e.g. GPU arithmetic
cycles in the selected kernel differ by 47% (6.0 to 6.1). It is
more than likely that simplified or non-vendor supplied tool
chains used by other GPU simulators introduce even greater
error, as also highlighted in [13].

In this paper we claim that without a truly accurate GPU
simulation model and a full-system environment capable of
running an unmodified GPU software stack and applications

1https://developer.arm.com/products/software-development-tools/graphics-
development-tools/mali-offline-compiler
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it is not possible to gather reliable performance metrics to
underpin GPU architecture research.

A. Full-System GPU Simulation

In this paper, we propose a fundamentally different approach
to GPU simulation, avoiding the aforementioned issues. The
goal of this work is to accurately simulate a state-of-the-art
mobile GPU in a full-system context, enabling the use of
unmodified vendor-supplied drivers and JIT compilers, oper-
ating in an unmodified target operating system, and executing
unmodified applications. This requires our GPU simulator to
be architecturally identical to a physical GPU, and model all
components of the application and system software stack.

We focus on functional CPU/GPU simulation, i.e. without
detailed timing information. While this method sacrifices
cycle-accuracy, it enables us to improve simulation perfor-
mance to a level where it is feasible to run complex CPU/GPU
workloads. Such a functional simulator is also a prerequisite
to detailed timing simulation and can still provide useful
execution statistics, such as instruction counts, memory traces,
and CPU-GPU transaction details. Simultaneously our system
guarantees optimal GPU feature support, and ensures that our
virtual platform executes identical code to that on physical
hardware. Our fast simulation approach also supports interac-
tive workloads, and new Application Programming Interfaces
(APIs)s (e.g. Vulkan) without additional engineering.

Notable use cases for our full-system CPU/GPU simulation
technology are (1) early GPU design space exploration, where
a GPU currently under design can be evaluated and (2) virtual
platforms for both system- and user-level software develop-
ment, both without producing a physical version. These use
cases benefit particularly from the accuracy and performance
that our integrated CPU/GPU simulation approach offers.

B. State-of-the-Art

In order to further motivate our full-system approach to
CPU/GPU simulation, we initially review the most popular
GPU simulators: GPGPU-SIM [16] and MULTI2SIM [10],

[11]. In Fig. 2 we compare the GPU kernel execution and
software stacks for a native execution environment, our full-
system simulation, MULTI2SIM, and GPGPU-SIM.

In native hardware (Fig. 2(a)), a CPU executable is run in
Linux on an Arm CPU. This executable includes an embedded
OPENCL kernel, and interacts with a vendor provided runtime
library, e.g. libOpenCL.so, to JIT compile the OPENCL
kernel to GPU instructions. This runtime interacts with a GPU
device driver–a vendor-specific kernel module for low-level
CPU-GPU interaction–which manages the setup of GPU jobs.
Finally, the GPU executes binary instructions from memory.

Our full-system simulation model (Fig. 2(b)) implements
both the CPU and GPU completely and accurately. We run
the original unmodified executable and the original CPU
runtime environment for the GPU and GPU driver. Our GPU
simulation component completely emulates Arm’s Bifrost ar-
chitecture, executing the same binary as the physical GPU
implementation in Fig. 2(a). Our GPU simulator interacts with
the simulated CPU and driver executing on the CPU in the
same way as its physical counterpart, making the simulation
identical to a physical GPU for the entire software stack.

Compare this to MULTI2SIM in Figure 2(c). MULTI2SIM’s
OPENCL stack differs substantially from the native stack.
OPENCL function invocations are handled by a non-standard
runtime, which is intercepted by the CPU simulator, and
redirected to the GPU simulator to launch the kernel execution.

Tools like Multi2Sim require heavy maintenance as
toolchains advance. We have seen that code compiled by newer
versions of AMDs OPENCL compiler, which the Multi2Sim
toolchain Multi2C relies on, often contains features unsup-
ported in Multi2Sim. The user then must rely on an outdated
(and now unavailable) version of the OPENCL compiler.

GPGPU-SIM (Fig. 2(d)) provides a model for Parallel
Thread Execution (PTX) or SASS execution, where PTX is a
scalar low-level, data-parallel virtual Instruction Set Architec-
ture (ISA) defined by NVIDIA, and SASS is the native shader
assembly for NVIDIA GPUs. While PTX is an intermediate
representation, SASS is closer to the actual GPU instruction
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set. However, GPGPU-SIM requires its own runtime libraries
and device drivers, which (a) differ substantially from the
vendor supplied libraries, (b) are not feature complete, and
(c) introduce significant accuracy problems.

C. Contributions

In this paper we develop a full-system system simulation
environment for a mobile platform, enabling users to run a
complete and unmodified software stack for a state-of-the-
art mobile Arm CPU and Mali-G71 GPU powered device.
We validate our simulator against a hardware implementa-
tion as well as Arm’s stand-alone GPU simulator, achieving
100% architectural accuracy across all available toolchains.
We demonstrate the capability of our GPU simulation frame-
work by optimizing an advanced Computer Vision application
using simulated statistics unavailable with other simulation
approaches or physical GPU implementations. We then make a
direct comparison against desktop GPUs, and show that mem-
ory usage is hugely significant to mobile GPU performance.

II. BACKGROUND: ARM BIFROST GPU

Here, we provide a brief overview of the Arm Bifrost GPU
architecture. This is a state-of-the-art mobile GPU design pow-
ering many high-end smartphone Systems-on-chips (SoCs). In
our simulator we implement the Arm Mali-G71 GPU, found
in e.g. the Exynos 8895 SoC that powers the Samsung Galaxy
S8. Fig. 3a gives an overview of the Bifrost architecture.2

The architecture features up to 32 unified Shader Core
(SC)s, and a single logical L2 GPU cache that is split into
several fully coherent physical cache segments. Full system
coherency support and shared main memory tightly couples
the GPU and CPU memory systems. For this, Bifrost fea-
tures a built-in Memory Management Unit (MMU) supporting
AArch64 and LPAE address modes. A central Job Manager
(JM) interacts with the driver stack and orchestrates GPU jobs.

A. Shader Cores

Shader Core (SC)s (see Fig. 3b), are blocks consisting of
Execution Engine (EE)s–three in the Mali-G71–and a number
of data processing units, linked by a messaging fabric.

The EEs are responsible for executing the programmable
shader instructions, each including an arithmetic processing
pipeline as well as all of the required thread state.

The arithmetic units implement a vectorization scheme to
improve functional unit utilization. Threads are grouped into
bundles of four (a “quad”), which fill the width of a 128-bit
data processing unit. From the viewpoint of a single thread, the
architecture behaves as a stream of scalar 32-bit operations.

Instructions are bundled into clauses of up to 8 tuples (16
instructions), as shown in Fig. 4a. Within a clause, instructions
can access temporary registers, reducing pressure on the global
register file (see Fig. 4b). Further details can be found in [18].

2Figures 3 and 4a reproduced with kind permission of Arm Ltd.

(a) Bifrost GPU design

(b) Mali-G71 shader core design

Fig. 3: Bifrost GPU architecture and Shader Cores [18].

(a) Arm Bifrost clause scheduling and execution model [18].

(b) Temp. registers within a clause reduce global register file accesses.

Fig. 4: The Bifrost GPU execution model.

B. Job Manager

The Job Manager (JM) receives jobs from the GPU device
driver, and schedules them for execution on the GPU. The
jobs contain information specific to the shader being executed,
including job dependences, dimensions, and pointers to data
the shader binary, which is then used to map jobs onto SCs.

C. Supported APIs

The Arm Mali-G71 GPU offers full support for current and
next generation APIs, enabling advanced 3D graphics accel-
eration and GPU compute functionality. This includes support
for the KHRONOS OPENGL ES 3.2, 3.1/2.0/1.1, VULKAN
1.0 and OPENCL1.1/1.2/2.0 Full Profile APIs. Additionally,
support is provided for the Android Extension Pack, Android
Renderscript, and Microsoft Windows DIRECTX 11.

3
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III. OUR SIMULATION APPROACH

Our simulation environment, as shown in Fig. 5, provides a
full-system view of a CPU/GPU platform. Such an approach
also requires additional components to be emulated including
an MMU, interrupt controller, timer devices, storage and
network devices. In order to benefit from existing device
drivers, we model the Arm VERSATILE EXPRESS and JUNO
platforms, each augmented with an Arm Mali-G71 GPU.

Both the simulated CPU and GPU are modeled using high-
level architecture descriptions [19], and generated using a
retargetable simulation framework [20], which also supports
other architectures. They each run in separate threads on the
host CPU, providing concurrent and asynchronous operation.

A. CPU Simulation

We simulate the CPU through full-system Dynamic Binary
Translation (DBT) (similar to QEMU [21]), which boots a
Linux Arm kernel and user space from a file system mounted
by the simulated storage device. For complete and accurate
modeling, we simulate essential platform devices, ensuring
that our simulator can support a full software stack without
simulation-specific adaptation of any software component.

B. GPU Simulation

We generate an interpretive GPU simulation module for the
programmable GPU SCs from the Mali architecture descrip-
tion, and non-core components are directly implemented.

1) CPU-GPU Interface: The GPU interfaces with the CPU
via memory mapped registers, hardware interrupts, and mem-
ory, through which the simulated GPU exposes its JM to the
CPU. For GPU compute jobs, the OPENCL driver sets up
shader programs in the shared CPU-GPU memory space, and
then triggers an interrupt on the GPU by writing to a control
register, indicating that a job is ready for execution. These
interrupts are visible to the JM, which begins execution.

2) Shader Core Simulation: The generated simulator code
comprises the instruction decoder and main EEs of the GPU.
The interpretive execution model is split into two phases:
(1) decode, and (2) execution. During phase one, the shader
program and its associated metadata are decoded for later use.
In phase two, a dispatcher iterates over the job dimensions and
creates simulated GPU threads. These threads are grouped into
“warps”, where all threads execute in lockstep. Warps are in
turn grouped into thread-groups, i.e. OPENCL workgroups.

3) Performance Optimizations: The simulation is broken
up into two stages - decode, and execution. During the decode
stage, the GPU extensively caches guest code, which is then
accessed during the execution phase. This model ensures that
the entire shader program is decoded exactly once.

In hardware, each SC executes one thread-group at a time.
In our simulator, however, the number of SCs and host threads
is individually configurable. For example, instead of mapping
8 SCs onto 8 host threads, we can map the executing thread-
groups onto 32 host threads, creating virtual cores.

This necessitates additional measures for managing local
storage. The GPU driver allocates local storage for 8 thread-
groups corresponding to the 8 detected SCs. To support more
thread-groups executing in parallel, the simulator allocates
additional local memory for each host thread, outwith the
guest system. Local guest memory accesses are intercepted and
mapped to host memory, guaranteeing functional correctness.

4) Job Manager Simulation: In our GPU simulator the JM
operates in its own host simulation thread. It fully implements
the functionality of its hardware counterpart such as parsing
job descriptors and orchestrating the operation of the SCs.

5) Memory Management Unit Simulation: Our simulator
incorporates a complete software implementation of the GPU’s
MMU. The driver provides the MMU with page table pointers,
and the MMU reports errors (permissions violations, faults) to
the driver through memory mapped registers and interrupts.

IV. INSTRUMENTATION

Through instrumentation the simulator provides useful
statistics, without the overhead of a cycle-accurate simulator:

A. Program Execution

We gather instruction counts and breakdowns, data ac-
cesses, and clause information - statistics directly relating to
the executing instructions. From these we can directly see the
codesize, ratios of memory instructions to arithmetic, types
of memory accesses - all vital to understanding performance
implications of the executed code. Each clause is instrumented
with detailed metrics at decode time, and during execution,
we record clause frequency. If executing with multiple host
threads, this is gathered by each parallel unit. Metrics are to-
talled at job completion, requiring no further synchronization.

B. System

The GPU operates as an accelerator, therefore it is vital
to understand its interaction with the rest of the system. The
number of pages accessed by the GPU shows the interaction

4
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with the memory system and MMU, which are expensive in
terms of performance. Interrupts and system register accesses
describe the communication with the CPU –also a bottleneck.

C. Control Flow

Control flow execution in the GPU monitors thread diver-
gence, which occurs when threads within a warp take different
paths after a conditional branch. This is a serious performance
problem, as if a thread diverges, other threads in the warp must
wait for the diverging thread to reconverge, without scheduling
other work. We monitor this by tracking the PC on clause
boundaries, and building a Control Flow Graph (CFG). This
CFG, shows which thread executes which path, and identifies
diverging threads at their divergence point, as shown in Fig. 6.

Simulated Platform

Arm-v7A/v8A CPU
Arm Mali Bifrost GPU - G71, 8 Cores
Arch Linux (Kernel 4.8.8)
Arm Mali Bifrost DDK r3p0/r9p0

Multi2Sim Eval. Platform x86 CPU, Southern Islands GPU

Evaluation Platform

HIKEY960 - Arm-v8A CPU
Arm Mali Bifrost GPU - G71, 8 Cores
Android-O/Debian Linux
Arm Mali Bifrost DDK r3p0/r9p0

Host Platform 1 Intel(R) Core(TM) CPU i7-4710MQ
(main experiments) 4 cores with HT, 2.50GHz
Host Platform 2 Intel(R) Xeon(R) CPU L7555
(Parallel scaling, Fig. 10) 32 cores with HT, 1.87GHz

TABLE I: System configurations for performance evaluation.

V. EVALUATION

First, we present the validation strategy for our simulator
against Arm hardware and a proprietary simulator, achieving
100% architectural accuracy across all available toolchains.
We then compare our simulator’s performance and effec-
tiveness against Multi2Sim 5.0. Unless explicitly stated, all
comparisons against Multi2Sim use Multi2Sim’s functional

Suite Benchmark Input Type & Size
Rodinia 3.1 Back Propagation 65536 nodes
Parboil Breadth First 1257001 nodes

Search
AMD APP 2.5 Binary Search 16777216 elements
AMD APP 2.5 Binomial Option 512 samples
AMD APP 2.5 Bitonic Sort 2048 elements
Parboil Cutoff-limited 67 atoms

Coulombic
Potential (cutcp)

AMD APP 2.5 DCT 10000x1000 matrix
AMD APP 2.5 DwtHaar1D 8388608 signal
AMD APP 2.5 Floyd Warshall 256 nodes
AMD APP 2.5 Matrix Transpose 3008x3008 matrix
Rodinia 3.1 Nearest Neighbor 5 records

30 latitude
90 longitude

AMD APP 2.5 Recursive Gaussian 1536x1536 image
AMD APP 2.5 Reduction 9999360 elements
AMD APP 2.5 Scan Large Arrays 1048576 elements
Parboil SGEMM 128x96, 96x160 matrices
AMD APP 2.5 SobelFilter 1536x1536 image
Parboil Sparse Matrix 1138x1138x2596 matrix

Vector Mult. 2596 elements
Parboil Stencil 128x128x32 matrix

100 iterations
AMD APP 2.5 URNG 1536x1536 image
clBLAS SGEMM 1024x1024 matrix

TABLE II: Benchmarks and data set sizes.

simulation mode. Finally, we demonstrate the versatility of our
simulator through a series of use cases. Our evaluation focuses
on the widely accepted OPENCL compute API, which allows
for direct comparison with other GPU simulators.

Details of our host and guest platforms are provided in
Table I. As different benchmarks scale in different ways, the
default host configuration used 8 threads for GPU simulation.
We show additional results for selected benchmarks.

We chose kernels from a variety of benchmark suites. First,
we include AMD APP SDK 2.5 as pre-compiled GPU binaries
packaged with Multi2Sim enable direct comparison. AMD
driver 2.5, which Multi2Sim, and its compiler Multi2C, rely
on, is no longer available, and code compiled using newer
versions often contains features unsupported by Multi2Sim.
We also report results for Parboil [22] and Rodinia [23] bench-
mark suites, which provide larger, more complex workloads.
The benchmarks and inputs are presented in Table II.

Next, we consider a robotic vision application, SLAM-
Bench, demonstrating a concrete use-case for our approach.
We show that our simulated metrics relate directly to hard-
ware runtimes. Finally, we demonstrate how optimizations for
desktop GPUs trigger bottlenecks on embedded GPUs.

A. Validation and Accuracy

Correctness of our full-system simulation approach has been
established by comparison against the commercially available
HIKEY 960 with a Mali-G71 MP8 GPU. We also validated
the GPU part of our simulator against a detailed proprietary
simulator for the target GPU architecture. Our comparisons

5
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have shown complete accuracy for the evaluated benchmarks,
for all evaluated metrics. This is possible only because our
simulation is driven by the exact binary that is executed in
hardware, thanks to the full support of a native software stack.

1) Comparison to Hardware: Validation has focused on: (a)
Correctness of OPENCL kernel execution on the GPU, evalu-
ated through extensive testing, (b) correctness of performance
metrics, including instruction counts, instruction breakdowns,
clause sizes, data access breakdowns, and divergence, for
which we compare results from our instrumented simulator
to hardware performance counters on the HIKEY 960.

2) Comparison to Reference Simulator: We have also val-
idated our simulator against a proprietary, detailed standalone
GPU simulator. We executed selected kernels on both sim-
ulators using an instruction tracing mode, where individual
instructions and their effects are observable. Additionally, we
employed fuzzing techniques for rigorous instruction testing,
covering an extensive range of inputs.

B. Simulation Performance

Next we evaluate three key simulation performance metrics.
1) GPU OpenCL Simulation Speed: Fig. 8, presents execu-

tion performance of our GPU simulator relative to Multi2Sim,
where most benchmarks exhibit similar performance levels.
Exceptions are BinarySearch and SobelFilter, where our sim-
ulator is up to 10x slower than Multi2Sim, and sgemm,
where our simulator is 8.8x faster. While this disparity is
due to implementation differences between the simulators and
simulated architectures, the results demonstrate that accurate
full-system simulation of a GPU platform is feasible and yields
competitive performance. Fig. 7 shows simulation slowdown
over native execution. The average slowdown is 4561x.

Full instrumentation of the GPU simulation generally adds
<5% overhead, due to the approach described in Section IV.
This means that we provide useful statistics, with performance
similar to Multi2Sim’s, which by default only reports instruc-
tion breakdown and job dimensions. In cycle-accurate mode,
Multi2Sim reports additional statistics, including active execu-
tion units, compute unit occupancy, and stream core utilization,
however, in our tests it failed to complete the majority of
workloads, due to large inputs. On smaller workloads, we
observe slowdowns of up to 10x over functional simulation.

2) CPU OpenCL Driver Simulation Speed: Full-system
GPU simulation, executing the full software stack on the CPU,
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Fig. 9: The software stack executing on our DBT CPU
simulator scales exceptionally well relative to Multi2Sim.

adds substantial stress to CPU simulation. Fig. 9 shows soft-
ware stack runtimes for SobelFilter with different input sizes.
While Multi2Sim spends >150s on CPU-side execution for the
largest tested input, our JIT-based CPU simulator executes the
entire stack in <10s, resulting in better performance, while
maintaining complete accuracy. Overall, Fig. 7 shows that
slowdown for the entire system over native hardware is low,
averaging only 223x slowdown.

3) Simulation Performance Optimizations: In Fig. 10 we
evaluate the performance optimization introduced in Sec-
tion III-B3, mapping GPU SCs onto multiple host threads.
In the worst case, BinarySearch is iterative, with short kernels
executing with heavy CPU interaction, limiting improvement.
For SobelFilter, the best case, large thread-group sizes exe-
cuted for a single kernel enable efficient parallel execution,
resulting in steady speedup as host threads are added.

C. Application Results

We first focus on architectural features of Bifrost which
would be useful in early design space exploration.
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Fig. 10: Increasing the number of host simulation threads
yields vast performance improvements for certain benchmarks.
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1) Identifying Empty Instruction Slots: Fig. 11 shows in-
struction mixes for OPENCL benchmarks. For example, So-
belFilter is a compute-intensive filter with very few empty
slots and memory accesses and almost no control flow. In
contrast, the number of empty slots in Reduction and Scan-
LargeArrays indicates low GPU utilization. On average, 50%
of instructions are arithmetic operations, while local memory
and control flow each contribute around 10%. Performance can
be substantially improved by reducing the number of empty
instruction slots introduced by the OPENCL toolchain.

2) Moving Data Closer the Core: Different types of data
storage have various access latencies, which when poorly
utilized can lead to colossal drops in performance. Ideally,
data should be kept as close to the GPU’s execution cores as
possible. Our simulator shows exact data placement through-
out the hierarchy, and can be used to guide optimization.

Data breakdowns are shown in Fig. 12. SobelFilter ex-
hibits few main memory accesses, while the figures for back-
prop suggest that it could benefit from enhancements to the
OPENCL compiler, more registers, or a better algorithm. Fast
accesses to temporary values, constants and ROM dominate.
More reads from than writes to global registers suggest effec-
tive reuse of register data. Global memory accesses account
for <10% of accesses, except for a single case, backprop.

3) Evaluating the Bifrost Clause Model: Clauses contain
up to 8 instruction words (16 instructions), which execute
unconditionally. Longer clauses are preferable - they reduce
global register file accesses through temporary register use and
limit the scope for control flow and thread divergence.

Fig. 13 shows the distribution of clause sizes for all bench-
marks. Several, including BinomialOption and FloydWarshall
exhibit a majority of clauses of size 1 or 2, and occasionally
size 8. Others peak at mid-size clauses, e.g. BitonicSort, or are
bimodally distributed, e.g. RecursiveGaussian. Compare this
to the instruction mix in Fig. 11, where e.g. RecursiveGaussian
features a larger fraction of arithmetic instructions and few
empty slots, whereas Reduction is reversed. Overall, kernels
with larger clauses feature fewer empty slots, while short
clauses and empty slots show some correlation.

Potentially, some kernels perform little work between con-
trol flow operations, or the compiler is unable make use of
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available slots. Benchmarks with shorter clauses also display a
large proportion of memory accesses, suggesting that memory
bottlenecks limit the potential of the clause model. The model
might suit graphics workloads, as they benefit from additional
data processing units and exhibit regular behaviour, however
re-visiting the model for compute might be worthwhile.

D. System Level Results

CPU-GPU communication can account for as much as
76% of execution time [23]. In our full-system environment,
we are able to gather system-level statistics unavailable to
other GPU simulators or hardware. Our approach provides
the capability to observe CPU-GPU interactions, allowing
us to monitor memory usage, interrupts, and control register
accesses, presented in Table III for selected benchmarks. While
SobelFilter exhibits little CPU-GPU interaction, BFS touches
more pages, and involves a higher number of transactions.

Page use differs by up to three orders of magnitude across
benchmarks, with stencil and BFS dominating this metric.
BFS is particularly heavy on control interactions showing
an unusually high number of control register accesses and
interrupts resulting from over 1000 individual compute jobs.

E. Optimizing OpenCL Applications

1) SLAMBench: We demonstrate the capabilities of our
full-system simulator by evaluating the OpenCL SLAM-
BENCH [24] computer vision application, which comprises
several compute kernels and dataflow orchestrated by the CPU.
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Benchmark Page Ctrl. Reg Ctrl. Reg Interr. Comp.
Acc. Reads Writes Asserted Jobs

BFS 51723 308098 66209 8022 1003
Binomial Option 31 136 70 4 1
SobelFilter 4609 136 70 4 1
Stencil 99603 14795 1982 105 100

TABLE III: System statistics detail the CPU-GPU interaction.

In its full configuration, SLAMBENCH executes 40000 ker-
nels, impossible to simulate with existing GPU simulators out-
of-the-box, due to their limitation to single kernels, tool chain
incompatibilities or lack of support for CPU-GPU interactions.

Countless configuration options are available in the bench-
mark, each with varying performance. We execute the KFusion
benchmark, with standard, fast3, and express configurations.
Fig. 14 shows metrics for fast3 and express relative to stan-
dard. Both show major improvement. The relative instruction
count for each category is at most 8% for Fast3 and just 2%
for Express, while the ratio for local memory instructions is
much higher - 29% for Fast3 and 19% for Express, meaning
increased local memory use relative to total instruction count.

Our metrics can easily guide us to a good solution, without
requiring hardware. While we cannot predict the exact fram-
erate, the simulated metrics suggest successive improvement
between standard, Fast3, and Express. This is truly the case -
Fast3 is 3.35 times faster than standard and Express is 7.72
times faster than standard.

2) SGEMM: [25] shows that optimizations applied to the
same code targeting different architectures result in greatly
different performance relative to hand-tuned code. This is
exacerbated in mobile GPUs, whose architectures are com-
pletely different to desktop GPUs [26]. We evaluate this claim
through six SGEMM kernels ( [27], [28]), a core component
of linear algebra and machine learning applications, which are
increasingly moving to mobile devices. Starting with (1), the
kernels in Fig.15 are iteratively optimized for NVIDIA GPUs.
There is no correlation between speedups on Mali and NVidia,
indicating vastly different architectures.

Again, simulation statistics directly relate to native runtimes,
and we see that the optimal solution on Mali (4) executes
far fewer instructions than the slowest version (6). Between
(5) and (6), arithmetic and control flow instruction counts are
similar, however (5) is almost twice as fast as (6). Interestingly,
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(6) meant to increase register usage, but the increase is just 3%
on Mali. Instead, (6) greatly reduces local, and increases global
memory accesses relative to (5). (4) almost completely avoids
global memory, shifting instead to local memory. This supports
the claim in [29], that data movement in mobile platforms is
a major contributor to execution time and cost.

VI. RELATED WORK

To ease comparison to other GPU simulation approaches we
provide an overview of features in Table IV, including each
simulator’s maximum relative error as reported in their original
publications. In some cases, accuracy has not been evaluated
or the simulated GPU does not model existing GPUs.

[13] presents a cycle-accurate full-system CPU/GPU simu-
lation framework, similar to our own, however the OS kernel
driver is emulated, i.e. all driver calls are intercepted by the
emulated driver. Similarly to Multi2Sim, any changes to the
driver stack need to be implemented directly in gem5, whereas
our framework supports any new drivers out of the box. Addi-
tionally, in [13] the runtime system executes natively, and only
the GPU executes in the simulator. This makes it impossible to
simulate systems in which the target CPU architecture differs
from the host, for example, you could not simulate an Arm
CPU + GPU on an x86 host. While their functional simulation
is completely accurate, the cycle-accurate simulator exhibits an
average error of 42%. Instruction-accurate simulation, such as
our own, is a prerequisite for cycle-accurate simulation, and
provides the basis for building a cycle-accurate full-system
simulator, targeting any architecture. Instead, we focus solely
on fast, functional simulation, enabling execution of realistic,
high-intensity workloads such as SLAMBENCH, allowing for
realistic modelling of the full system and software stack. In
2007, Fung et al. developed a cycle-level simulator (GPGPU-
SIM) for an NVIDIA-like GPU built around the SimpleScalar
back-end [7]. In this approach both the target ISA and
toolchain are crude approximations. In [35] a Mali GPU is
modeled and OPENCL kernels are simulated using GPGPU-
SIM, yet its completeness and accuracy are insufficient for
most use cases. Collange et al. have developed BARRA,
an architectural simulator for the native NVIDIA G8x and
G9x instruction sets [17]. With a reimplementation of the
low level CUDA runtime API, they produced a simulator
capable of running CUDA applications. While the target ISA
is matched, the software stack is vastly different from the
vendor supplied CUDA environment. GPUOCELOT [8] sup-
ports NVIDIA’s CUDA API and implements a full function
simulator providing an NVIDIA virtual machine referred to
as PTX – a machine model and low level virtual ISA that
is claimed to be representative of ISAs for data parallel
execution. The simulator can execute compiled kernels from
the CUDA compiler, but the underlying machine architec-
ture is an abstraction of the target machine and executes a
form of intermediate representation with an added-on cost
model. GPUTEJAS [15] uses GPUOCELOT to capture a GPU
execution trace for further parallel simulation. GEM5-GPU
[14] combines the GEM5 and GPGPU-SIM simulators. While
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Fig. 15: Mali simulation statistics for different versions of SGEMM compared against native Mali, and NVidia K20m runtimes.
All statistics are normalized to SGEMM6, the slowest kernel on Mali.

Simulator Full Guest Guest GPU GPU Prog. Perf. Simulation Max. Rel.
System CPU GPU ISA Toolchain Model Model Model Error1

Barra [17] GPU N/A NVIDIA Approx. Emulated CUDA Instruction- Execution- ≤ 81.6%
only Tesla Tesla ISA Accurate Driven

GPGPU-Sim [16] GPU N/A NVIDIA- PTX Custom CUDA Cycle- Execution- ≤ 50.0%
Only like GT200 SASS Accurate Driven

gem5-GPU [14] Yes x86 NVIDIA PTX Custom CUDA Cycle- Execution- ≤ 22.0%
GTX 580 GT200 SASS Accurate Driven

Multi2Sim [10] Yes x86/Arm/ AMD Everg./S.Isl. AMD GCN1 Custom OpenCL Cycle- Execution- ≤ 30.0%
MIPS NVIDIA Fermi SASS CUDA Accurate Driven

Multi2Sim Kepler [11] Yes x86/Arm/ NVIDIA Kepler SASS Custom CUDA Cycle- Execution- ≤ 200%
MIPS Accurate Driven

ATTILA [9] GPU N/A ATTILA ARB Custom OpenGL Cycle- Execution-
N/A2

Only Accurate Driven

GPUOcelot [8] GPU N/A NVIDIA PTX Custom CUDA Instruction- Trace- Not
Only AMD Radeon Accurate Based Evaluated3

HSAemu [30] Yes Retargetable/ Generic HSAIL Custom OpenCL Cycle- Execution-
N/A2

Arm-v7A Accurate Driven

GPUTejas [15] GPU N/A NVIDIA PTX Custom CUDA Cycle- Trace- ≤ 29.7%
Only Tesla GPUOcelot µ-ops Accurate Driven

MacSim [31] Yes x86 NVIDIA GeForce PTX Custom CUDA Cycle- Trace- Not
G80/GT200/Fermi GPUOcelot µ-ops Accurate Driven Evaluated3

TEAPOT [32] Yes Generic Generic Emulated Custom OpenGL Cycle- Trace-
N/A2

Mobile GPU Accurate Driven
QEMU/MARSSx86/ Yes x86 NVIDIA Generic Custom OpenGL Cycle- Execution- Not
PTLsim [33] Tesla-like Accurate Driven Evaluated3

GemDroid [34] Yes x86/Arm-v7A ATTILA [9] ARB Custom OpenGL Cycle- Execution-
N/A2

Accurate Driven

GCN3 Simulator [13] Yes x86 AMD Pro A12-8800B APU GCN3 Vendor ROCM Cycle- Execution- ˜42%
Accurate Driven

Our Simulator Yes Retargetable/ Retargetable/ Retargetable/ Vendor Any/ Instruction- Execution- 0.0%
Arm-v7A/v8A Arm Mali-G71 Native Binary OpenCL Accurate Driven

1 Maximum error of a performance metric reported in the original publication.
3 Original publication does not provide an accuracy evaluation against a hardware implementation of the simulated GPU.

TABLE IV: Feature comparison of existing GPU simulators. Our simulator is the only full-system CPU/GPU mobile platform
simulator capable of hosting an unmodified GPU software stack and supporting true GPU native code execution.

GEM5-GPU is a configurable full-system simulator, it suffers
from similar shortcomings as GPGPU-SIM. The GPU side
of GPGPU-SIM does not accurately model a real GPU, and
heavily relies on a simulator-specific software stack. ATTILA
[9] is an execution-driven simulator targeting the academic
ATTILA unified-shader GPU. While enabling research for
GPU architectures and OPENGL application tuning, ATTILA
does not model a real GPU and suffers from the lack of a
full driver stack. GEMDROID [34] integrates ATILLA with
the GEM5 architecture simulator, however this framework
still lacks a realistic driver stack and GPU architecture.
TEAPOT [32] is a trace-based GPU simulator, designed for
the evaluation of mobile GPUs and has a cycle accurate GPU
model for evaluating performance. TEAPOT supports OPENGL

ES 1.1/2.0 and runs unmodified Android applications, but
relies on the open-source GALLIUM3D drivers for a generic
‘softpipe’ GPU. [36] maps several guest GPUs onto the
host system’s GPU using multiplexing in a virtual platform.
However, in this approach GPU kernels are intercepted at
the CUDA API level, whereas our simulator executes actual
Mali binary instructions. A full-system CPU/GPU simulation
framework sharing some features with our simulator has been
presented in [33], however their GPU model is a simplified
and generic approximation. A microarchitectural simulator
for Intel’s integrated GPU has recently been described in
[37], which relies on binary instrumentation of kernels for
trace generation. While this allows for inspection of GPU
code, insertion of tracing code modifies the GPU kernels and
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interferes with their execution. Similarly, SASSI [38] provides
binary instrumentation for NVIDIA kernels. [39] parallelizes
GPGPU-SIM, but is limited by cycle-level synchronization
points, unlike our functional simulator.

VII. SUMMARY & CONCLUSION

In this paper we have presented the first ever fully re-
targetable full-system simulator supporting an unmodified
software stack for a commercially available, state-of-the-art
mobile GPU. Its validated instruction-accurate performance
model enables more accurate insights into the GPU’s opera-
tion than with simulators claiming cycle-accuracy for crudely
approximated architectures and non-standard runtime environ-
ments. Our full-system approach will ensure a long-lasting
simulator, requiring little maintenance as new toolchains are
released. While we draw on several known simulation tech-
niques, we have demonstrated the feasibility of accurate full-
system CPU/GPU simulation at performance levels compara-
ble to or better than those of existing, less accurate simulators.
Our simulation approach enables us to gain insights into
mobile GPU workloads including system-level transactions
between the CPU and GPU - inaccessible using other GPU
simulation approaches. Our simulator can characterize mobile
GPU applications with accuracy unavailable using existing
GPU simulators and provides a most useful tool to researchers
and developers alike.

A. Future Work & Software Release

Future work will include 3D graphics support, further
performance optimizations, e.g. JIT-compiled execution of
GPU code, and micro-architectural performance modeling and
simulation based design space exploration of machine learning
and computer vision enabled mobile GPUs.

Our simulator has been made publicly available [40] to
facilitate further research and development of mobile GPU
architectures based on accurate simulation tools.
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