
1

Tango: A Deep Neural Network Benchmark Suite
for Various Accelerators

Aajna Karki, Chethan Palangotu Keshava, Spoorthi Mysore Shivakumar,
Joshua Skow, Goutam Madhukeshwar Hegde, Hyeran Jeon

Computer Engineering Department
San José State University

San José, CA, USA
Email: {aajna.karki, chethan.keshava, spoorthi.mysoreshivakumar,
joshua.skow, goutammadhukeshwar.hegde, hyeran.jeon}@sjsu.edu

Abstract—Deep neural networks (DNNs) have been proving
the effectiveness in various computing fields. To provide more
efficient computing platforms for DNN applications, it is essential
to have evaluation environments that include assorted benchmark
workloads. Though a few DNN benchmark suites have been
recently released, most of them require to install proprietary
DNN libraries or resource-intensive DNN frameworks, which are
hard to run on resource-limited mobile platforms or architecture
simulators. To provide a more scalable evaluation environment,
we propose a new DNN benchmark suite that can run on
any platform that supports CUDA and OpenCL. The proposed
benchmark suite includes the most widely used five convolution
neural networks and two recurrent neural networks. We provide
in-depth architectural statistics of these networks while running
them on an architecture simulator, a server- and a mobile-GPU,
and a mobile FPGA.

Index Terms—Deep neural network, Benchmark Suite,
GPGPU, Architecture Simulator, CUDA

I. INTRODUCTION

Neural network has regained huge attention from indus-
try and academia recently. Neural-network-based applications
enable machines to automatically recognize individuals in
photos, cars to navigate by themselves, and medical devices
to diagnose cancer. Thanks to the birth of massively-parallel
computing platforms such as GPUs and specialized hardware
accelerators, complex cognitive applications powered by neu-
ral networks provide real-time responses with high prediction
accuracy. While application and algorithm researchers are
leading the advancement of neural networks for better pre-
diction accuracy, computer architects and hardware designers
are trying to optimize the computing platforms for providing
more efficient neural network computing environment.

To optimize hardware platforms, it is essential to have
an evaluation environment that helps measure architectural
characteristics of the neural network models and verify the
performance impact of the optimization. For this purpose,
computer architecture studies use benchmark suites. For exam-
ple, SPEC [1] and PARSEC [2] benchmark suites have been
used for testing the efficiency of CPU designs by providing an
assorted set of widely executed CPU applications. Recently,
a few benchmark suites have been developed for deep neural
networks (DNN) [3], [4], [5], [6], [7], [8]. However, most

of them require installation of DNN frameworks (i.e. Tensor-
Flow [9] or Keras [10]) and proprietary DNN libraries (i.e.
NVIDIA cuDNN [11]), which are hard to be deployed on
platforms and architecture simulators that do not support the
libraries due to insufficient system resources or compatibility
issue. Therefore, there is a high demand for a new benchmark
suite that provides widely used DNN workloads and can run
without proprietary libraries or heavy frameworks.

In this paper, we present a new DNN benchmark suite
which does not require DNN framework or proprietary library
installation. The benchmark suite provides a set of most widely
used convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) written in CUDA C and OpenCL.
With this benchmark suite, accelerator designers and mobile
platform researchers can test their new architectures with
various CNN and RNN models, which was hard or impossible
due to the requirement of libraries or DNN frameworks.
This new benchmark suite also can be used for testing a
new accelerator at early design phase before developing an
interface for DNN frameworks, which will help improve the
productivity.

This paper makes the following contributions:
• To our best knowledge, this is the very first DNN

benchmark suite that is purely written in CUDA C and
OpenCL. The benchmark suite provides code for infer-
ence phase of five CNNs (CifarNet [12], AlexNet [13],
SqueezeNet [14], ResNet [15], and VGGNet [16]) and
two RNNs (GRU [17] and LSTM [18]) by decomposing
neural network operations into fundamental mathematical
computations.

• This new benchmark suite supports all architectures or
software simulators that can run CUDA and OpenCL
applications. Thus, we believe this benchmark suite can
be widely used by computer architects as well as neural
network algorithm researchers for evaluating their ideas
in both hardware and software levels.

• We provide in-depth architectural characteristics of indi-
vidual networks by running them on a GPU architecture
simulator (GPGPU-Sim [19]), a server GPU (NVIDIA
GK210 [20]), a mobile GPU (NVIDIA TX1 [21]), and
an FPGA (Xilinx PynQ-Z1 [22]). Unlike previous studies
that mainly relied on vendor-provided system profilers,

ar
X

iv
:1

90
1.

04
98

7v
1

 [
cs

.D
C

]
 1

4
Ja

n
20

19

2

we were able to examine networks with various con-
figurations, such as different cache size and schedulers,
thanks to the compatibility with the architecture simula-
tor. The provided statistics will provide insights to the
researchers.

II. MOTIVATION AND RELATED WORK

A. General-Purpose GPU Benchmark Suites

Since GPU has been used for general-purpose computing,
a few GPU benchmark suites have been developed to evaluate
performance and architectural characteristics of GPUs for
general purpose applications. NVIDIA has been releasing
CUDA SDKs [23] when they release a new CUDA version.
NVIDIA CUDA SDK includes various scientific and graphics
application kernels as well as a few sample device interfacing
applications that help CUDA programmers learn new features
of CUDA. Rodinia benchmark suite [24] was developed by
a team of University of Virginia. It includes CUDA and
OpenCL kernels of graph, data mining, image recognition,
bioinformatics, and physics simulation domains. They also
provide CPU version kernel code that are parallelized with
OpenMP for a comparison. Parboil [25] was developed by a
team of University of Illinois at Urbana-Champaign. Parboil
includes CUDA and OpenCL kernels of image processing,
biomolecular simulation, fluid dynamics, and astronomy do-
mains. Parboil also includes CPU equivalents of the kernels
that are parallelized by OpenMP. GPGPU-Sim [19], which is a
GPU architecture simulator, also encloses an assorted CUDA
programming samples. The samples include various scientific
and graphics applications such as AES cryptography, graph
processing, laplace computation, n-queens solver, and ray
tracing. A team of University of Southern California compiled
various graph processing kernels written in CUDA [26]. This
graph benchmark suite provides 12 graph-based processing
kernels including graph coloring, graph cuts, graph clustering,
all pairs and single-source shortest path, and page rank, which
help explore various characteristics of graph-based applica-
tions.

These benchmark suites provide a wide range of general-
purpose GPU kernels. However, none of them implements
state-of-the-art DNN kernels. GPGPU-Sim benchmark in-
cludes NN which is a 4-layer DNN for handwriting recog-
nition. Though this application is a good example of pure
CUDA-based DNN implementation, the network structure is
very simple and hardly represents the state-of-the-art DNNs.
Thus, we need a new benchmark suite that reflects widely
used state-of-the-art DNN structures to retrieve more realistic
insights of DNN execution on GPUs.

B. DNN Benchmark Suites

As DNN is proved as a powerful solution for various cog-
nitive and characterization problems, a few DNN benchmark
suites have been recently released. DNNMark [27] provides
per-layer computation primitives for DNNs. The supported
primitives include forward and backward computations of
convolution, pooling, activation, and fully-connected layers.
Baidu DeepBench [3] includes CNN and RNN core kernels
for heterogeneous architectures such as mobile and server

CPUs, and NVIDIA and AMD GPUs. The kernels inter-
nally call DNN library functions provided by the platform
vendors. Thus, the performance of various architectures with
the optimized library functions can be compared. Fathom [4]
provides TensorFlow scripts for eight DNN models including
convolutional, recurrent, and fully-connected neural networks.
Based on the fact that most of the DNN frameworks internally
use similar DNN libraries such as cuDNN and hence the
performance of the same network should be similar across
frameworks, they implemented various DNN workloads with
one of the most widely used frameworks, TensorFlow. TBD [5]
focuses on DNN training. The provided kernels can run on
three DNN frameworks, TensorFlow, MXNet, and CNTK,
across different hardware configurations (single GPU, multiple
GPUs, and multiple machines). It also incorporates an analysis
toolchain for resource and performance profiling of these
models. DAWNBench [6] is a benchmark suite that can test
end-to-end performance evaluation for training and inference
while tweaking various hyper-parameters. The provided code
is written for PyTorch [28] and TensorFlow. TensorFlow also
provides an assorted set of image classification models [7].
The TensorFlow script files for five DNN models can run on
NVIDIA GPUs.

These DNN benchmark suites are useful for testing core
and full computations of various DNN structures. However,
all of them require installation of specialized libraries such
as cuDNN and cuBLAS [29] and DNN frameworks. NVIDIA
GPUs can run the libraries but architecture simulators and non-
CUDA architectures do not support these libraries. Especially,
the architecture simulators will hardly support these libraries
in the near future because the libraries are proprietary close-
source software. Furthermore, many DNN frameworks have
high resource demands. For example, it is tricky to install
Caffe2 [30] and TensorFlow on resource-limited mobile ac-
celerators such as NVIDIA TX1 [21] or Xilinx PynQ [22]
due to insufficient memory space. Though the frameworks
are getting more compact (i.e. TensorFlow Lite [31] supports
Raspberry Pi [32]), many of them are not easily deployable
on small accelerators. Thus, computer architecture community
cannot use these benchmark suites for evaluating their new
architecture design ideas. Therefore, we need a new DNN
benchmark suite that does not require any proprietary libraries
or resource-hungry DNN frameworks.

C. Why Do We Need Another Benchmark Suite?

In this paper, we introduce a new DNN benchmark suite
for GPUs. This new benchmark suite is written in CUDA
C and OpenCL without using DNN libraries. Therefore, the
benchmark suite can run on any platform that supports either
of these two languages such as GPUs, architecture simulators,
and FPGAs. Computer architecture researchers can use this
benchmark suite for evaluating their ideas of new accelerator
design. Also, DNN algorithm researchers can use this bench-
mark suite to evaluate new algorithms by simply replacing
the core functions of individual layers. Note that for those
benchmark suites that use library functions, it is not easy
to modify core functions. Currently, our proposed benchmark
suite provides feed-forward code for inference phase only but

3

we plan to extend the suite to also provide back-propagation
code for training phase. By running both training and inference
code on various platforms and simulators, researchers will be
able to acquire useful insights.

III. NEURAL NETWORKS IN THE BENCHMARK SUITE

To provide representative DNN workloads, we first identi-
fied the most widely used DNNs. Among many deep learning
structures, CNN and RNN have been extensively applied for
many applications. CNN is mainly used for the applications
that need to extract patterns from image inputs such as face
recognition and obstacle detection. On the other hand, RNN
extracts information from time-series inputs, such as next word
prediction and stock price forecasting. To provide high impact
workloads, we developed CNNs and RNNs.

Though the effectiveness of CNN and RNN has been well
proved, it is not easy to find the optimum network structure
for individual applications because the prediction accuracy
varies significantly with regarding to the number of layers,
size of each layer, activation functions, and many other hyper-
parameters. Thus, recent trend is to use one of the well-proved
reference models as a baseline and fine-tune the structure to
achieve a better accuracy for the target application. Therefore,
we implemented the most widely used reference models in
this benchmark suite. The proposed benchmark suite currently
include CifarNet [12], [33], AlexNet [13], SqueezeNet [14],
ResNet [15], and VGGNet [16] as CNNs and GRU [17]
and LSTM [18] as RNNs. All of the seven networks are
implemented in CUDA C and CifarNet and AlexNet are also
implemented in OpenCL. We are currently developing more
networks such as MobileNet [34]. Thus, the coverage will keep
increasing.

The selected networks are widely used thanks to the proved
performance (many of them are winners of ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [35]). Thus,
the existing DNN benchmark suites [27], [3], [6], [5], [7], [4],
[8] commonly provide the model files of many of these net-
works. The networks use different number of layers, number of
neurons per layer, activation functions, and types and order of
layers. For example, AlexNet uses five convolution layers and
three fully-connected layers while ResNet uses 49 convolution
layers and one fully-connected layer with shortcut residual
paths. Thus, the architectural behaviors of these networks
should be different. To evaluate both intra-layer and inter-
layer characteristics of individual networks, we implemented
the entire structure of the target networks in CUDA C and
OpenCL. We used pre-trained model weight files as input of
individual layers. The details are discussed shortly.

A. Convolutional Neural Network (CNN)

CNN is one type of DNN that is used especially for image
recognition. By adopting the convolution operation that was
originally used by image processing for applying image filters,
CNN takes an input image and runs convolution operations to
extract features. The layers that run convolution operations
are called as convolution layers. In a convolution layer, a
neuron takes a subset of pixel values, multiplies them with

a small weight matrix, and sums the weight-scaled values
to generate one convolution output. Then, a pooling layer
follows where the maximum (or average) value of neighboring
neurons’ convolution results is taken as one final feature value
of that region. As only the maximum (or average) value of
a few neighboring convolution outputs is taken as a final
output, an object can be recognized regardless the position
of the object within the input image. Thus, CNN is good for
image recognition. Once all features are extracted by a set
of convolution layers and pooling layers, one or more fully-
connected layers are executed to calculate the probability of
classification. The combination of convolution layers, pooling
layers, and fully-connected layers is the main structure of feed-
forward path of a CNN. Back-propagation path consists of
layers that compute gradient of prediction errors of forward
path execution.

1) CifarNet: CifarNet [12] is developed to recognize ob-
jects over CIFAR-10 and CIFAR-100 database [36]. It consists
of three convolutional layers and two fully connected layers.
This network receives three-channel 32×32 images as inputs.
The last layer consists of as many output neurons as the
number of object classes that the model aims to recognize.
We used a CifarNet model that is trained for traffic signal
detection. The model recognizes nine traffic signals. Thus, the
CifarNet code has nine output neurons. This is next fed to a
softmax layer to generate the output in terms of probabilities.
More details about the pre-trained models can be found in
Section III-C.

2) AlexNet: AlexNet [13] is the first CNN that proved
the efficiency and accuracy of CNN-based object recognition.
After the successful debut of AlexNet at the ILSVRC [35] in
2012, extensive studies have been conducted on CNN-based
solutions and CNN structure itself. AlexNet consists of five
convolutional layers and three fully-connected layers. This
network receives three-channel 227 × 227 images as inputs.
As our pre-trained model uses ImageNet database [37] which
can recognize 1000 objects, AlexNet consists of 1000 output
neurons.

3) ResNet: ResNet [15] or Residual Network was devel-
oped by Microsoft and demonstrated a surpassed recognition
performance than human on ImageNet database. ResNet has
various versions with different number of layers. We developed
ResNet-50 that uses 50 layers. ResNet-50 receives three-
channel 224 × 224 input images and derives 1000 objects
classification. As name says, ResNet uses residuals for train-
ing. By incorporating shorcut paths that simply add residuals
rather than using the original approximation function result,
the network can make the back-propagation to skip a few
useless layers. This way, it solves the vanishing problem of
DNN.

4) SqueezeNet: SqueezeNet [14] is designed to achieve a
good accuracy with fewer parameters so that the model can be
deployed on embedded platforms. To reduce the model size
without sacrificing accuracy, SqueezeNet defines firemodule
that consists of a squeeze convolution layer that has only
1× 1 filters and an expand layer that has a mix of 1× 1 and
3 × 3 convolution filters. With the fire modules, SqueezeNet
demonstrated 50 times fewer parameters than the original

4

Input Data Pre-trained Model Output

GRU &
LSTM

Bitcoin stock
price values
of past two
days (scaled)

Trained with bitcoin
stock price database
(https://www.kaggle.
com/team-ai/bitcoin-
price-prediction)

Projected next stock
price based on past
two days’ stock price

CifarNet Speed limit 35
image

https://github.com/
chethankeshava/
DeepLearningProject

Confidence level for
all 9 classes

AlexNet Cat image
https://github.com/BVLC/
caffe/tree/master/models/
bvlc alexnet

Recognized class id

SqueezeNet Cat image

https://github.com/
DeepScale/
SqueezeNet/tree/master/
SqueezeNet v1.0

Recognized class id

ResNet Cat image
https://github.com/
KaimingHe/
deep-residual-networks

Recognized class id

VGGNet Killer whale image http://www.robots.ox.ac.uk/
∼vgg/research/very deep/ Recognized class id

TABLE I: Input/Output and Pre-trained Models used by
networks

network [14]. SqueezeNet consists of two convolutional layers,
eight fire layers and one global pooling layer. The inputs to
this network are 3-channel 227 × 227 images. It uses 1000
output neurons.

5) VGGNet: VGGNet [16] debuted successfully as a win-
ner of ILSVRC [35] in 2014. VGGNet achieved a high
accuracy with a very deep network that uses 16 or 19 layers,
where each layer uses very small (3 × 3) convolution filters.
We implemented 16-layer VGGNet, which consists of 13
convolution layers, three fully-connected layers, five pooling
layers, and one soft-max layer. This network receives three-
channel 224 × 224 images as inputs. As our pre-trained
model uses ImageNet database [37] which can recognize 1000
objects, VGGNet consists of 1000 output neurons.

B. Recurrent Neural Network (RNN)

RNN is another type of DNN that produces an output result
that not only depends on the current input but also on a
history of previous inputs. RNN has a unique ability of making
decisions based on the past incidents, which is similar to
a human behavior. Thus RNNs are gaining popularity these
days especially for speech or video processing that makes
use of sequential information available at the input. RNNs
are called recurrent because they perform the same tasks for
every element of the sequence. RNN has multiple layers that
are stacked in a daisy-chain fashion with the output of one
layer given as input for the next layer and each layer repeating
the same process. To process such time-series inputs, RNNs
have a memory cell and neurons (or gates) in each layer.
The most commonly used RNN is Long Short Term Memory
(LSTM) [18] that is used for natural language processing.
LSTM network is capable of remembering the close-by and
far-apart words from a given word in a sentence. After the
training phase, the model is able to predict the next set of
words given a history of previous words.

1) Long Short Time Memory (LSTM): LSTM [18] is the
most widely used recurrent neural network. Input gate, Output
gate and Forget gate are the three types of gates used in
LSTM. The gates in LSTM enable the network to forget or
remember a cell state which in turn allow it to model long-
term dependencies. We used a LSTM model that predicts the
next bitcoin stock price based on the past two days’ stock

Server Mobile Simulator
Architecture Kelper GK210 Maxwell Tegra X1 Pascal GP102
CUDA cores 2880 256 3584
Global memory 24 GB 4 GB 11 GB

Shared/L1D 128 KB per Block 48KB 96KB (L1D: 64KB (default),
128KB, 256KB)

Register 65536 per SM 32768 65536
OS Ubuntu 14.04.1 Ubuntu 14.04.3 LTS

CPU Intel Xeon E52623
3.0 GHz

ARM Cortex-A57
1.9 GHz

Warp scheduler gto (default), lrr, tlv

TABLE II: GPU architectures used for evaluation

prices. The model receives two stock price values in text and
returns the predicted next stock price in text.

2) Gated Recurrent Unit (GRU): GRU [17] is a varia-
tion of LSTM which aims at solving the vanishing gradient
problem. Reset gate and Update gate are the two types of
gates in GRU. GRU combines Forget gate and Input gate
into a single Update gate. The resulting model is simpler than
standard LSTM models. GRU has lesser gates and thus, lesser
computational time. We used a pre-trained model that also
projects bitcoin stock price like LSTM model.

C. Input Data, Pre-trained Models, and Code Structure

Table I shows the sources of pre-trained models, input data,
and output data for individual networks. All models have
around 90% or above prediction accuracy.

We implemented each layer as one or two CUDA or
OpenCL kernels. To provide correct input to each layer, we
partitioned the pre-trained model files into weight files of
individual layers. Each CUDA and OpenCL kernel is fed
with the corresponding per-layer weight file as input data.
The per-layer weight files are enclosed in the benchmark suite
repository. We will provide a script file that collects per-layer
weight values, which will help researchers also test the neural
network with their pre-trained models.

The CUDA kernel configurations of individual networks,
such as layer types, gridDim, blockDim, register count, shared
memory usage, and constant memory usage, are shown in
Table III. We assigned one thread per neuron. If a layer uses
more neurons than the maximum threads allowed by the target
GPU, we ran the layer over multiple kernels. For example, the
first convolution layer of AlexNet is executed over four kernels
each with 96 thread blocks of 32x32, 32x23, 23x32, and 23x23
threads. ResNet configuration is shown for the first 24 layers
out of 50 layers due to the limited space. The OpenCL code
of CifarNet and AlexNet used the same configurations with
the CUDA kernels, thus not shown in this table.

D. Target Platforms

CUDA kernels of the proposed benchmark suite are tested
on NVIDIA GPU platforms (GK210 and TX1) and a GPU
architecture simulator (GPGPU-Sim). OpenCL kernels are
tested on an embedded Xilinx FPGA platform (PynQ-Z1).
The OpenCL kernels were converted into RTL code by using
Vivado High-Level Synthesis (HLS) design suite and deployed
on the FPGA board.

5

Network Layers gridDim blockDim regs smem cmem Network Layers gridDim blockDim regs smem cmem
GRU GRU Layer (1, 1, 1) (10, 10, 1) 12 504 56 LSTM LSTM Layer (1, 1, 1) (100, 1, 1) 22 936 60

CifarNet

Conv 1 (1, 1, 1) (32, 32, 1) 19 40 16

CifarNet (Cont’d)

Conv 3 (1, 1, 1) (32, 32, 1) 12 40 4
Pool 1 (1, 1, 1) (32, 32, 1) 14 60 20 Pool 3 (1, 1, 1) (32, 32, 1) 14 60 20
Conv 2 (1, 1, 1) (32, 32, 1) 21 56 16 FC 1 (1, 1, 1) (64, 1, 1) 19 40 16
Pool 2 (1, 1, 1) (32, 32, 1) 8 40 4 FC 2 (1, 1, 1) (32, 1, 1) 10 60 12

AlexNet

Conv 1-1 (96,1,1) (32,32,1) 19 56 208

AlexNet (Cont’d)

Norm (256,1,1) (27,27,1) 13 60 308
Conv 1-2 (96,1,1) (32,23,1) 19 56 208 Pool (256,1,1) (13,13,1) 12 60 204
Conv 1-3 (96,1,1) (23,32,1) 19 56 208 Conv (384,1,1) (13,13,1) 18 80 204
Conv 1-4 (96,1,1) (23,23,1) 19 56 208 Conv 4-1 (192,1,1) (13,13,1) 18 80 204
Norm 1-1 (96,1,1) (32,32,1) 13 64 308 Conv 4-2 (192,1,1) (13,13,1) 19 80 204
Norm 1-2 (96,1,1) (32,23,1) 13 64 308 Conv 5-1 (128,1,1) (13,13,1) 18 80 204
Norm 1-3 (96,1,1) (23,32,1) 13 64 308 Conv 5-2 (128,1,1) (13,13,1) 19 80 204
Norm 1-4 (96,1,1) (23,23,1) 13 64 308 Pool (256,1,1) (6,6,1) 12 60 204
Pool (96,1,1) (27,27,1) 12 60 204 FC 1 (4096,1,1) (1,1,1) 8 58 204
Conv 2-1 (128,1,1) (27,27,1) 18 80 204 FC 2 (4096,1,1) (1,1,1) 8 58 204
Conv 2-2 (128,1,1) (27,27,1) 18 80 204 FC 3 (1000,1,1) (1,1,1) 8 58 204

SqueezeNet

Conv 1 (111,1,1) (111,1,1) 19 56 12

SqueezeNet(Cont’d)

Fire6 Squeeze1x1 (27,1,1) (27,1,1) 13 40 0
Max Pool (111,1,1) (111,1,1) 21 40 20 Fire6 Expand1x1 (27,1,1) (27,1,1) 21 40 20
Fire2 Sqeeze1x1 (55,1,1) (55,1,1) 15 40 4 Fire6 Expand3x3 (27,1,1) (27,1,1) 21 40 20
Fire2 Expand1x1 (55,1,1) (55,1,1) 13 40 0 Fire7 Squeeze1x1 (27,1,1) (27,1,1) 12 60 12
Fire2 Expand1x1 (55,1,1) (55,1,1) 21 40 20 Fire7 Expand1x1 (27,1,1) (27,1,1) 21 40 20
Fire3 Squeeze1x1 (55,1,1) (55,1,1) 13 40 0 Fire7 Expand3x3 (27,1,1) (27,1,1) 15 40 4
Fire3 Expand1x1 (55,1,1) (55,1,1) 13 40 0 Fire8 Squeeze1x1 (27,1,1) (27,1,1) 13 40 0
Fire3 Expand3x3 (55,1,1) (55,1,1) 13 40 0 Fire8 Expand1x1 (27,1,1) (27,1,1) 13 40 0
Fire4 Squeeze1x1 (55,1,1) (55,1,1) 13 40 0 Fire8 Expand3x3 (27,1,1) (27,1,1) 13 40 0
Fire4 Expand1x1 (55,1,1) (55,1,1) 12 60 12 Max Pool (27,1,1) (27,1,1) 12 60 12
Fire4 Expand3x3 (55,1,1) (55,1,1) 13 40 0 Fire9 Squeeze1x1 (13,1,1) (13,1,1) 21 40 20
Max Pool (55,1,1) (55,1,1) 13 40 0 Fire9 Expand1x1 (13,1,1) (13,1,1) 13 40 0
Fire5 Squeeze1x1 (27,1,1) (27,1,1) 13 40 12 Fire9 Expand3x3 (13,1,1) (13,1,1) 9 32 12
Fire5 Expand1x1 (27,1,1) (27,1,1) 21 40 20 Conv 10 (15,1,1) (15,1,1) 13 40 0
Fire5 Expand3x3 (27,1,1) (27,1,1) 21 40 20 Global Avg Pool (1,1,1) (1000,1,1) 14 40 0

ResNet

Conv (64,1,1) (32,32,1) 29 76 12

ResNet (Cont’d)

Conv (64,1,1) (32,32,1) 31 84 8
BatchNorm (64,1,1) (32,32,1) 12 52 12 BatchNorm (64,1,1) (32,32,1) 12 52 12
Scale (64,1,1) (32,32,1) 12 52 4 Scale (64,1,1) (32,32,1) 12 52 4
Relu (64,1,1) (32,32,1) 8 32 8 Relu (64,1,1) (32,32,1) 8 32 8
Pool (64,1,1) (32,32,1) 19 68 4 Conv (256,1,1) (32,32,1) 31 84 8
Conv (256,1,1) (32,32,1) 31 84 8 BatchNorm (256,1,1) (32,32,1) 12 52 12
BatchNorm (256,1,1) (32,32,1) 5 48 12 Scale (256,1,1) (32,32,1) 12 52 4
Scale (256,1,1) (32,32,1) 12 52 4 Eltwise (256,1,1) (32,32,1) 11 48 4
Conv (64,1,1) (32,32,1) 31 84 8 Relu (256,1,1) (32,32,1) 8 32 8
BatchNorm (64,1,1) (32,32,1) 12 52 12 Conv (64,1,1) (32,32,1) 31 84 8
Scale (64,1,1) (32,32,1) 12 52 4 BatchNorm (64,1,1) (32,32,1) 12 52 12
Relu (64,1,1) (32,32,1) 8 32 8 Scale (64,1,1) (32,32,1) 12 52 4

VGGNet

Conv (16,16,64) (14,14,1) 15 0 72

VGGNet (Cont’d)

Pool (7,7,256) (4,4,1) 13 0 56
Conv (16,16,64) (14,14,1) 19 0 76 Conv (7,7,512) (4,4,1) 19 0 76
Pool (8,8,64) (14,14,1) 13 0 56 Conv (7,7,512) (4,4,1) 19 0 76
Conv (8,8,128) (14,14,1) 19 0 76 Conv (7,7,512) (4,4,1) 19 0 76
Conv (8,8,128) (14,14,1) 19 0 76 Pool (7,7,512) (2,2,1) 13 0 56
Pool (8,8,128) (7,7,1) 13 0 56 Conv (7,7,512) (2,2,1) 19 0 76
Conv (8,8,256) (7,7,1) 19 0 76 Conv (7,7,512) (2,2,1) 19 0 76
Conv (8,8,256) (7,7,1) 19 0 76 FC (4,4,4) (8,8,1) 11 0 77
Conv (8,8,256) (7,7,1) 19 0 76 FC (1,1,10) (10,10,1) 11 0 77

TABLE III: Network Configuration and SRAM Usage: deep networks are laid across two columns (For ResNet, the first 24
layers are shown due to the space limitation)

IV. CHARACTERIZATIONS AND ANALYSIS

Most of the detailed statistics have been measured by using
GPGPU-Sim while varying various architecture configurations
such as cache size and warp scheduler. A few runtime system
statistics (i.e. on-chip memory usage and power consumption)
were measured on real devices. For the power measurement,
we used GPUWattch [38] for detailed statistics and Wattsup
power meter for device-level statistics. For better understand-
ing, we marked the evaluated platform to each graph if the
evaluation was not measured with GPGPU-Sim. The config-
urations of the evaluated GPU and FPGA architectures are
specified in Table II and Table IV, respectively. We used the
development branch GPGPU-Sim because it supports Pascal
architecture, which is one of the latest architectures.

A. Overall Performance

1) Per-Layer Execution Time: We first measured the ex-
ecution time contribution of individual layer types. As each
network uses different number and size of layers, it is mean-
ingless to compare the total execution time across networks.

Mobile FPGA
Processor Dual-core ARM Cortex-A9 @ 650 MHz
Memory 512MB DDR3
Storage 32 GB
Programmable Logic Xilinx Zynq Z7020

13,300 logic slices
630KB BRAM

TABLE IV: FPGA platform used for evaluation

0%

20%

40%

60%

80%

100%

CifarNet AlexNet SqueezeNet ResNet

E
x

e
c

u
ti

o
n

 T
im

e

B
re

a
k

d
o

w
n

 w
.r

.t
.

L
a

y
e

r
T
y
p

e

Relu

Scale

Eltwise

Fire_Expand

Fire_Squeeze

Norm

FC

Pool

Conv

Fig. 1: Execution Time Breakdown w.r.t. Layer Type

Instead, it would be more insightful to know the types of
layers that consume the most time for each network. Figure 1
shows the execution time breakdown with regard to layer
types of CNNs. Note that RNNs run the same type layer
repeatedly, we evaluated only CNNs for this experiment.
As can be seen in the figure, convolution layers take the
majority of the execution time of all networks. Especially in
CifarNet and ResNet, over 90% of execution time is spent
by convolution layers. In SqueezeNet, though fire modules
are yet another convolution layers, we separatedly evaluated
them from the regular convolution layers according to the
network specification [14]. It is observed that the fire expand
layers take more time than convolution layers in SqueezeNet
because eight times more fire expand layers are executed than
convolution layers. However, according to our evaluation, the
longest layer of SqueezeNet is still the last convolution layer

6

(conv 10), which is 40% longer than the longest fire expand
layer.

Observation 1. Convolution layer is the most time-
consuming layer of CNNs, which may be the best target for
optimization.

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n

T
im

e

No L1

L1

2xL1

4xL1

Fig. 2: Normalized Execution Time with Various L1D Sizes

2) Performance Impact of On-chip Cache: Our next eval-
uation related to performance is the on-chip cache sensitivity.
The impact of L1D cache has not been well studied for RNNs.
For CNNs, it is known that L1D is too small to provide
better performance for large CNNs because of cache thrashing
overhead. However, there has not been a study that shows the
performance impact of various L1D size because most of the
existing studies have been evaluated on real GPUs, which is
hard to reconfigure the cache size. We evaluated RNNs and
CNNs on GPGPU-Sim while varying L1D size from zero
to 4×64KB as shown in Figure 2. Note that 64KB is the
default L1D size of Pascal architecture. The total execution
times with three different size L1Ds are normalized by the
execution time of when L1D is bypassed (marked as No L1).
RNNs do not show performance improvement with larger
L1Ds. It is an expected result because RNNs use relatively
small input data (i.e., a few stock price values or a series
of words) and there is not much repeatedly accessed data.
On the other hand, most of the CNNs show a significant
performance improvement with larger on-chip caches. For
example, AlexNet shows 2× speedup with a 64KB L1D and
the performance is further improved by 10% with 2× larger
L1D. It is also an expected result because CNNs inherently
have a lot of redundant data accesses. For example, the same
convolution feature maps are used by all neurons in the
same layer and neighboring neurons use overlapping input
data. With the great performance improvement by CNNs, the
execution time is reduced by 10% on average when employing
64KB larger L1Ds across the networks.

Observation 2. On-chip cache is helpful for improving the
performance of CNNs while the impact of on-chip cache for
RNNs is negligible.

B. Power Consumption

Again, as networks use different number of layers, it is
meaningless to compare the total energy consumption. Thus,
we checked peak power consumption, the most power hungry
layer type, and the most power hungry micro-architecture
components while running the networks.

1) Peak Power Consumption: Figure 3 shows the maximum
power consumption that was ever measured during individual

0
50

100
150
200
250
300

P
e

a
k

 P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 A

c
ro

s
s

L

a
y
e

rs
 (

W
)

Fig. 3: Peak Power Consumption Across Layers in Watt

0%

20%

40%

60%

80%

100%

CifarNet AlexNet SqueezeNet ResNet

P
o

w
e
r

B
re

a
k
d

o
w

n

w
.r

.t
.
L

a
y
e
r

T
y
p

e Eltwise

Scale

Relu

Fire

Norm

FC

Pooling

Conv

Fig. 4: Average Power Consumption per Layer Type in Watt

network executions. The peak power consumption showed
correlation with the size of layers. For example, AlexNet and
ResNet that use larger layers derived the higher peak power
consumption. As shown in Table III, AlexNet runs 128 thread
groups of 27×27 threads for some convolution layers, which
is over 100 times larger than CifarNet’s largest convolution
layer size. Such a layer size disparity leads to 5 times higher
peak power consumption of AlexNet than CifarNet.

Observation 3. Neural networks that use larger layers (more
neurons) typically show higher peak power.

2) Per-layer Power Consumption: To understand the power
hungry layers among various layer types, we broke down
the total power consumption with regard to the kinds of
layers. Though convolution layers are the incomparably time-
consuming layers as shown in Figure 1, power consumption is
relatively more balanced. As shown in Figure 4, pooling layers
consume almost similar amount of power with convolution
layers in CifarNet. Also, the combined power dissipation of
Scale, Relu, and Norm layers is higher than that of convolution
layers in ResNet.

To understand this balanced power dissipation, we also
measured power breakdown with regard to micro-architecture
components as shown in Figure 5. The key power consumers
are register file (marked as RFP), L2 cache (marked as
L2CP), and idle core power (marked as IDLE COREP).
We observed that the register usage across layers is not
significantly different as shown in Table III. Thus, we believe

0%

20%

40%

60%

80%

100%

P
o

w
e

r
B

re
a

k
d

o
w

n
 w

.r
.t

.
H

W
 C

o
m

p
o

n
e

n
ts

CONST_DYNAMICP
IDLE_COREP
PIPEP
DRAMP
NOCP
MCP
L2CP
SCHEDP
FPUP
SFUP
SPP
RFP
SHRDP
CCP
TCP
DCP
ICP
IBP

Fig. 5: Breakdown of Average Power Consumption

7

that the main driver of the balanced power distribution is the
L2 cache accesses. The total L2 misses of different layers
show a correlated statistics as shown in Figure 13. Figure 13
plots the total number of L2 misses per layer type when L1D
is bypassed. In CifarNet, convolution layers encounter similar
number of L2 misses with fully connected layers (marked as
FC). Likely, in AlexNet, fully connected layers show even
greater number of L2 misses than convolution layers and the
total number of misses of non-convolution layers of ResNet
is comparable with that of convolution layers. Consequently,
it is believed that non-convolution layers consume as much
power as convolution layers because of cache accesses.

Observation 4. Though convolution layers are the most
time-consuming layers, all layers consume similar amount of
power due to cache and memory accesses.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CifarNet SqueezeNet

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

C
o

n
s
u

m
p

ti
o

n

TX1

PynQ

Fig. 6: Energy Consumption on Embedded GPU (TX1) vs.
Embedded FPGA (PynQ) boards

3) Power Efficiency of Different Platforms: We also evalu-
ated energy efficiency of different platforms. Figure 6 shows
the normalized energy consumption measured on an embedded
GPU board (NVIDIA TX1) and an embedded FPGA board
(Xilinx PynQ) for CifarNet and SqueezeNet. We measured the
peak power consumption by using a Wattsup power meter. As
the power meter does not show the total energy consumption,
we calculated the energy consumption by multiplying the peak
power consumption with the total execution time. TX1 showed
2.28× and 3.2× higher peak power consumption than PynQ
for CifarNet and SqueezeNet, respectively. This is an expected
result because TX1 is equipped with more hardware resources
(i.e. larger memory size) and runs general-purpose pipeline
while PynQ’s pipeline is dedicatedly programmed for each
network. However, the execution times of the two networks
on TX1 were 1.7× and 1.8× shorter than on PynQ because
of slower code loading time and smaller on-chip memory size
of PynQ. Therefore, the overall energy consumption of the two
networks on TX1 was 1.34× and 1.74× higher than PynQ.

C. Stall Cycle Breakdown

To understand performance bottleneck, we collected stall
cycles by running a profiler, nvprof [39], on an NVIDIA
GK210 GPU. Figure 7 shows stall cycle breakdown of indi-
vidual layers of each network as well as across networks. As
the figure shows, the percentage of stall reasons of each layer
type of each network varies. However, there are clear patterns
that indicate individual layer types as can be seen from the bar
charts in the right-hand side summary section. For example,

fully-connected layers suffer from memory throttling more
than the other layers. Convolution and normalization layers
encounter more stalls due to unavailable pipelines. Pooling
layers show higher stall rates due to data dependency than
the other layers. These patterns well describe individual layer
types. For example, fully-connected layers typically use large
data to compute the activation of all features. Thus, the fully-
connected layers use higher memory resources such as MSHRs
and hence the execution is suspended if all provided memory
resources are used up. Convolution and normalization layers
typically use more neurons than the other layers, which make
the arithmetic operation pipelines busy, thereby throttled by
unavailable pipelines. Pooling layers summarize the convolu-
tion results either with maximum or average values, which
requires repeated comparison of many input data, which leads
to high data dependency.

GRU and LSTM show similar patterns with convolution
layers and pooling layers of CNNs, respectively. We believe
LSTM encounters more data dependency due to more complex
structure than GRU. Note that LSTM uses three gates (input,
output, and forget) while GRU uses two (reset and update
gates).

Observation 5. Stall cycle breakdown is a good indicator of
layer types, which will be helpful for architecture optimization
for each layer type.

D. Instruction Type Characterization

1) The Most Executed Operations: It is important to un-
derstand what kind of instructions are most frequently exe-
cuted by neural networks. Figure 8 and Figure 9 show the
operation type breakdown of individual networks and the top
10 operations that are commonly executed by all networks.
As can be seen in Figure 8, GRU and LSTM show similar
breakdown while the other four CNNs show another similar
breakdown pattern. This is because the internal algorithm of
CNN (or RNN) is similar though individual networks use
different number and size of layers (or gates) in different
orders. RNNs use add, ld, mad, and set instructions the most.
Adding to these four instructions, CNNs also use shl and mul
excessively. The intensive usage of add, ld, mad or mul is
intuitive because the main algorithm of neural networks is∑

i wi × xi + b where w is weight, x is input, and b is bias.
We found that shl is mainly used for calculating the data index
in warp unit (i.e. each warp runs 32 threads thus shift-left-by-5
is used to calculate the warp-unit data accesses).

Figure 9 shows the most executed instructions across all
networks. As expected, add, mad, mul, and shl are the most
executed instructions where these four instructions are used
over 50% of entire execution. The top 10 instructions shown
in the graph are used for 95% of entire execution. This means
that architects can focus on optimizing the pipelines to better
support these top instructions.

Observation 6. Operation breakdown is a good indicator of
CNN and RNN.

Observation 7. Top four mostly executed operations (add,
mad, mul, and shl) are used for over a half of the entire
execution and top 10 operations are used for 95% of the entire
execution.

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
o

n
v

P
o

o
li
n

g

F
C

C
o

n
v

P
o

o
li
n

g

F
C

N
o

rm

C
o

n
v

P
o

o
li
n

g

F
ir

e

C
o

v

P
o

o
li
n

g

F
C

N
o

rm

O
th

e
rs

C
o

n
v

P
o

o
li
n

g

F
C

C
o

n
v

P
o

o
li
n

g

F
C

N
o

rm

G
R

U

L
S

T
M

C
if

a
rN

e
t

A
le

x
N

e
t

S
q

u
e

e
z
e

N
e
t

R
e

s
N

e
t

V
G

G
N

e
t

CifarNet AlexNet SqueezeNet ResNet VGGNet . Summary

S
ta

ll
 C

y
c

le
 B

re
a

k
d

o
w

n
 p

e
r

L
a

y
e

r
T
y
p

e not_selected

memory_throttle

constant_memory_dependency

pipe_busy

other

sync

texture

memory_dependency

exec_dependency

inst_fetch

Fig. 7: Breakdown of Stall Cycles (GK210)

0%

20%

40%

60%

80%

100%

O
p

e
ra

ti
o

n
 T

y
p

e

B
re

a
k
d

o
w

n

nop xor
st ssy
shr shl
set rsqrt
retp rcp
or mul
mov min
max mad
mad24 ld
exit ex2
cvt callp
bra bar
and add
abs

Fig. 8: Operation Type Breakdown

add
17%

mad
14%

shl
13%

mul
12%

set
9%

mov
9%

ld
9%

ssy
4%

nop
4%

bra
4%

Others
5%

Fig. 9: Total Operations Breakdown Used By All Networks:
Top 10 operations are used for 95% of execution

2) The Most Used Data Types: To improve performance
and power efficiency, quantized networks have been recently
introduced [40], [41]. We plan to apply quantization for the
proposed benchmark suite but the current version uses 32-
bit floating-point data as inputs. Though input data are 32-bit
floating-point values, we would like to understand what other
types of data are mostly used by the neural networks. Figure 10
shows the instruction data type breakdown throughout the
execution of ResNet. We observed that the other networks

0%

20%

40%

60%

80%

100%

In
s
tr

u
c
ti

o
n

 T
y
p

e

B
re

a
k
d

o
w

n

Layers (invocation order)

f32

u32

u16

s32

s16

Fig. 10: Instruction Type Breakdown Throughout Execution:
the case of ResNet which is similar to all networks

show similar patterns, thus omitted the statistics of the other
networks.

Interestingly, the percentage of 32-bit floating-point (marked
as f32) was not the dominant data type. In the first a few lay-
ers, around 20% of the total instructions used 32-bit floating-
point data. However, in the deeper layers, the portion of 32-
bit floating-point is even reduced. Overall, the most used data
types are unsigned 32-bit and 16-bit integers. Signed 32-bit
integer is the next most frequently used data type. We believe
this is mainly because of the activation function, ReLU . ReLU
resets any negative floating-point value to zeros. Thus, as
execution continues, significant amount of data become zero’s,
which can be handled by integer pipeline. Another reason
of high portion of integer values is the intensive data index
calculation. While the data that are handled by neural network
algorithms are floating-point values, to have all neurons access
their data in large input matrixes, considerable amount of index
calculation is conducted. Especially in GPUs that run a batch
of threads (32 threads) in a lock-step manner (in a warp),
the index calculation needs additional operations for warp-unit
data accesses.

Observation 8. Even without quantization, neural networks
run significant amount of integer operations mainly due to
activation function outputs and data index calculation.

E. Memory Footprint

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

GRU LSTM CifarNet AlexNet SqueezeNet ResNet

M
a

x
 D

e
v
ic

e

M
e

m
o

ry
 U

s
a

g
e

(K

B
)

Fig. 11: Memory Footprint (TX1)

1) Device Memory Usage: To understand the memory
requirement, we measured the device memory usage by using
nvprof on TX1. Figure 11 shows the maximum device memory
usage while executing all layers of individual networks. The

9

device memory utilization is highly correlated with the pre-
trained model size. Thus, the statistics may be different when
using different models. However, as many of our benchmark
suite code used publicly accessible reference models, the
provided size may be considered as a typical model size. GRU
and LSTM use less than 500KB memory. Thus, they fit on
a small embedded devices such as Xilinx PynQ. However,
most of the CNNs use at least 1 MB memory. Thus, in our
evaluations on FPGA board had to partition each layer into
several sub kernels and run them over multiple iterations.

Observation 9. CNNs have high memory footprint, which
needs compression to be deployed on small embedded devices.

0

50

100

150

P
e

r
S

M
 R

e
g

is
te

r
U

s
a

g
e

 i
n

 K
B Max Allocated Registers

Max Live Registers

Fig. 12: Register File Usage in KB

2) On-chip Memory Usage: For GPUs that run massively
parallel threads, register files are typically larger than any
other on-chip memories. Thus, it is known that the register
file is the third most power hungry logic in GPU [38]. Thus,
we evaluated the register file utilization of DNNs. Figure 12
shows the register file utilization measured by running a
modified GPGPU-Sim [42], but with a Pascal architecture
configuration file. Max Allocated Registers is the maxi-
mum number of registers that are allocated by the compiler
and Max Live Registers is the maximum number of live
registers throughout the execution. AlexNet and ResNet use
over 50% of the 256 KB per-SM register file of Pascal
architecture, while the live register count is slightly lower than
50%. However, all the other networks use less than 100 KB
registers. Especially RNNs use less than 20KB registers.

Observation 10. Though neural networks are compute-
intensive workloads, GPU register file is significantly under-
utilized.

1.E+00

1.E+02

1.E+04

1.E+06

CifarNet AlexNet SqueezeNet ResNet

L
2

 M
is

s
e

s
 w

.r
.t

.
L

a
y
e

r
T
y
p

e

Conv

Pooling

FC

Norm

Fire

Relu

Scale

Eltwise

Fig. 13: Total L2 Misses per Layer Type without L1D
We showed that on-chip cache helps improve performance

of CNNs in Section IV-A. In this section, we evaluate data
locality per layer by checking the total number of L2 misses
and L2 miss ratio when L1D is not used. Figure 13 shows
the total number of L2 misses per layer. Clearly, convolution
layers and fully-connected layers are the most data intensive
layers. However, according to the L2 miss ratio plotted in
Figure 14, convolution layers have significantly lower L2 miss
ratio (average of less than 1%) than fully-connected layers

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

CifarNet AlexNet SqueezeNet ResNet

L
2
 M

is
s
 R

a
ti

o
 w

.r
.t

.
L

a
y
e
r

T
y
p

e

Conv

Pooling

FC

Norm

Fire

Relu

Scale

Eltwise

Fig. 14: L2 Miss Ratio per Layer Type without L1D

(average of 10%). This means that convolution layers have
higher data locality than fully-connected layers. The high data
locality of convolution layer can be found from SqueezeNet
and ResNet as well, where convolution layers are one of the
top layers that have the most L2 misses but have the lowest
L2 miss ratio among all layers. From these statistics, we can
conclude that on-chip memory is mainly useful for convolution
layers. For the other memory-intensive layers such as fully-
connected layers, another optimization technique should be
used to reduce the memory overhead.

Observation 11. Convolution layers have high data locality
and hence on-chip memory is mainly useful for optimizing the
performance of convolution layers.

F. Scheduler Sensitivity

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n

T
im

e

GTO

LRR

TLV

Fig. 15: Warp Scheduler Sensitivity

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

N
o

rm
a

li
z
e

d

E
x

e
c

u
ti

o
n

 T
im

e

GTO

LRR

TLV

Fig. 16: Per-Layer Warp Scheduler Sensitivity of AlexNet

GPU application performance is highly influenced by warp
schedulers. Thus, we evaluated the scheduler sensitivity on
the performance of neural networks. Note that this evaluation
is only possible with architecture simulators, which is one of
the most important reasons that we propose a new benchmark
suite that can run on micro-architecture simulators. Figure 15
shows the execution time when using GTO, LRR, and TLV
schedulers, normalized by the execution time when using
GTO. Due to the relatively short execution time, RNNs do
not show a considerable performance difference across sched-
ulers. AlexNet and ResNet show a significant performance
improvement when using LRR. More specifically, Figure 16

10

shows that the performance improvement is mainly acquired
in convolution layers. We believe this is related with the data
locality statistics shown in the previous subsection. Though
convolution layers access memory extensively, due to the
high data locality, the data is quickly fetched from on-chip
caches. Thus, there is no need to move warps between ready
and pending queues when they issue a memory operation as
TLV and GTO. In such case, LRR can effectively reduce the
queuing overhead while allowing sufficient time for each warp
to wait for its data from memory.

Observation 12. The basic round-robin warp scheduler
(LRR) is good enough for neural networks thanks to the high
data locality of convolution layers.

V. CONCLUSION

In this paper, we present a new DNN benchmark suite
that can run without needing to install proprietary DNN
libraries or heavy DNN frameworks. We also provide extensive
architectural characteristics of five CNNs and two RNNs on
both architecture simulator and real devices. The evaluations
on an architecture simulator provides an in-depth insights of
DNN accelerators design.

REFERENCES

[1] Standard Performance Evaluation Corporation (SPEC) Benchmark
suite. [Online]. Available: https://www.spec.org/

[2] Princeton Application Repository for Shared-Memory Computers
(PARSEC) Benchmark Suite. [Online]. Available: http://parsec.cs.
princeton.edu/

[3] Baidu DeepBench. [Online]. Available: https://svail.github.io/
DeepBench/

[4] R. Adolf, S. Rama, B. Reagen, G. Wei, and D. Brooks, “Fathom:
Reference Workloads for Modern Deep Learning Methods,” in IEEE
International Symposium on Workload Characterization (IISWC), Prov-
idence, RI, USA, Oct 2016.

[5] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Phanishayee, B. Schroeder,
and G. Pekhimenko, “TBD: Benchmarking and Analyzing Deep Neural
Network Training,” in arXiv:1803.06905, 2018.

[6] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. R, and M. Zaharia, “DAWNBench: An End-
to-End Deep Learning Benchmark and Competition,” in Conference on
Neural Information Processing Systems (NIPS), Long Beach, CA, USA,
Sep 2016.

[7] TensorFlow Benchmarks. [Online]. Available: https://www.tensorflow.
org/performance/benchmarks

[8] MLPerf: A broad ML benchmark suite for measuring performance of
ML software frameworks, ML hardware accelerators, and ML cloud
platforms. [Online]. Available: https://mlperf.org/

[9] TensorFlow. [Online]. Available: https://www.tensorflow.org/
[10] Keras: The Python Deep Learning library. [Online]. Available:

https://keras.io/
[11] NVIDIA CUDA Deep Neural Network library (cuDNN). [Online].

Available: https://developer.nvidia.com/cudnn
[12] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-

ages,” in Masters Thesis, Dept. of Computer Science, University of
Toronto, 2009.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Conference on Neural
Information Processing Systems (NIPS), Lake Tahoe, NV, USA, Dec
2012.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and ¡0.5MB model size,” in arXiv:1602.07360, 2016.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, June 2016.

[16] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
For Large-scale Image Recognition,” in International Conference on
Learning Representations (ICLR), San Diego, CA, USA, 2015.

[17] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations us-
ing RNN Encoder-Decoder for Statistical Machine Translation,” in
arXiv:1406.1078, 2014.

[18] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget:
Continual Prediction with LSTM,” in Neural Computation, 2000, p.
24512471.

[19] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), Boston, MA, USA, April 2009.

[20] NVIDIAs Next Generation CUDA Compute Architecture: Kepler
GK110/210. [Online]. Available: https://images.nvidia.com/content/pdf/
tesla/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

[21] NVIDIA TX1. [Online]. Available: https://developer.nvidia.com/
embedded/buy/jetson-tx1

[22] Xilinx PYNQ. [Online]. Available: https://www.xilinx.com/support/
university/boards-portfolio/xup-boards/XUPPYNQ.html

[23] NVIDIA CUDA SDK. [Online]. Available: https://developer.nvidia.
com/cuda-code-samples

[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in IEEE International Symposium on Workload Characterization
(IISWC), Austin, TX, USA, 2009.

[25] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W. mei W. Hwu, “IMPACT Technical Re-
port,” in IMPACT-12-01, University of Illinois, at Urbana-Champaign,
2012.

[26] Q. Xu, H. Jeon, and M. Annavaram, “Graph Processing on GPUs: Where
are the Bottlenecks?” in IEEE International Symposium on Workload
Characterization (IISWC), Oct 2014, pp. 140–149.

[27] S. Dong and D. Kaeli, “DNNMark: A Deep Neural Network Benchmark
Suite for GPUs,” in ACM General Purpose GPUs (GPGPU-10), New
York, NY, USA, 2017, pp. 63–72.

[28] PyTorch. [Online]. Available: https://pytorch.org/
[29] NVIDIA Dense Linear Algebra on GPUs (cuBLAS). [Online].

Available: https://developer.nvidia.com/cublas
[30] Caffe2: A New Lightweight, Modular, and Scalable Deep Learning

Framework. [Online]. Available: https://caffe2.ai/
[31] TensorFlow Lite. [Online]. Available: https://www.tensorflow.org/lite/
[32] TensorFlow Lite for Raspberry Pi. [Online]. Available: https:

//www.tensorflow.org/lite/rpi
[33] H. Roth, L. Lu, J. Liu, J. Yao, A. Seff, K. M. Cherry, E. Turkbey, and

R. Summers, “Improving computer-aided detection using convolutional
neural networks and random view aggregation,” in IEEE Trans. on
Medical Imaging, 2016.

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” in arXiv:1704.04861,
2017.

[35] ImageNet Large Scale Visual Recognition Challenge (ILSVRC).
[Online]. Available: http://www.image-net.org/challenges/LSVRC/

[36] CIFAR-10 and CIFAR-100 Database. [Online]. Available: https:
//www.cs.toronto.edu/∼kriz/cifar.html

[37] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in IEEE Computer Vision
and Pattern Recognition, 2009.

[38] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “Gpuwattch: Enabling energy optimizations
in gpgpus,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, 2013, pp. 487–498.

[39] NVIDIA Profiler. [Online]. Available: https://docs.nvidia.com/cuda/
profiler-users-guide/index.html

[40] Google Tensor Processing Unit. [Online].
Available: https://cloudplatform.googleblog.com/2016/05/
Google-supercharges-machine-learning-tasks-with-custom-chip.html

[41] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” in arXiv:1602.02830,
2016.

[42] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “GPGPU Register
File Virtualization,” in Proceedings of IEEE/ACM International Sympo-
sium on Microarchitecture. ACM, 2015.

https://www.spec.org/
http://parsec.cs.princeton.edu/
http://parsec.cs.princeton.edu/
https://svail.github.io/DeepBench/
https://svail.github.io/DeepBench/
https://www.tensorflow.org/performance/benchmarks
https://www.tensorflow.org/performance/benchmarks
https://mlperf.org/
https://www.tensorflow.org/
https://keras.io/
https://developer.nvidia.com/cudnn
https://images.nvidia.com/content/pdf/tesla/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
https://developer.nvidia.com/embedded/buy/jetson-tx1
https://developer.nvidia.com/embedded/buy/jetson-tx1
https://www.xilinx.com/support/university/boards-portfolio/xup-boards/XUPPYNQ.html
https://www.xilinx.com/support/university/boards-portfolio/xup-boards/XUPPYNQ.html
https://developer.nvidia.com/cuda-code-samples
https://developer.nvidia.com/cuda-code-samples
https://pytorch.org/
https://developer.nvidia.com/cublas
https://caffe2.ai/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/rpi
https://www.tensorflow.org/lite/rpi
http://www.image-net.org/challenges/LSVRC/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html
https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-learning-tasks-with-custom-chip.html

	I Introduction
	II Motivation and Related Work
	II-A General-Purpose GPU Benchmark Suites
	II-B DNN Benchmark Suites
	II-C Why Do We Need Another Benchmark Suite?

	III Neural Networks in the Benchmark Suite
	III-A Convolutional Neural Network (CNN)
	III-A1 CifarNet
	III-A2 AlexNet
	III-A3 ResNet
	III-A4 SqueezeNet
	III-A5 VGGNet

	III-B Recurrent Neural Network (RNN)
	III-B1 Long Short Time Memory (LSTM)
	III-B2 Gated Recurrent Unit (GRU)

	III-C Input Data, Pre-trained Models, and Code Structure
	III-D Target Platforms

	IV Characterizations and Analysis
	IV-A Overall Performance
	IV-A1 Per-Layer Execution Time
	IV-A2 Performance Impact of On-chip Cache

	IV-B Power Consumption
	IV-B1 Peak Power Consumption
	IV-B2 Per-layer Power Consumption
	IV-B3 Power Efficiency of Different Platforms

	IV-C Stall Cycle Breakdown
	IV-D Instruction Type Characterization
	IV-D1 The Most Executed Operations
	IV-D2 The Most Used Data Types

	IV-E Memory Footprint
	IV-E1 Device Memory Usage
	IV-E2 On-chip Memory Usage

	IV-F Scheduler Sensitivity

	V Conclusion
	References

