
©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

Modeling Deep Learning Accelerator Enabled GPUs

Md Aamir Raihan *, Negar Goli * , and Tor M. Aamodt

Electrical and Computer Engineering
University of British Columbia

{araihan, negargoli93, aamodt}@ece.ubc.ca

Abstract—The efficacy of deep learning has resulted in its
use in a growing number of applications. The Volta graphics
processor unit (GPU) architecture from NVIDIA introduced
a specialized functional unit, the “tensor core”, that helps
meet the growing demand for higher performance for deep
learning. In this paper we study the design of the tensor cores in
NVIDIA’s Volta and Turing architectures. We further propose
an architectural model for the tensor cores in Volta. When
implemented a GPU simulator, GPGPU-Sim, our tensor core
model achieves 99.6% correlation versus an NVIDIA Titan V
GPU in terms of average instructions per cycle when running
tensor core enabled GEMM workloads. We also describe sup-
port added to enable GPGPU-Sim to run CUTLASS, an open-
source CUDA C++ template library providing customizable
GEMM templates that utilize tensor cores.

Keywords-Tensor Core, Tesla Titan V, Turing RTX 2080,
CUTLASS library, GPGPU-Sim

I. INTRODUCTION

Deep neural networks (DNNs) are having impact in a
growing number of areas but the benefits of DNNs come
at the expense of high computational cost. Deep learning
based data analytics has recently emerged as an important
technique [1]. DNNs have enabled breakthroughs in speech
recognition [2], [3], image recognition [4], [5] and computer
vision [6], [7]. DNNs require performing a large number of
multi-dimensional matrix (or tensor) computations. Recent
research has explored how to accelerate these operations [8]–
[15] and many companies are developing custom hardware
for these workloads [16]–[18].

GPUs are commonly used for deep learning, especially
during training, as they provide an order of magnitude higher
performance versus a comparable investment in CPUs [19].
Specific effort has been directed at optimizing GPU hard-
ware and software for accelerating tensor operations found
in DNNs. On the hardware side, in the Volta architecture
NVIDIA introduced a specialized function unit called a
Tensor Core for this purpose. Tensor cores are also found
on NVIDIA’s more recent Turing architecture [20] and
NVIDIA’s T4 Turing-base GPUs are further optimized for
inference tasks [21]. NVIDIA claims [22] tensor cores
provide a speedup of 3× on the Tesla V100 GPU when

* equal contribution

running mixed precision training. Five out of six 2018 Gor-
don Bell Award Finalists employed tensor cores to improve
application performance and three did so specifically by
accelerating machine learning [23].

However, to the best of our knowledge, the underlying
design of tensor cores has not been publicly described by
NVIDIA. Thus, we investigated the NVIDIA tensor cores
found in both Volta and Turing architectures. Informed by
our analysis we extended GPGPU-Sim [24] to include a
model for tensor cores.

This paper makes the following contributions:

• It shows how different threads cooperate in transferring
an input matrix to each tensor core.

• It gives an in-depth analysis of the execution of the
tensor operation on the tensor cores and describes the
microbenchmarks we used to perform our analysis.

• It proposed a microarchitectural model of tensor cores
consistent with the characteristics revealed through our
microbenchmarks.

• It describes our functional and timing model changes
for modeling tensor cores in GPGPU-Sim.

• It describes support we added to enable applications
built with NVIDIA’s CUTLASS library to run on
GPGPU-Sim.

• It quantifies the accuracy of our modified GPGPU-
Sim by running tensor core enabled kernels generated
with CUTLASS and thereby demonstrating an IPC
correlation of 99.6%.

We believe the observations made in this paper will
provide useful guidance to those wishing to explore how
to incorporate deep learning accelerators within GPUs. The
corresponding changes to model tensor cores in GPGPU-
Sim should provide the academic community a helpful
baseline for comparing alternative approaches. The changes
to enable CUTLASS to run on GPGPU-Sim should ease
study of architectural characteristics of custom kernels on
frameworks such as PyTorch (which was recently enabled
to run on GPGPU-Sim [25]).

ar
X

iv
:1

81
1.

08
30

9v
2

 [
cs

.M
S]

 2
1

Fe
b

20
19

II. BACKGROUND

This section briefly summarizes, at a high-level, relevant
aspects of the Volta GPU architecture as documented by
NVIDIA, the source-code and instruction-level interfaces for
programming Tensor Cores on NVIDIA GPUs before finally
describing what NVIDIA has disclosed about the design of
their Tensor Cores.

A. Volta Microarchitecture

The first GPU to include accelerators for machine learning
was NVIDIA’s Volta [26]. Recent NVIDIA GPUs includ-
ing Volta are generally composed of multiple Streaming
Multiprocessors (SM) connected by an on-chip network to
multiple memory partitions. Each memory partition contains
a portion of the last-level cache and connects the GPU to
off-chip DRAM. As described by NVIDIA, multiple tensor
cores are included inside each SM. The SM design in Volta
is partitioned into four processing blocks which NVIDIA
refers to as Sub-Cores. As shown in Figure 1, each sub-
core in Volta has two tensor cores, one Warp scheduler, one
dispatch unit, and a 64 KB register file.

Besides the addition of tensor cores, Volta includes other
enhancements relevant to performance of machine learning
workloads: In comparison to Pascal, NVIDIA’s prior GPU
architecture, each streaming multiprocessor (SM) in Volta
has twice as many scheduling units along with separate
integer and 32-bit floating point (FP32) cores. In addition,
handling of divergent threads is different in Volta versus
prior GPUs in that both paths following a branch can be
executed by threads within a single warp in an interleaved
fashion.

NVIDIA typically releases several GPUs with the same
underlying architecture but different amounts of on-chip
resources. For Volta, we focus in this paper on the Titan V
GPU. The SM inside the Titan V has the same number of
registers as Pascal. However, the Titan V GPU has 24 more
SMs and thus can support more threads, warps, and thread
blocks compared to prior generation GPUs.

B. Warp Matrix Function (WMMA) API

CUDA 9.0 [28] introduced a “warp matrix function”
C++ language API to enable programmers to use the tensor
cores on supported GPUs. This interface is also referred
to as the CUDA C++ “warp-level matrix multiply and
accumulate” (WMMA) API [29], [30]. It is well known that
tiling can improve memory locality for dense matrix oper-
ations [31]. The WMMA API exposes tensor cores to the
GPU programmer as warp-wide operations for performing
the computation D = A × B + C, where A, B, C and D
can be tiles of larger matrices. Using the WMMA API, all
threads in a warp cooperatively work together to perform
a matrix-multiply and accumulate operation on these tiles.
NVIDIA’s WMMA API currently specifies a limited set of
tile sizes. The sizes for tiles A, B, C and D are represented

Warp Scheduler 1 Warp Inst/clk

Math Dispatch Unit

1 Warp Inst/clk

FP64
8DFMA/clk

INT
16/clk

FP32
16FFMA/clk

MUFU
4/clk

Tensor Core
Two 4x4x4 tensor/clk

BRU
1branch/clk

Load/Store/Tex
Queue

L0 ICache
Constant

Cache

Register File (512 x 32Threads x 32bits)

MIO Datapath
64B/clk

MIO Scheduler
1 warp Inst/clk

L1 ICache

Sub-Core

Figure 1: Votla SM Sub-Core (reproduced from [27])

using the notation M × N × K, where M × K is the
dimension of Tile A, K×N is the dimension of Tile B and
thus C and D have dimension M ×N . CUDA 9.0 supports
only one tile sizes, 16× 16× 16, while later versions allow
additional flexibility.

Using NVIDIA’s terminology, each tile is further divided
into “fragments” where a fragment is a set of tile elements
that are mapped into the registers of a single thread. Thus,
input matrices are distributed across different threads and
each thread contains only a portion of a tile. NVIDIA
specifically states [28] the mapping of tile elements to
registers is unspecified. Naively, considering a 16 × 16 tile
contains 256 elements, one possibility would be that each
thread in a warp with 32 threads would store an 256

32 = 8
element fragment in eight separate general-purpose registers.
In Section III we show that current GPU’s do something
more sophisticated.

The CUDA WMMA API provides three new functions:
load_matrix_sync, store_matrix_sync and mma_sync.
All three functions perform an implicit warp-wide bar-
rier synchronization before computing a result. The
load_matrix_sync and store_matrix_sync functions are
used for loading and storing a portion of the input matrices
in the general-purpose registers accessible to each thread.
The mma_sync function performs a warp synchronous matrix
multiply-accumulate operation producing an M × N (e.g.,
16 × 16) result in the general-purpose registers associated
with the tile for the D matrix.

NVIDIA provides four high-level programming interfaces
for using tensor cores: the WMMA API described above
and three CUDA libraries: cuBLAS [32], cuDNN [33], [34]
and CUTLASS [35], [36]. In addition, many deep learning
frameworks have included support for tensor cores [37],
[38].

C. PTX Instruction Set

NVIDIA’s toolchain compiles CUDA into host code that
runs on the CPU and device code that runs on the GPU.

wmma.load.a.sync.layout.shape.type ra, [pa] {stride};
wmma.load.b.sync.layout.shape.type rb, [pb] {stride};
wmma.load.c.sync.layout.shape.type rc, [pc] {stride};
wmma.mma.sync.alayout.blayout.shape.dtype.ctype rd, ra, rb, rc;
wmma.store.d.sync.layout.shape.type rd, [pd] {stride};

Figure 2: Tensor Core PTX instructions

The device code is first compiled into a device-independent
machine-language instruction set architecture known as Par-
allel Thread eXecution (PTX) before being compiled into
device-specific machine code (SASS).

To perform operations on Tensor Cores at the PTX level,
NVIDIA introduced three PTX instructions in PTX version
6.0 [30] with the syntax shown in Figure 2. In this figure
the “sync” qualifier indicates that the instruction waits for
all threads in the warp to synchronize before beginning
execution. The PTX manual uses the term “operand matrix”
to refer to a tile. The “layout” qualifier specifies whether
an operand matrix is stored in memory with a row-major or
column-major layout. The “shape” qualifier represents the
fragment size of the operand matrices (e.g., 16 × 16 × 16
is specified by setting shape to m16n16k16). The “type”
qualifier indicates the precision of the operand matrices, i.e.
FP16 or FP32. For Volta, the A and B matrices must be
FP16 but the C operand matrix can be either FP16 or FP32.
NVIDIA’s Turing architecture supports additional integer
arithmetic modes initially targeted for inference. In these,
the operand matrices A and B can be 8, 4, or 1-bit signed
or unsigned integers and operand matrices C and D are kept
in higher-precision INT32 format to avoid overflow during
accumulation [39].

The operand matrices A, B and C must be loaded
from memory to the register-file prior to initiating a
matrix-multiply operation. This data movement is accom-
plished via three wmma.load PTX instructions. Specifically,
wmma.load.a, wmma.load.b and wmma.load.c load the
matrices A, B and C respectively into registers ra, rb
and rc where ra, rb and rc represent sets of general-
purpose registers distributed across the threads of a warp
corresponding with the notion of a fragment. pa, pb, pc are
the memory address where operand matrices A, B and C are
stored in memory.

Typically, input tiles loaded from memory are a portion
of a larger matrix. To help accessing tiles of a larger ma-
trix, wmma.load and wmma.store support strided-memory
access. The “stride” operand specifies the beginning of
each row (or column).

The wmma.mma PTX instruction performs a warp-level
matrix-multiply with accumulate operation. This instruction
computes D = A×B+C using registers a, b and c which
contain the matrix A, B and C respectively. The computed
results are stored in general-purpose registers d in each

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

A

B00 B01 B02 B03

B10 B11 B12 B13

B20 B21 B22 B23

B30 B31 B32 B33

B

C00 C01 C02 C03

C10 C11 C12 C13

C20 C21 C22 C23

C30 C31 C32 C33

C

D00 D01 D02 D03

D10 D11 D12 D13

D20 D21 D22 D23

D30 D31 D32 D33

D

x + =

Figure 3: Tensor cores complete one 4×4 MACC operation
per cycle (D = A ∗B + C). Reproduces Figure 8 in [26].

thread.

D. Tensor Core

Each tensor core is a programmable compute unit special-
ized for accelerating machine learning workloads. The Tesla
Titan V GPU contains 640 tensor cores distributed across 80
SMs, with eight tensor cores per SM, providing a theoretical
performance of 125 TFLOPS at an operational frequency of
1530 MHz. According to NVIDIA [26], each tensor core can
complete a single 4 × 4 matrix-multiply-and-accumulation
(MACC) each clock cycle, i.e. D = A × B + C, where
A,B,C are 4 × 4 matrices as shown in Figure 3. While
individual tensor cores operate on 4× 4 matrices at any one
time, as noted earlier, the WMMA API exposes the tensor
cores on tile-sizes which are much larger. Naively, a multiply
of two 16× 16 matrices decomposes into a blocked matrix-
multiply involving four 4 × 4 matrix-multiply accumulates
for each of the sixteen 4 × 4 submatrices of the result
matrix. Thus, each mma_sync at the CUDA C++ WMMA
level or each wmma.mma operation at the PTX level may be
implemented with 64 separate tensor core operations. The
tensor cores have two modes of operation: FP16 and mixed-
precision. In FP16 mode, the tensor core reads three 4 × 4
16-bit floating-point matrices as source operands whereas
in mixed-precision mode it reads two 4× 4 16-bit floating-
point matrices along with a third 4× 4 32-bit floating-point
accumulation matrix.

III. DEMYSTIFYING NVIDIA’S TENSOR CORES

In this section we describe the results of our attempt
to better understand the low-level implementation details
of tensor cores on recent GPUs. Our analysis extends and
refines that of Jia et al. [40] who examined the distribution
of matrix operand elements to registers for mixed precision
mode in column-major layout. In their work, Jia et al. [40]
refer to a group of four consecutive threads within a warp as

<FRAGMENT_DECLARATION> a_frag;
wmma::load_matrix_sync(a_frag, mem_addr, stride);
for(int i=0; i < a_frag.num_elements; i++) {
float t=static_cast<float>(a_frag.x[i]);
printf("THREAD%d CONTAINS %.2f\n",threadIdx.x,t);

}

Figure 4: Microbenchmark for decoding thread fragments

wmma.mma

HMMA
HMMA

HMMA
HMMA
HMMA

HMMA
HMMA

HMMA
HMMA
HMMA

NOP
NOP

NOP
HMMA
NOP

NOP
NOP

NOP
HMMA
NOP

Broken
in to
HMMAs

Patched
Using
radare2

Figure 5: Analyzing data accessed by tensor cores

wmma.mma

HMMA
HMMA

HMMA

HMMA

HMMA
HMMA

HMMA

HMMA

HMMA
HMMA

HMMA

HMMA

HMMA
HMMA

HMMA

HMMA

HMMA
HMMA

CS2R.32 R0, SR_CLOCKLO

CS2R.32 R1, SR_CLOCKLO

Broken
in to
HMMAs

Patched
Using
radare2

1

2

n

n-1

Figure 6: Analyzing tensor core timing

a “thread group”. We find it more convenient to shorten this
to threadgroup, which we do in the remainder of the paper.
As there are 32 threads in a warp, there are 8 threadgroups
in a warp. We will refer to the threadgroup id1 of a given
thread, which is given by b threadIdx4 c.

A. Microbenchmarks

In this section we discuss the microbenchmarks2 we used
for analyzing the implementation of tensor cores. We employ
two types of microbenchmarks: Ones designed to determine
how data move into and out of the tensor cores and others
used to determine how long the tensor cores take to perform
operations.

1) Fragment to thread mapping: Figure 4 contains a
portion of the CUDA code employed in Section III-B to
determine the mapping between operand matrix elements
and threads. This code is part of a larger general matrix
multiplication (GEMM) kernel operating on a 16× 16 ma-
trices. Each thread loads a segment of the input matrix and
prints it to the output console. By initializing each element of
the input matrix with different values it is straightforward to
uncover the mapping from operand matrix element to thread
with a warp.

2) Analyzing machine instructions: As described in detail
in Section III-C wmma.mma PTX instructions are mapped into
multiple HMMA SASS instructions. Figure 5 illustrates, at a

1Similar to “group id” in Jia et al. [40].
2https://github.com/gpgpu-sim/gpgpu-sim_simulations/tree/master/

benchmarks/src/cuda/tensorcore-microbenchmarks

high level, the operation of our microbenchmarks used for
analyzing how data is accessed by HMMA instructions. We
use radare2 [41] to replace all HMMA operations except one
with “no operation” (NOP) instructions. Figure 6 illustrates
at a high-level the approach used by our microbenchmarks
for analyzing the timing of low level operations on tensor
cores. To develop these microbenchmarks we used radare2
to add code that reads the clock register before the 1st and
after the nth HMMA instruction.

B. Operand matrix element mapping

In this section we summarize the results of our analysis
of the distribution of matrix elements to threads.

1) Volta Tensor Cores: Figures 7a and 7b summarize how
the elements of matrix operands are mapped to the registers
of individual threads within a warp. The large rectangle (1)
represents 16 × 16 operand matrix A or B for both FP16
and mixed-precision modes of operation. Smaller squares
are individual elements of the operand matrix and elements
in the same row are stored contiguously in memory. Each
threadgroup loads a different 4 × 16 sub-matrix, which we
will refer to as a segment. The four segments that make up
the operand matrix are highlighted with different shading.

The upper right-hand portion of Figure 7a (2 , 3) shows
how the elements within a segment are distributed among the
threads of a threadgroup. Our analysis found that on Volta,
each segment is loaded by two different threadgroups. Thus,
each element of the A and B operand matrices are loaded by
two different threads in a warp on Volta. The bottom portion
of Figure 7a (4) combined with the top-left portion (1)
summarize the exact mapping. For example, we found the
first four consecutive rows of operand matrix A are loaded
by threadgroup 0 and 2.

The distribution of matrix elements to threads for operand
matrix A stored in row-major layout is the same as the
distribution of operand matrix B stored in column-major
layout and vice-versa. For the operand matrix A in row-
major layout, each thread inside the threadgroup loads 16
consecutive elements using two coalesced 128-bit wide load
instructions (2) whereas in column major layout each thread
inside the threadgroup loads four blocks of four consecutive
elements via four coalesced 64-bit wide load instructions,
each with a stride distance of 64 elements (3).

As illustrated in Figure 7b, the distribution of matrix
elements to threads is different for operand matrix C.
Specifically, for operand matrix C each threadgroup loads a
8×4 segment of the matrix C. Also, the specific distribution
within the threadgroup now depends on whether the matrix
C is FP16 or FP32 and is independent of the layout. 32-
bit wide (partially coalesced) load instructions are used to
access elements of matrix C in both modes of operation.

2) Turing Tensor Cores: Figure 8 summarizes the dis-
tribution of operand matrix elements to threads for tensor
cores in NVIDIA’s Turing architecture. Turing’s tensor cores

https://github.com/gpgpu-sim/gpgpu-sim_simulations/tree/master/benchmarks/src/cuda/tensorcore-microbenchmarks
https://github.com/gpgpu-sim/gpgpu-sim_simulations/tree/master/benchmarks/src/cuda/tensorcore-microbenchmarks

Matrices A and B Distribution
within a Warp

(FP32 and FP16)

Matrix A Matrix B
Threadgroups

0 and 2
Threadgroups

0 and 1
Threadgroups

4 and 6

Threadgroups
2 and 3

Matrix A Matrix B
Threadgroups

0 and 2
Threadgroups

0 and 1
Threadgroups

4 and 6

Threadgroups
2 and 3

`

Threadgroups
1 and 3

Threadgroups
4 and 5

Threadgroups
5 and 7

Threadgroups
6 and 7

Matrix A Matrix B

`

Threadgroups
1 and 3

Threadgroups
4 and 5

Threadgroups
5 and 7

Threadgroups
6 and 7

Matrix A Matrix B Elements Elements

`̀̀

1616

1
6

1
6

`

16

1
6

Distribution within a threadgroup in
A (Row Major) or B (Column Major)

Distribution within a threadgroup in
A (Column Major) or B (Row Major)

Thread1Thread 0 Thread 2 Thread 3

Distribution within a threadgroup in
A (Row Major) or B (Column Major)

Distribution within a threadgroup in
A (Column Major) or B (Row Major)

Thread1Thread 0 Thread 2 Thread 3

Matrices A and B Distribution
within a Warp

(FP32 and FP16)

Matrix A Matrix B
Threadgroups

0 and 2
Threadgroups

0 and 1
Threadgroups

4 and 6

Threadgroups
2 and 3

`

Threadgroups
1 and 3

Threadgroups
4 and 5

Threadgroups
5 and 7

Threadgroups
6 and 7

Matrix A Matrix B Elements Elements

`

16

1
6

Distribution within a threadgroup in
A (Row Major) or B (Column Major)

Distribution within a threadgroup in
A (Column Major) or B (Row Major)

Thread1Thread 0 Thread 2 Thread 3

1

2

3

4

M
at

ri
x

A
 (

R
o

w
),

 M
at

ri
x

B
 (

C
o

lu
m

n
)

Matrix A (Column), Matrix B (Row)

First
LD.E.128

Second
LD.E.128

First
LD.E.64

Second
LD.E.64

Third
LD.E.64

Fourth
LD.E.64

(a) Operand matrices A and B.

Matrix C Distribution within a Warp (FP32 and FP16)

Distribution within
threadgroup in FP32

Thread1Thread 0 Thread 2 Thread 3

Distribution within
threadgroup in FP16

`̀Theadgroup0

1616

1
6

1
6

Theadgroup2

Theadgroup4 Theadgroup6

Theadgroup1 Theadgroup3

Theadgroup7Theadgroup5

`Theadgroup0

16

1
6

Theadgroup2

Theadgroup4 Theadgroup6

Theadgroup1 Theadgroup3

Theadgroup7Theadgroup5

(b) Operand matrix C.

Figure 7: Distribution of operand matrix elements to threads for Tensor Cores in the Titan V (Volta).

support three new precision modes: 1-bit, 4-bit and 8-bit,
along with three new tile sizes: 32× 8× 16 and 8× 32× 16
for 8 and 16-bit modes and 8 × 8 × 32 for 4-bit mode.
Support for 1-bit mode was only enabled very recently as
of this writing and did not appear to work on our system.
Thus, no analysis is provide for 1-bit mode in the rest of
this paper. We found Turing has a simpler distribution of
elements to threads than Volta. Specifically, each operand
matrix element is loaded only once. Both tile size 32×8×16
and 8×32×16 employ the same distribution. For all modes
and configurations, each row or column (depending on the
mode and operand matrix) is loaded by a threadgroup and
consecutive threadgoups load consecutive rows or columns.

C. Machine ISA interface

This section summarizes what we learned about how
Tensor Cores are accessed at the machine instruction set
architecture level. This level is typically called SASS for
NVIDIA GPUs. The analysis here is based upon examining
SASS disassembly using NVIDIA’s cuobjdump tool.

We found that wmma.load and wmma.store PTX instruc-
tions are implemented by being broken into a group of
normal SASS load (LD.E.64, LD.E.128, LD.E.SYS) and
store (ST.E.SYS) instructions. This suggests that Tensor
Cores access operand matrix fragments directly from the
normal GPU register file. In more detail, we found the
wmma.load.c PTX instruction is broken into a group of
LD.E.SYS instructions. For operand matrices A and B,
depending on whether the operand matrix layout is row
major or column major, wmma.load PTX instructions are
broken into either four 64-bit loads (LD.E.64) or two 128-
bit loads (LD.E.128), respectively.

Figure 9 illustrates the SASS code for Volta corresponding
with a single wmma.mma PTX instruction. As can be seen
in this figure, matrix-multiply accumulate operations are
implemented via a new SASS instruction, HMMA. Each HMMA

instruction has four operands and each operand uses a pair
of registers. By comparing the registers used by the HMMA
and the loads and stores, we have inferred that a pair of
adjacent registers accessed by different memory operations
are encoded in the HMMA instruction using a single register
identifier. For example, R8 in the first HMMA instruction
in Figure 9 appears from our analysis to represent the
register pair <R8,R7>. The higher register identifier in the
register pair is the one encoded in the instruction. For
example, for the HMMA instruction on the first line of of
Figure 9, the destination register R8 actually represents the
pair <R8,R7>. Similarly, the remaining register identifiers
actually represent three pairs of source operand registers
(<R24,R23>, <R22,R21> and <R8, R7>). Each of the four
pairs of registers corresponds to operand matrices A, through
D.

Some registers are annotated with “reuse” in Figure 9.
Gray [42] analyzed NVIDIA’s SASS instruction set for the
earlier Maxwell architecture where a similar annotation often
appears. Based upon his analysis and related papers from
NVIDIA on register file caching for GPUs [43], we believe
the “reuse” notation indicates the associated operand is
reused in the next step and therefore cached in the operand
reuse cache to avoid a register fetch and possibly to reduce
bank conflicts.

1) Volta Tensor Cores: Each wmma.mma PTX instruction
is broken into a group of HMMA instructions.

Figure 9a illustrates the SASS code for mixed precision
mode. In this mode, each PTX wmma.mma instruction is
broken into 16 HMMA instructions. These are organized as
four sets of four HMMA instructions. Each HMMA instruction is
annotated with “STEP<n>” where <n> ranges from 0 to 3.
Thus, each set comprises four steps. Figure 9b illustrates the
SASS code for FP16 mode in which a single PTX wmma.mma
instruction is broken into four sets consisting of only 2 steps.

Matrix A

Matrices A and C Row Major
B Column Major

1616

1
6

1
6

1616

1
6

1
6

Matrix A

Matrix C

SIZE:16 x 16 x16

`

Distribution within threadgroup
In 16 bit mode

Thread2Thread 1Thread 0 Thread 3

Distribution within threadgroup
in 8 bit mode

Distribution within threadgroup
in 8 and 16 bit mode

Matrices A and C Column Major
B Row Major

1
6

1
6

3232
1616

3232

88
88

Matrix B

Matrix Distribution within a warp in 16 and 8 bit mode

SIZE:8 x32 x16

`

1616

3
2

3
2

88

1
6

1
6

3
2

3
2

88

Matrix B

Matrix C

SIZE:32 x 8 x16
All SIZEs:

SIZE:32x8x16, 8x32x16

Distribution within threadgroup
in 8 and 16 bit mode

SIZE:16x16x16

Matrices A and B

Matrix C

Threadgroup2

Threadgroup3
Threadgroup6

Threadgroup7

Threadgroup2

Threadgroup3
Threadgroup6

Threadgroup7

Threadgroup0

Threadgroup1

Threadgroup4

Threadgroup5

Threadgroup0

Threadgroup1

Threadgroup4

Threadgroup5

Figure 8: Distribution of operand matrix elements to threads for tensor cores in the RTX 2080 (Turing).

44
42
40
38
34

44
42
40
38
34
32
30
28
24
22
20

32
30
28
24
22
20
18
14
12
10

18
14
12
10

54
44
42
40
38
34
32
30
28
24
22
20
18
14
12
10

54

Cumulative
Clock Cycles

SET1

SET2

SET3

SET4

HMMA.884.F32.F32.STEP0 R8, R24.reuse.COL, R22.reuse.ROW, R8;
HMMA.884.F32.F32.STEP1 R10, R24.reuse.COL, R22.reuse.ROW, R10;
HMMA.884.F32.F32.STEP2 R4, R24.reuse.COL, R22.reuse.ROW, R4;
HMMA.884.F32.F32.STEP3 R6, R24.COL, R22.ROW, R6;
HMMA.884.F32.F32.STEP0 R8, R20.reuse.COL, R18.reuse.ROW, R8;
HMMA.884.F32.F32.STEP1 R10, R20.reuse.COL, R18.reuse.ROW, R10;
HMMA.884.F32.F32.STEP2 R4, R20.reuse.COL, R18.reuse.ROW, R4;
HMMA.884.F32.F32.STEP3 R6, R20.COL, R18.ROW, R6;
HMMA.884.F32.F32.STEP0 R8, R14.reuse.COL, R12.reuse.ROW, R8;
HMMA.884.F32.F32.STEP1 R10, R14.reuse.COL, R12.reuse.ROW, R10;
HMMA.884.F32.F32.STEP2 R4, R14.reuse.COL, R12.reuse.ROW, R4;
HMMA.884.F32.F32.STEP3 R6, R14.COL, R12.ROW, R6;
HMMA.884.F32.F32.STEP0 R8, R16.reuse.COL, R2.reuse.ROW, R8;
HMMA.884.F32.F32.STEP1 R10, R16.reuse.COL, R2.reuse.ROW, R10;
HMMA.884.F32.F32.STEP2 R4, R16.reuse.COL, R2.reuse.ROW, R4;
HMMA.884.F32.F32.STEP3 R6, R16.COL, R2.ROW, R6;

(a) Disassembled SASS instructions for Mixed precision mode

64
51
47
38
34

64
51
47
38
34

12

25
21
12

25
21

64
51
47
38
34

12

25
21

Cumulative
Clock Cycles

SET1

SET2

SET3

SET4

HMMA.884.F16.F16.STEP0 R4, R22.reuse.T, R12.reuse.T, R4;
HMMA.884.F16.F16.STEP1 R6, R22.T, R12.T, R6;
HMMA.884.F16.F16.STEP0 R4, R16.reuse.T, R14.reuse.T, R4;
HMMA.884.F16.F16.STEP1 R6, R16.T, R14.T, R6;
HMMA.884.F16.F16.STEP0 R4, R18.reuse.T, R8.reuse.T, R4;
HMMA.884.F16.F16.STEP1 R6, R18.T, R8.T, R6;
HMMA.884.F16.F16.STEP0 R4, R2.reuse.T, R10.reuse.T, R4;
HMMA.884.F16.F16.STEP1 R6, R2.T, R10.T, R6;

(b) Disassembled SASS instructions for FP16 mode

Figure 9: Disassembled SASS instructions corresponding to
WMMA:MMA API

Figure 9 also shows the cumulative clock cycles for the
Volta Tensor Cores. The latency of wmma.mma API in mixed
precision mode is ten cycles lower than in FP16 mode.

2) Turing Tensor Cores: For Turing, each PTX wmma.mma
instruction is broken into a group of four HMMA instruc-
tions for all modes except 4-bit where it is converted into

a single HMMA instruction. Table I shows the cumulative
clock cycles for HMMA instructions on the Turing archi-
tecture. For 16× 16× 16 tile size, the latency of wmma.mma
in mixed precision mode on Turing, 99 cycles (Table I),
is more than on Volta, 54 cycles (Figure 9a). The latency
of mixed precision mode is more than FP16 mode. 8-bit
mode is fastest. The latency of 4-bit mode is the highest,
which may be because it is an experimental feature on the
2080 RTX.

TILE SIZE PRECISION Average Cumulative Clock Cycles

(MxNxK) SET 1 SET 2 SET 3 SET 4

16x16x16
16Bit (FP32 Acc) 42 56 78 99
16Bit (FP16 Acc) 44 52 60 74

8Bit 40 44 47 59

32x8x16
16Bit (FP32 Acc) 48 60 81 104
16Bit (FP16 Acc) 44 52 60 74

8Bit 52 55 59 73

8x32x16
16Bit (FP32 Acc) 42 56 77 99
16Bit (FP16 Acc) 42 50 58 72

8Bit 38 42 46 56
8x8x32 4Bit 230 - - -

Table I: Average cycles to execute all HMMA instructions
up to SET n on Turing. “Acc” is accumulation mode.

D. HMMA Instruction Analysis

This section explores HMMA execution in greater detail.
1) Volta: We examine the operation of each “set” of

HMMA instructions in Figure 9. As shown in Figure 10a,
irrespective of mode, when executing the HMMA instructions
in a set, each threadgroup multiplies a 4 × 4 sub-tile of

X +A C

 In 4 sets within Threadgroup 0 HMMA instructions
complete 4×8 final results and store it in matrix D

Se
t

1

=X +A C

 In 4 sets within Threadgroup 0 HMMA instructions
complete 4×8 final results and store it in matrix D

Se
t

1

=

D

1616

1
6

1
6

B

1616

1
6

1
6

1616 1616

1
6

1
6

1
6

1
6

D

16

1
6

B

16

1
6

16 16

1
6

1
6

DB DB

DB DB

DB DB

C

C

C

C

X

X

X

+

+

+

=

=

=

A

A

A

A

Se
t

2
Se

t
3

Se
t

4

(a) Elements accessed in each “Set”

Step 0 Step 1
Step 2 Step 3

Threadgroup0 Threadgroup2

Threadgroup4 Threadgroup6

Threadgroup1 Threadgroup3

Threadgroup5 Threadgroup7

Step 0 Step 1
Step 2 Step 3

Threadgroup0 Threadgroup2

Threadgroup4 Threadgroup6

Threadgroup1 Threadgroup3

Threadgroup5 Threadgroup7

1616

1
6

1
6

X +A

C

4 steps of HMMA instructions within
Threadgroup 0

St
e

p
0

=X +A

C

4 steps of HMMA instructions within
Threadgroup 0

St
e

p
0

=

D

1616

1
6

1
6

B

1616

1
6

1
6

1616 1616

1
6

1
6

1
6

1
6

D

16

1
6

B

16

1
6

16 16

1
6

1
6

DB DB

DB DB

DB

C

C

C

X

X

X

+

+

+

=

=

=

A

A

A

St
e

p
1

St
e

p
2

St
e

p
3

A

X +A

C

4 steps of HMMA instructions within
Threadgroup 0

St
e

p
0

=

D

16

1
6

B

16

1
6

16 16

1
6

1
6

DB

DB

DB

C

C

C

X

X

X

+

+

+

=

=

=

A

A

A

St
e

p
1

St
e

p
2

St
e

p
3

A

(b) Elements accessed in each “Step” (mixed-precision mode).

Step 0 Step1

Threadgroup0 Threadgroup2

Threadgroup4 Threadgroup6

Threadgroup1 Threadgroup3

Threadgroup5 Threadgroup7

Step 0 Step1

Threadgroup0 Threadgroup2

Threadgroup4 Threadgroup6

Threadgroup1 Threadgroup3

Threadgroup5 Threadgroup7

1616

1
6

1
6

X +A C

2 steps of HMMA instructions within
Threadgroup 0

St
e

p
0

=X +A C

2 steps of HMMA instructions within
Threadgroup 0

St
e

p
0

=

D

vv

1616

1
6

1
6

B

1616

1
6

1
6

1616 1616

1
6

1
6

1
6

1
6

D

v

16

1
6

B

16

1
6

16 16

1
6

1
6

DB DB

C

C

X + =

A

A

St
e

p
1

X +A C

2 steps of HMMA instructions within
Threadgroup 0

St
e

p
0

=

D

v

16

1
6

B

16

1
6

16 16

1
6

1
6

DB

C

C

X + =

A

A

St
e

p
1

X +A C

2 steps of HMMA instructions within
Threadgroup 0

St
e

p
0

=

D

v

16

1
6

B

16

1
6

16 16

1
6

1
6

DB

C

C

X + =

A

A

St
e

p
1

(c) Elements accessed in each “Step” (FP16 mode).

Figure 10: HMMA instruction analysis for Volta (Titan V).

operand matrix A with a 4 × 8 sub-tile of operand matrix
B and accumulates the result with operand matrix C. For
example, when threadgroup 0 executes the first set of HMMA
instructions (Set 1) it multiplies the sub-tile consisting of
the first four rows and columns of operand matrix A with
the sub-tile consisting of the first four rows and first eight
columns of operand matrix B. The result is accumulated with
a 4 × 8 sub-tile of operand matrix C and stored in a 4 × 8
sub-tile of operand matrix D.

Figure 10b shows the detailed operation of each HMMA
“step” within a “set” for threadgroup 0 for mixed-precision
mode. Each “set” of HMMA instructions contains four “steps”.
We find in each step, a 2× 4 sub-tile of operand matrix A

is multiplied with a 4 × 4 sub-tile of operand matrix B,
accumulated with a 2× 4 sub-tile of operand matrix C.

Similarly, Figure 10c shows the detailed operation of each
HMMA “step” within a “set” for threadgroup 0 for FP16 mode.
Each set of HMMA instructions contains two “steps”. In each
step, every threadgroup multiplies a 4×4 sub-tile of operand
matrix A with a 4 × 4 sub-tile of operand matrix B and
accumulates the result with matrix C.

2) Turing: Figure 11 illustrates the elements accessed
by HMMA instructions on the Turing GPU architecture. The
“step” annotation found on HMMA SASS instructions in
Volta is not present in Turing. Given the latency results in
Table I do not suggest increased parallelism one possibility
is similar “steps” are sequenced by the microarchitecture
using a state-machine. We make the following observations:

• The elements accessed for a particular mode are similar
for different tile configurations.

• In FP16 and mixed precision mode the computation
pattern is the product between two subtiles where one
of the subtile is 8×8 and the other subtile is either 16×8
or 8 × 16. For example, for tile size 16 × 16 × 16 or
32 × 8 × 16, the computation in SET 1 is the product
between the 16× 8 subtile of matrix A with the 8× 8
subtile of matrix B whereas for tile size 8 × 32 × 16
the product is between the 8 × 8 subtile of matrix A
with the 8× 16 subtile of matrix B.

• For the 8-bit mode the computation pattern is the
product between the 8 × 16 subtile of matrix A with
16× 8 subtile of matrix B.

• In 4-bit mode, each wmma.mma PTX instruction is
implemented with a single HMMA SASS instruction so
we omit 4-bit mode in Figure 11.

E. Discussion

In this section, we provide our analysis of the results
presented above for Volta and infer a possible rationale for
why execution is broken into “sets” and “steps”.

Recall, each element of the input matrix is loaded by two
different threadgroups. We wrote a microbenchmark to help
determine how the fragments loaded by different threads are
used by a HMMA instruction. For example, to determine how
operand matrix elements loaded by thread 0 are used, we
altered these values and observed how the result is affected.
We found that threadgroups work in pairs to compute 8× 8
subtiles of the result. We call each such pair of threadgroups
an octet. There are four octets in a warp.

Table II shows the pair of threadgroup constituting each
octet, which in general can be formulated as octet X =
threadgroup X

⋃
threadgroup X+4 where X lies in be-

tween 0 to 3. Table II also uses the notation [Row_Start
: Row_End, Col_Start : Col_End] to show the subtile of
the operand matrix A and B accessed by the threads inside
each octet. The elements loaded by the octet remain the same

1616

1616

1
6
1
6

1
6
1
6SET2

A

B

C

1616

1616

1
6
1
6

1
6
1
6SET3

CA

B

1616

1616

1
6
1
6

1
6
1
6SET4

CA

B

1616

1616

1
6
1
6

1
6
1
6

A C

B
SET1

C

(a) Mixed and FP16,
16× 16× 16

1616

1616

1
6
1
6

1
6
1
6SET2

A

B

C

1616

1616

1
6
1
6

1
6
1
6SET3

CA

B

1616

1616

1
6
1
6

1
6
1
6SET4

CA

B

1616

1616

1
6
1
6

1
6
1
6

A C

B
SET1

C

(b) 8-bit, 16× 16× 16

1616

88

1
6
1
6

A C

B
SET1

16

8

1
6

A C

B
SET1

3232

1616

88

1
6
1
6

A C

B
SET2

16

8

1
6

A C

B
SET2

3232

1616

88

1
6
1
6

A C

SET3
B

16

8

1
6

A C

SET3
B

3232

1616

88

1
6
1
6

A C

BSET4

16

8

1
6

A C

BSET4

3232

16

8

1
6

A C

BSET4

32

3232

3232 3232

3232

88

88

88

88

88

8888

88

(c) 8-bit, 8× 32× 16

1616

88

3
2

3
2

1
6
1
6

C

B
SET1

A

16

8

3
2

1
6

C

B
SET1

A 3
2

3
2

88

16

8

3
2

1
6

C

B
SET1

A 3
2

8

1616

88

3
2

3
2

1
6
1
6

C

B
SET2

A

16

8

3
2

1
6

C

B
SET2

A 3
2

3
2

88

16

8

3
2

1
6

C

B
SET2

A 3
2

8

1616

88

3
2

3
2

1
6
1
6

C

B
SET3

A

16

8

3
2

1
6

C

B
SET3

A 3
2

3
2

88

1616

88

3
2

3
2

1
6
1
6

C

B
SET4

A 3
2

3
2

88

(d) Mixed and FP16,
32× 8× 16

1616

88

3
2

3
2

1
6
1
6

C

B
SET1

A

16

8

3
2

1
6

C

B
SET1

A 3
2

3
2

88

16

8

3
2

1
6

C

B
SET1

A 3
2

8

1616

88

1
6
1
6

C

B
SET2

A

16

8

1
6

C

B
SET2

A 3
2

3
2

88

16

8

1
6

C

B
SET2

A 3
2

8

1616

88

3
2

3
2

1
6
1
6

C

B
SET3

A

16

8

3
2

1
6

C

B
SET3

A 3
2

3
2

88

1616

88

3
2

3
2

1
6
1
6 B

SET4

A

16

8

3
2

1
6 B

SET4

A 3
2

3
2

88

16

8

3
2

1
6 B

SET4

A 3
2

8

88

88

88

3
2

3
2

88

88

(e) 8-bit, 32× 8× 16

1616

88

1
6
1
6

A C

B
SET1

16

8

1
6

A C

B
SET1

1616
3232

1616

88

1
6
1
6

A C

B
SET2

16

8

1
6

A C

B
SET2

1616
3232

1616

88

1
6
1
6

A C

BSET3

16

8

1
6

A C

BSET3

1616
3232

1616

88

1
6
1
6

A C

BSET4

16

8

1
6

A C

BSET4

1616
3232

16

8

1
6

A C

BSET4

16
32

3232

3232 3232

3232

88
88

88

1616 1616

1616

88

88

(f) Mixed and FP16, 8× 32× 16.

Figure 11: HMMA instruction analysis for Turing (RTX2080).

OCTET 0

A

B

C

OCTET 1

A

B

C

OCTET 2

A

B

C

OCTET 3

A

B

C

16

16

16

16

16
16

8

8

8

(a) Elements of operand matrices ac-
cessed by each octet

e

E

F

G

H

fgh

Threadgroup 0 Threadgroup 4

Each block represents a 4x4 subtile

OPERAND MATRIX A

OPERAND MATRIX B
ACCUMULATOR

d c b a

D

C

B

A

(b) Outer product formulation during sets
and steps in an octet

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

C
lo

ck
 C

yc
le

s

Number of Warps in a CTA

(c) Cycles to execute parallel HMMA
operations versus number of warps per
SM

Figure 12

irrespective of the layout in which the operand matrices are
stored.

Table II shows each element of the operand matrices A
and B is loaded twice by threads in a different threadgroup.
This enables each octet to work independently. Specifically,
each octet reads an 8× 16 subtile of operand matrix A, an
16× 8 subtile of operand matrix B and an 8× 8 subtile of
operand matrix C as shown in Figure 12a.

To better understand the organization of threads into
octets, we analyzed the calculation performed by octets in
different “sets” and “steps”. As shown in Figure 12b, in
each set, every octet performs the outer product between
input subtiles. For example, in Set 1 the outer product
between input subtile [a], [e] and [A], [E] is completed to
generate the partial result [aA], [aE], [eA] and [eE]. Here
each [a], [e], [A], [E] represents a 4 × 4 subtile. To com-
pute [aE], threadgroup 0 needs operand matrix B subtile
[E] which is only loaded by threadgroup 4. Similarly,
to compute [eA], threadgroup 4 needs operand matrix B
subtile [A] which is only loaded by threadgroup 0. Thus,
while threadgroups cannot, octets can work independently.
Table III expands upon Figure 12b to tabulate all the outer
product computations performed in different sets and steps.

Octet Threadgroup Matrix A Matrix B
0 0 and 4 [0:7,0:15] [0:15,0:7]
1 1 and 5 [8:15,0:15] [0:15,0:7]
2 2 and 6 [0:7,0:15] [0:15,8:15]
3 3 and 7 [8:15,0:15] [0:15,8:15]

Table II: Octet composition and elements accessed

SET STEP Threadgroup X Threadgroup X+4

1

0 a[0 : 1]×A e[0 : 1]×A
1 a[2 : 3]×A e[2 : 3]×A
2 a[0 : 1]× E e[0 : 1]× E
3 a[2 : 3]× E e[2 : 3]× E

2

0 b[0 : 1]×B f [0 : 1]×B
1 b[2 : 3]×B f [2 : 3]×B
2 b[0 : 1]× F f [0 : 1]× F
3 b[2 : 3]× F f [2 : 3]× F

3

0 c[0 : 1]× C g[0 : 1]× C
1 c[2 : 3]× C g[2 : 3]× C
2 c[0 : 1]×G g[0 : 1]×G
3 c[2 : 3]×G g[2 : 3]×G

4

0 d[0 : 1]×D h[0 : 1]×D
1 d[2 : 3]×D h[2 : 3]×D
2 d[0 : 1]×H h[0 : 1]×H
3 d[2 : 3]×H h[2 : 3]×H

Table III: Octet computation details

IV. A TENSOR CORE MICROARCHITECTURE

In this section we present a tensor core microarchitecture
consistent with the observations made for Volta earlier in
the paper.

Recall each tensor core completes a 4×4 matrix-multiply
and accumulate each cycle. To achieve this, each tensor core
must be able to perform sixteen four-element dot-products
(FEDPs) each cycle. As shown in Figure 9 and 10b, in
steady state, a threadgroup takes two cycles to generate a
2 × 4 subtile of the output matrix. Thus, across all threads
in a warp a HMMA instruction is executing 32 FEDP
per cycle. Since each tensor core can only complete 16
FEDP per cycle it follows that full throughput requires two
tensor cores per sub-core within an SM. To confirm this we
wrote a microbenchmark that repeatedly executes HMMA
operations, varies the number of warps per thread block and
the number of thread blocks executing concurrently constant.
As shown in Figure 12c, this microbenchmark shows that
only four warps can concurrently execute on a single SM,
but the Titan V SM has 8 tensor cores per SM. Thus, each
warp appears to utilize two tensor cores.

Next, we consider register access bandwidth. The data
in Figure 9a suggests the minimum initiation interval of an
HMMA instruction is two cycles. There are three source
operands and as noted in Section III-C for each source
operand a pair of 32-bit registers is read. Taking all these
factors into account the total register fetch bandwidth is
32 × 2 × 3 × 32 = 6kb every 2 cycles per warp. This
bandwidth is sufficient for a warp to fetch the following
every two cycles: eight 2× 4 FP16 subtiles for operand A,
eight 4×4 FP16 subtiles for operand B, and eight 2×4 FP32
subtiles or eight 4 × 4 FP16 subtiles for operand C. Given
every warp accesses two tensor cores, the register bandwidth
per tensor core is 1.5kb per warp per clock cycle.

NVIDIA states that in Volta INT and FP32 instructions
can be co-issued [26]. On the other hand tensor core
operations reportedly cannot be co-issued with integer and
floating-point arithmetic instructions [44]. We believe the
reason is that the tensor cores may be using the register file
access ports associated with the INT and FP32 cores. There
are 64 INT and 64 FP32 ALUs inside Titan V SM for a total
of 128 ALUs. With eight tensor cores inside an SM sharing
access to the register file each tensor core should be able to
access 128

8 ×32 = 16×32 = 512 bits per source operand per
cycle. Assuming three source operands per ALU (to support
multiply-accumulate operations) this means each tensor core
can access 1.5kb/cycle.

Figure 13 illustrates our proposed tensor core microarchi-
tecture. Each warp utilizes two tensor cores. We assume two
octets within a warp access each tensor core. Sixteen SIMD
lanes are dedicated to each tensor core, eight to each octet,
and four to each threadgroup. Each threadgroup lane fetches
the operands into internal buffers. For operand matrix A
and C, each threadgroup fetches the operands to its separate
buffer whereas for operand matrix B both the threadgroups
fetches to a shared buffer. The mode of operation and steps
determine the threadgroup lane from which each operand is
fetched. The buffers feed sixteen FP16 FEDP units. Inside

Register File

Matrix A
Buffer

Matrix B
Buffer `Matrix A

Buffer

Octet 0

 Operand Bus 1
Operand Bus 2
Operand Bus 3

La
ne

 1
6-

19

Mux

La
ne

 0
-3

La
ne

 1
6-

19

La
ne

 1
6-

19

Writeback

ot
he

r e
xe

cu
tio

n
un

its

Threadgroup 0 Threadgroup 4

La
ne

 0
-3

Octet 1Octet 2Octet 3

La
ne

20

-2
3

La
ne

8-

11

La
ne

21

-2
4

La
ne

 4
-7

an
d

20
-2

3

 L
an

e
8-

11

an
d

24
-2

7

La
ne

 4
-7

 La
ne

24

-2
7

 La
ne

12

-1
5

X X X X

+ +

+Pipeline
Registers

DP
(Dot Product)

Unit

TENSOR
CORE

TENSOR
CORE La

ne
 1

2-
15

an
d

28
-2

1

+

FP16 Multiplier

+

FP32 Adder

X

Accumulator Buffer

Figure 13: Proposed Tensor Core Microarchitecture

each FEDP unit, multiplication is performed in parallel in
the first stage and accumulation occurs over three stages for
a total of four pipeline stages. As each tensor core consists
of sixteen FP16 FEDP units, it is capable of completing one
4× 4 matrix multiplication each cycle.

V. MODELING AND EVALUATION

A. Modelling Tensor Cores

Our changes to model the tensor cores in Volta are avail-
able in the “dev” branch of GPGPU-Sim [24] on github3. We
extended the current version of GPGPU-Sim to support 16-
bit floating-point by using a half-precision C++ header-only
library [45]. The library provides an efficient implementation
of 16-bit floating-point conforming to the IEEE 754 half-
precision format. It provides common arithmetic operations
and type conversion. GPGPU-Sim currently only supports
SASS execution for the G90 architecture; therefore, we only
model tensor core operations at the PTX level. To do so,
we added functional and timing models for the wmma.load,
wmma.mma and wmma.store PTX instructions described in
Section II-C.

Our functional model of the wmma.load and wmma.store
PTX instructions support all possible layout combinations
for operand matrix A, B and C. Our functional model follows

3https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/dev

the operand matrix element to thread mapping shown in
Figure 7. We have verified the timing model generates
the exact same number of coalesced memory transactions
generated by the Titan V GPU for these operations.

Our functional model of the wmma.mma instruction sup-
ports all 32 possible configurations supported on the Titan V
GPU. A timing model for the tensor core functional unit
is added to the GPU pipeline. We interface our tensor
core timing model to the operand collector unit modeled
in GPGPU-Sim. Each wmma.mma instruction is issued to
the tensor core unit after all of its source operands are
ready in the operand collector. We updated the scoreboard to
check for RAW and WAW hazard associated with wmma.mma
instructions.

We validate our tensor core model by comparing against
an NVIDIA Tesla Titan V with CUDA Capability 7.0, hosted
by an Intel Core i7-4771 3.50GHz based workstation with
Ubuntu 16.04.4 LTS, CUDA Toolkit Version 9.0, NVIDIA
410.48 GPU driver, and gcc 4.9.4. Figure 14a compares the
cycles required to execute a WMMA based matrix-multiply
and accumulate kernel on the Titan V GPU and GPGPU-
Sim as matrix size varies. We find GPGPU-Sim tracks real
hardware very accurately with a standard deviation of less
than 5%. This is despite the fact our model is implemented
at the PTX level.

https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/dev

0

20

40

60

80

100

120

16 32 64 128 160 192 224 256 288 320 384 480 512

C
lo

ck
 c

yc
le

(T
h
o
u
sa
n
d
s)

Squared Matrix Size

NVIDIA Volta GPGPU-Sim

(a) WMMA-based GEMM kernel cycle
count as matrix size varies.

0

200

400

600

800

1000

0 100 200 300 400 500 600 700 800

G
P

G
P

U
-S

im
 IP

C

Hardware IPC

(b) Instructions per cycle (IPC) corre-
lation of CUTLASS GEMM kernel on
GPGPU-Sim vs Titan V.

0

200

400

600

800

0 200 400

G
P

G
P

U
-S

im
 IP

C

Hardware IPC

0

100

200

300

400

500

600

700

800

900

128 256 512 768 1024 2048

H
ar

d
w

ar
e

IP
C

Square Matrix Size

NVIDIA VOLTA GPGPUSIM

(c) CUTLASS-based GEMM kernel cycle
count as matrix size varies.

Figure 14: Comparison of simulated and actual performance

0

50

100

150

200

250

300

350

400

450

500

0 2000 4000 6000 8000 10000 12000

C
lo

ck
 C

yc
le

s

Iteration

Latency Distribution of Load

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
lo

ck
 C

yc
le

s

Iteration

Latency Distribution of MMA

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400

C
lo

ck
 C

yc
le

s

Iteration

Latency Distribution of Store

Figure 15: Distribution of wmma.load, wmma.mma and wmma.store latency for matrix size 1024×1024 GEMM using shared
memory

1

10

100

1000

10000

100000

64 128 256 512 1024 2048 4096

C
lo

ck
 C

yc
le

s

Matrix Size

wmma:load latency

with
Shared
Mem

w/o
Shared
Mem

0

10

20

30

40

50

60

70

80

90

64 128 256 512 1024 2048 4096

C
lo

ck
 C

yc
le

s

Matrix Size

wmma:mma latency

with
Shared
Mem

w/o
Shared
Mem

0

20

40

60

80

100

120

140

160

180

200

64 128 256 512 1024 2048 4096

C
lo

ck
 C

yc
le

s

Matrix Size

wmma:store latency

with
Shared
Mem

w/o
Shared
Mem

Figure 16: Variation of latency of wmma.load, wmma.mma and wmma.store with matrix size

0

25

50

75

100

125

150

256 512 1024 2048 4096 8192 16384

TF
LO

P
S

SQUARE MATRIX SIZE

TENSOR CORES PERFORMANCE ON V100 GPU

CUBLAS_WO_TC_FP32 CUBLAS_WO_TC_FP16 WMMA OPTIMIZED CUBLAS_WITH_TC_FP32

CUBLAS_WITH_TC_FP16 MAX PERF KERNEL(FP16) MAX PERF KERNEL(FP32) THEORETICAL LIMIT

Figure 17: Tensor Cores Performance

B. CUTLASS

CUTLASS is an open-source CUDA C++ template library
for efficient linear algebra in C++. It provides basic building
block for implementing high-performance fused matrix-
multiply kernels for deep learning.

We modified GPGPU-Sim to enable it to run CUTLASS
including adding missing API calls and PTX instruction def-
initions. NVIDIA developed a unit-test suite for CUTLASS
library consisting of around 680 test cases. We verified
these test cases run with our modifications to GPGPU-Sim4.
Figure 14b shows a comparison of Instructions Per Cycle
(IPC) measured on GPGPU-Sim versus a real NVIDIA
Titan V GPU for a tensor core enabled kernel developed
using CUTLASS. This data shows an IPC correlation of
99.60%. Figure 14c shows GPGPU-Sim tends to have higher
performance versus hardware as matrix size increases.

C. Profiling Tensor Cores

In this section we measure the performance gain obtained
when employing tensor cores measured on a real NVIDIA
Titan V GPU.

NVIDIA’s documentation suggests that tensor cores can
provide peak theoretical performance of 125 TFLOPs. The
maximum performance we obtained for a GEMM kernel
was around 96 TFLOPs. This performance was observed
for 8192 × 8192 matrix using FP16 mode. To measure the
maximum sustainable tensor core throughput we developed
a kernel with repeated wmma.mma operations (computational
intensity on the order of 108). The performance obtained
was 109.6 TFLOPs in FP16 mode and 108.7 TFLOPs in
mixed-precision mode.

Figure 15 shows the results of profiling the latency of
wmma.load, wmma.mma and wmma.store instructions during
several iterations of a WMMA kernel. This kernel uses
shared memory and performs matrix-multiply accumulate
operations on a 1024 × 1024 matrix. All three graphs
show occasional high latencies. These may result from
some combination of warp scheduling policies and high
memory traffic. We find the minimum latency of wmma.load,
wmma.store and wmma.mma instructions is 125, 120 and 70
clock cycles respectively.

In Figure 16 we plot the median latency to analyze how
wmma.load, wmma.mma and wmma.store latency varies with
the matrix size for WMMA kernels. The wmma.load latency
is plotted with a logarithmic axis. Using shared-memory
reduces median wmma.load latency by more than 100×
when operating on a larger matrix.

Figure 17 shows the performance achieved by the tensor
cores in different scenarios: In this figure we compare
performance of a GEMM kernel implemented with various
APIs (CUBLAS, WMMA) with (WITH) or without (WO)
tensor cores (TC) using mixed-precision (FP32) or FP16

4https://github.com/gpgpu-sim/cutlass-gpgpu-sim

mode. In this graph “MAX PERF KERNEL” is our kernel
designed to stress tensor core performance in FP16 or mixed-
precision (FP32) mode. THEORETICAL LIMIT is the peak
performance of 125 TFLOPs. The WMMA GEMM includes
optimizations like using shared memory and proper memory
layout. The performance gain obtained using the cuBLAS
GEMM kernel is more than the WMMA GEMM imple-
mentation (both the kernels using tensor cores). cuBLAS
is a highly optimized library which has optimizations to
avoid shared memory bank conflicts and employs software
pipelining. We find tensor cores provide a performance
boost of about 3 − 6× times that of SGEMM (Single
Precision GEMM) kernel and about 3× that of HGEMM
(Half Precision GEMM).

VI. RELATED WORK

This section briefly discusses related work. Wong et
al. [46] performed a thorough analysis of the NVIDIA
GT200 using an extensive set of microbenchmarks. They
explored architectural details of the processing cores and
the memory hierarchies. The describe previously undisclosed
details of barrier synchronization and the memory hierarchy
including TLB organization in GPUs. Jia et al. [40] explored
tensor cores in detail. They decoded sets and steps for Volta
tensor cores in mixed-precision mode. In contrast, we com-
prehensively investigated both modes of operation. We found
that sets and steps behave differently in FP16 mode than
in mixed precision mode. We uncovered the organization
of theadgroups into octets. We determined the mapping of
operand matrix elements to threads for the tensor cores in the
Turing architecture and found they behaves differently from
the Volta tensor cores. We also provide a methodology for
uncovering the information presented (including describing
our microbenchmarks). Markidis et al. [47] studied the
impact of precision loss and programmability aspect of
Tensor Cores for HPC application. Khairy, et al. [48] studied
the memory system of modern GPUs including Volta and
discovered many important design decisions in the memory
system. They modeled it in GPGPU-Sim and achieve a very
high correlation on a wide range of GPGPU workloads.

VII. CONCLUSION

In this paper we investigated the design of the tensor core
machine learning accelerators integrated into recent GPUs
from NVIDIA. We performed a detailed characterization and
analysis of the tensor cores implemented in NVIDIA’s Volta
and Turing architectures. This analysis guided the develop-
ment of a detailed architectural model. We implemented
a model for the Volta tensor cores in GPGPU-Sim and
found its performance agreed well with hardware, obtaining
a 99.6% IPC correlation versus a Titan V GPU. As part
of our efforts we also enabled CUTLASS, NVIDIA’s open-
source CUDA C++ template library supporting tensor cores,
on GPGPU-Sim. We believe that combined the above work

https://github.com/gpgpu-sim/cutlass-gpgpu-sim

will serve as a promising starting point for further micro-
architectural investigation of machine learning workloads.

ACKNOWLEDGMENT

We thank Francois Demoullin, Deval Shah, Dave Evans,
Bharadwaj Machiraju, Yash Ukidave and the anonymous
reviewers for their valuable comments on this work. This
research has been funded in part by the Computing Hardware
for Emerging Intelligent Sensory Applications (COHESA)
project. COHESA is financed under the National Sciences
and Engineering Research Council of Canada (NSERC)
Strategic Networks grant number NETGP485577-15.

REFERENCES

[1] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar,
N. Seliya, R. Wald, and E. Muharemagic, “Deep learning
applications and challenges in big data analytics,” Journal of
Big Data, vol. 2, p. 1, Feb 2015.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recog-
nition with deep recurrent neural networks,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE inter-
national conference on, pp. 6645–6649, IEEE, 2013.

[3] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “Joint
learning of words and meaning representations for open-
text semantic parsing,” in Artificial Intelligence and Statistics,
pp. 127–135, 2012.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in
Advances in Neural Information Processing Systems, pp. 91–
99, 2015.

[5] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” CoRR,
vol. abs/1409.1556, 2014.

[6] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show
and tell: A neural image caption generator,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3156–3164, 2015.

[7] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor,
M. Mathieu, and Y. L. Cun, “Learning convolutional feature
hierarchies for visual recognition,” in Advances in Neural
Information Processing Systems, pp. 1090–1098, 2010.

[8] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al.,
“In-datacenter performance analysis of a tensor processing
unit,” in Computer Architecture (ISCA), 2017 ACM/IEEE 44th
Annual International Symposium on, pp. 1–12, IEEE, 2017.

[9] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” ACM Sigplan
Notices, vol. 49, no. 4, pp. 269–284, 2014.

[10] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural
networks,” in ACM SIGARCH Computer Architecture News,
vol. 44, pp. 367–379, IEEE Press, 2016.

[11] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi,
“A dynamically configurable coprocessor for convolutional
neural networks,” ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 247–257, 2010.

[12] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin,
E. Painkras, and S. B. Furber, “Spinnaker: mapping neural
networks onto a massively-parallel chip multiprocessor,” in
Neural Networks, 2008. IJCNN 2008.(IEEE World Congress
on Computational Intelligence). IEEE International Joint
Conference on, pp. 2849–2856, IEEE, 2008.

[13] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “Cnp: An
fpga-based processor for convolutional networks,” in Field
Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pp. 32–37, IEEE, 2009.

[14] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A programmable digital neuromorphic
architecture with high-density 3d memory,” in Computer
Architecture (ISCA), 2016 ACM/IEEE 43rd Annual Interna-
tional Symposium on, pp. 380–392, IEEE, 2016.

[15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Op-
timizing fpga-based accelerator design for deep convolutional
neural networks,” in Proceedings of the 2015 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
pp. 161–170, ACM, 2015.

[16] D. Moloney, “Embedded deep neural networks: The cost
of everything and the value of nothing ,” in Hot Chips 28
Symposium (HCS), 2016 IEEE, pp. 1–20, IEEE, 2016.

[17] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An accelerator for
sparse neural networks,” in The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, p. 20, IEEE
Press, 2016.

[18] A. Tilley, “AI Chip Boom: This Stealthy AI
Hardware Startup Is Worth Almost A Billion.”
https://www.forbes.com/sites/aarontilley/2017/08/31/ai-
chip-cerebras-systems-investment/, Sep 2017.

[19] MLPerf., “MLPerf v0.5 Results.” https://mlperf.org/results/,
Dec 2018.

[20] NVIDIA Corporation, “NVIDIA Turing Architecture
Whitepaper.” https://www.nvidia.com/content/dam/en-
zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf,
June 2017.

[21] NVIDIA Corporation, “NVIDIA T4 Tensor Core GPUs for
Accelerating Inference.” https://www.nvidia.com/en-us/data-
center/tesla-t4/, Dec 2018.

[22] NVIDIA Corporation, “Tensor Cores in NVIDIA
Volta Architecture.” https://www.nvidia.com/en-us/data-
center/tensorcore/, Sep 2018.

[23] NVIDIA Corporation, “Gordon Bell Award.”
https://blogs.nvidia.com/blog/2018/09/17/nvidia-volta-tensor-
core-gpus-gordon-bell-finalists/, Sep 2018.

[24] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M.
Aamodt, “Analyzing cuda workloads using a detailed gpu
simulator,” in Performance Analysis of Systems and Soft-
ware, 2009. ISPASS 2009. IEEE International Symposium on,
pp. 163–174, IEEE, 2009.

[25] J. Lew, D. Shah, S. Pati, S. Cattell, M. Zhang, A. Sandhupatla,
C. Ng, N. Goli, M. D. Sinclair, T. G. Rogers, and T. M.
Aamodt, “Analyzing machine learning workloads using a
detailed GPU simulator,” CoRR, vol. abs/1811.08933, 2018.

[26] NVIDIA Corporation, “NVIDIA TESLA V100 GPU
ARCHITECTURE.” http://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf, June 2017.

[27] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance
and programmability,” IEEE Micro, vol. 38, no. 2, pp. 42–52,
2018.

[28] NVIDIA Corporation, “CUDA C Programming Guide
(CUDA 9.0).” https://docs.nvidia.com/cuda/archive/9.0/cuda-
c-programming-guide/, Sep 2017.

[29] NVIDIA Corporation, “Programming Tensor Cores in
CUDA 9.” https://devblogs.nvidia.com/programming-tensor-
cores-cuda-9/, Oct 2017.

[30] NVIDIA Corporation, “Parallel Thread Execution ISA Ver-
sion 6.0.” https://docs.nvidia.com/cuda/archive/9.0/parallel-
thread-execution/index.html, Sep 2017.

[31] M. Wolfe, “More iteration space tiling,” in Proceedings of the
1989 ACM/IEEE Conference on Supercomputing, Supercom-
puting ’89, pp. 655–664, 1989.

[32] NVIDIA Corporation, “cuBLAS Developer Guide.”
https://docs.nvidia.com/cuda/cublas/index.html, Aug 2008.

[33] NVIDIA Corporation, “cuDNN Developer Guide.”
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-
guide/index.html, Aug 2014.

[34] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives
for deep learning,” CoRR, vol. abs/1410.0759, 2014.

[35] NVIDIA Corporation, “CUTLASS: Fast Linear Algebra
in CUDA C++.” https://devblogs.nvidia.com/cutlass-linear-
algebra-cuda/, Dec 2017.

[36] NVIDIA Corporation, “CUTLASS: CUDA
Templates for Linear Algebra Subroutines.”
https://github.com/NVIDIA/cutlass, June 2018.

[37] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, et al., “Tensor-
flow: a system for large-scale machine learning.,” in OSDI,
vol. 16, pp. 265–283, 2016.

[38] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,
“Automatic differentiation in pytorch,” in NIPS-W, 2017.

[39] NVIDIA Corporation, “CUDA C Programming Guide
(CUDA 10).” https://docs.nvidia.com/cuda/archive/10.0/cuda-
c-programming-guide/index.html, Sep 2018.

[40] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dis-
secting the NVIDIA volta GPU architecture via microbench-
marking,” CoRR, vol. abs/1804.06826, 2018.

[41] pancake, “Radare2 - A command line framework for reverse
engineering binaries.” https://rada.re/r/down.html, Feb 2006.

[42] Scott Gray, “SGEMM Implementation.”
https://github.com/NervanaSystems/maxas/wiki/SGEMM,
Apr 2017.

[43] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time
managed multi-level register file hierarchy,” in Microarchi-
tecture (MICRO), 2011 44th Annual IEEE/ACM International
Symposium on, pp. 465–476, IEEE, 2011.

[44] NVIDIA Corporation, “Inside Volta: The
World’s Most Advanced Data Center GPU.”
https://devblogs.nvidia.com/inside-volta/, May 2017.

[45] C. Rau, “Half-precision floating point library.”
http://half.sourceforge.net/, Aug 2017.

[46] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in Performance Analysis of Systems &
Software (ISPASS), 2010 IEEE International Symposium on,
pp. 235–246, IEEE, 2010.

[47] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and
J. S. Vetter, “Nvidia Tensor Core Programmability, Perfor-
mance & Precision,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW),
pp. 522–531, IEEE, 2018.

[48] M. Khairy, A. Jain, T. M. Aamodt, and T. G. Rogers, “Explor-
ing modern GPU memory system design challenges through
accurate modeling,” CoRR, vol. abs/1810.07269, 2018.

