
Fused: Closed-loop Performance and Energy
Simulation of Embedded Systems

Sivert T. Sliper∗, William Wang†, Nikos Nikoleris†, Alex S. Weddell∗ and Geoff V. Merrett∗
∗{s.sliper, a.weddell, g.merrett}@ecs.soton.ac.uk; †{william.wang, nikos.nikoleris}@arm.com

∗School of Electronics and Computer Science, University of Southampton, UK; †Arm Research, Cambridge, UK

Abstract—Energy-driven computing is an emerging paradigm
that aims to fuel the proliferation of tiny and low-cost IoT sensing
and monitoring devices. Energy-driven computers are generally
powered by energy harvesting sources, and adapt their operation
at runtime according to energy availability; thus, they must
be designed and tested according to the expected dynamics of
their power source. However, today’s processor simulators and
debuggers typically assume that power is always available, so they
are unable to correctly model the interactions between power sup-
ply, power consumption and energy-driven execution. To address
this shortcoming, we propose Fused, an open source full-system
simulator for energy-driven computers. Fused models execution,
power consumption, and power supply in a closed loop, thus
correctly models the interaction between them. It targets energy-
driven embedded systems, and employs SystemC for digital and
mixed-signal simulation to model a microcontroller and mixed-
signal circuitry, enabling hardware-software codesign and design
space exploration. Fused includes a high-level power modelling
methodology, whereby events recorded during simulation are
correlated to power measurements of real hardware to extract
features for power modelling. Results show that Fused can model
the execution time and power consumption of a commercially
available microcontroller with a geometric mean error of 0.2%
and 3.4% respectively, across a wide range of workloads. Through
a case-study, we demonstrate that Fused can accurately model a
state-of-the art intermittent computing system, where execution
is heavily dependent on energy availability: although up to 70
power cycles were needed to complete the tested workload on the
constrained energy supply, Fused modelled the completion time
with less than 7% error.

Index Terms—Virtual prototyping, SystemC, Embedded sys-
tems

I. INTRODUCTION

With the advent of IoT, tiny, low-cost computing devices are
becoming ubiquitous. The Ericsson mobility report predicts
that by 2024, there will be 22 billion devices connected to the
internet, excluding PCs, laptops, tablets and mobile phones [1].
This drives a need for ever smaller and more low-cost devices.
Traditionally, this need has been met by battery-powered
devices, but the batteries limit deployment lifetime and lead
to increased cost, volume and mass. An attractive option is to
augment, or even replace, battery power with energy harvested
from ambient solar, mechanical (wind, vibration, motion),
RF, or thermal energy sources. But harvested energy is often
scarce, dynamic, and unpredictable [2].

All data supporting this study are openly available from the University of
Southampton repository at https://doi.org/10.5258/SOTON/D1200. This work
was supported by the Engineering and Physical Sciences Research Council
(EPSRC) under an iCASE award and Grant EP/P010164/1.

To cope with the dynamics of harvested energy, energy-
driven computing [3], [4] is emerging as a computational
paradigm where the dynamic availability of energy is a fun-
damental component throughout the system and application
design process. The operation of energy-driven systems is
often governed by energy availability, adapting to deliver the
highest possible quality of service for the energy available
during deployment.

One example of an energy-driven mode of operation is
energy-neutral operation [2], where systems aim to adapt their
energy consumption to match harvested energy over long
periods, using moderate amounts of energy buffering in the
form of rechargeable batteries or supercapacitors.

Another example is intermittent operation [5], where the
system retains computational progress through power cycles.
Under intermittent operation, systems opportunistically make
forward progress whenever energy happens to be available;
these systems operate correctly on unstable power supplies
while requiring only a tiny amount of energy buffering (typi-
cally on the order of 10 µJ) [6]–[9], so devices can be made
exceptionally tiny and low-cost.

Energy-driven operation brings new research and devel-
opment challenges. Being governed by energy availability,
the operation of these systems becomes difficult to reason
about, validate and debug [10]–[12]. Today’s development,
validation and debugging tools typically assume that energy is
always available, rendering them impractical when targeting
energy-driven operation. To overcome this, and as an enabler
and accelerator for the research and development of energy-
driven computing systems, we propose Fused1, an open source
mixed-signal SystemC virtual prototype that:

• simulates execution, power consumption, and power sup-
ply in a closed loop, thus enabling efficient hardware-
software codesign and design space exploration in
energy-driven computing;

• hosts a GDB server to interface with most software
development environments;

• enables debugging functionality across power cycles, and
the ability to freeze and step through the dynamic power/
energy state in lockstep with execution;

• executes unmodified binaries to be deployed on real
hardware, and can integrate existing CPU emulators with

1Full-system Simulation of Energy-Driven Computers. Source code is
publicly available at https://www.arm.ecs.soton.ac.uk/technologies/fused/.



relatively little development effort;
• enables modelling of external circuitry, such as energy

harvesters and power management circuits, improving
repeatability in evaluation.

We anticipate that hardware-software codesign will become
increasingly important for energy-driven computing in coming
years, as a plethora new non-volatile memories (NVMs) are
emerging [13]. Byte addressable NVM with low access energy
is a key enabler for e.g. intermittent operation, where compu-
tational progress must be retained through frequent reboots. A
simulation tool such as Fused is necessary to determine which
of these NVMs to choose, and how best to utilise them.

The key contributions of this work are as follows:
• Fused, a simulation framework tailored towards mod-

elling energy-driven computers, utilizing powerful Sys-
temC and SystemC AMS models of computation to
succinctly, flexibly and accurately model the interplay be-
tween program behaviour, digital hardware, and analogue
power management circuits.

• An event-based power modelling methodology, leverag-
ing timing-accurate simulation to correlate a small set
of high-level events with the power consumption of a
commercially available microcontroller.

• A case-study that demonstrate hardware-validated simu-
lation of a state-of-the-art intermittent computing system,
using Fused.

This paper begins with background and a review of related
works (Section II), introduces our experimental platform used
for evaluation (Section III), then gives an overview of Fused’s
model architecture (Section IV), before describing its high-
level event-based power modelling methodology (Section V).
We then evaluate Fused through experiments (Section VI), and
finally a case-study shows how it is able to accurately model
a state-of-the-art intermittent system (Section VII).

II. BACKGROUND AND RELATED WORKS

Development tools. Prior works have highlighted the
unique challenges that emerge in energy-driven, and partic-
ularly intermittent, systems [10]–[12]. Ekho [11] records IV-
surfaces (current-voltage curves over time) of energy har-
vesters, so that they can be replayed in the lab for realistic
and repeatable evaluation of energy-driven systems. EDB, the
energy-interference-free debugger, [10] is a hardware debug-
ging tool that aims to enable debugging of energy-driven sys-
tems without interfering with their energy state. Additionally,
EDB proposes new debugging primitives, such as energy-
breakpoints, to facilitate efficient debugging of intermittently-
powered devices. These approaches are complimentary to
Fused, and could be used in conjunction with Fused when
hardware is available.

Power estimation. The typical workflow for early per-
formance and power modelling of digital circuits consists
of RTL design, synthesis and simulation to obtain accurate
power and timing information. This workflow works well for
continuously-powered circuits, and can yield very accurate

results for a specific CMOS process node. It is, however,
not suitable for an energy-driven computer, because it does
not take into account the effect of energy availability and
consumption on execution and vice versa. For example, under
intermittent operation, a device commonly reboots as a result
of severely constrained power supply, thus its execution flow
cannot be determined without modelling energy availability.
This workflow is also inflexible, very time consuming, and
computationally expensive, hindering efficient design space
exploration.

A popular option in high-performance computing (mobile,
desktop and server) is to use gem5 [14], where processing
systems are modelled at a much higher level of abstraction.
Here, software is written to model hardware behaviour, mainly
by abstracting signals and operations to function calls. It is
not synthesizable, hence not a replacement for RTL, but it
provides for fast simulation and prototyping, allowing reason-
ably accurate power and performance modelling of complex
systems running complex software [15]. Power consumption
can be estimated in gem5 by recording architectural events
and feeding them to a power modelling tool [15]. However,
being optimised for simulation speed and for modelling high-
performance systems, gem5 lacks cycle-accurate capability,
and is far too complex to efficiently and flexibly model low-
power microcontrollers.

Simulating energy-driven computers. A key factor for
energy-driven computers is that their behaviour is governed
by the availability of energy. Their power consumption can
even affect the amount of power being harvested, because of
the non-linear IV curve of many energy harvesters [11]. This
is not the case for traditional computers, hence gem5 and RTL
workflows can decouple power and performance modelling.

We postulate that, for energy-driven computers, power and
performance must be modelled simultaneously, in a closed
feedback loop. Furthermore, timing accuracy requirements are
much stricter for energy-driven devices, because they might
only be active for a few thousand clock cycles at a time [8].

NVPSim, a gem5-based model of the THU1010N [16] non-
volatile processor (NVP)2 was proposed in [17], and extended
in [18] to include limited support for modelling peripherals.
NVPSim supports only a fully custom in-house NVP based
on an architecture rarely used in today’s embedded systems,
and furthermore assumes a fully non-volatile processor. Its
extension for modelling peripherals also requires specialised
driver code. The simulator therefore does not run the exact
same binary as the real device, and may operate differently,
potentially hiding hardware and/or software bugs.

Ma et al. [19] explored the microarchitecture of NVPs
with RTL simulation, using NVSim [20] as the NVM model.
The paper focused on comparing execution pipelines (non-
pipelined, in-order, out-of-order), as well as exploring which
parts of the microarchitectural state to save on power fail-
ure. Simulating the THU1010N, their RTL based simulations

2A non-volatile processor is a processor that employs non-volatile logic
elements instead of, or as a backup for, regular volatile logic, so that it doesn’t
lose state when power fails.



achieved intermittent execution of several benchmarks with
reported performance errors of less than 5 %; however the
simulation method is only briefly described. Notably, with a
fully non-volatile processor, power and performance can more
easily be calculated from an execution trace after simulation
(decoupled power and performance), because the executed
program can be agnostic to reboots.

Siren [21] extended the MSP430 simulator MSPSim [22] to
include NVM, and basic energy simulation capabilities. Siren’s
analog/energy domain consists of a capacitor model that also
controls whether or not execution is active, and an Ekho
emulator, that replays Ekho IV surfaces in simulation. Siren
does not, however, realistically simulate energy consumption,
because it assumes a single static energy consumption per
instruction. In our power profiling (Section V), we show that
the energy consumption of the MSP430 varies by more than
2×, depending on several factors, including memory allocation
and access patterns.

Analytical models. Several analytical models have been
proposed to evaluate intermittent computing methods [6], [23],
[24] and energy-neutral systems [2]. The most comprehensive,
EH-model [24], can provide early estimations of completion
time for several recent intermittent computing methods using
different state retention mechanisms.

Summary. Although there have been several prior works
that target simulation of energy-driven/intermittent systems,
they lack support for modelling external circuitry beyond a
simple storage capacitor, and none include a method for cap-
turing power modelling parameters. Most also lack the mod-
ularity and flexibility necessary to allow efficient hardware-
software codesign. Prior works in analytical modelling of
intermittent systems can be beneficial early in the design
process, to guide simulation efforts.

III. EXPERIMENTAL SETUP

The experimental platform used for the validation of Fused
is a customised version of the MSP430FR5994 Launchpad
Development Kit. A simplified schematic is shown in Fig. 1.
It was modified in order to more efficiently support intermittent
operation, and to provide high-bandwidth current measure-
ments of the microcontroller (MCU). During the experiments
performed for this work, the clock frequency of the micro-
controller was set to 8 MHz. The external circuitry consists
of a 4.7 µF ceramic capacitor used for energy storage, a load
switch that can disconnect the microcontroller from its supply
voltage, and a low-power comparator with built-in voltage
reference and hysteresis that monitors the supply voltage.
The full schematic and PCB design files are published in the
repository associated with this paper.

When charging the system from a cold start (vcap = 0 V),
the load switch remains open until the comparator closes
it, i.e. once vcap > 3.5 V. The microcontroller must then
activate a pull up on the positive input of the comparator
to keep the switch closed. If the GPIO pin is left in a high
impedance state (High-Z), the comparator will open the switch
at vcap = 3.4 V, due to its 0.1 V built-in hysteresis. By

C1 −

+

−

+

MCU

Current sense output

GPIOvcc

vcap Keep alive: High-Z/Pull-up

vref

vin

GND

Fig. 1. Hardware test platform.

enabling pull-up on the GPIO pin, the microcontroller can
keep the switch closed, and thus remain operational until it
decides to open the switch to recharge C1, or until vcap drops
below the minimum operating voltage and the microcontroller
browns out. The microcontroller’s internal ADC is used to
detect power failures, so that it can save execution context
to support intermittent computing; the internal comparator in
the microcontroller could also be used for this purpose. While
the microcontroller is powered off, its GPIO pins are left in
an undefined state; the diode in Fig. 1 prevents current from
flowing into the GPIO pin in this situation.

The current sense amplifier converts milliamperes of current
draw to volts (1 V/mA), and is used for gathering high-
bandwidth (≈100 kHz) current traces of the microcontroller’s
current consumption. This capability is used to profile the
microcontroller’s current consumption, to train Fused’s power
model, and for evaluation. The current sense amplifier is
powered by a separate supply, so that its power consumption
is excluded from measurements. An oscilloscope is used
to measure the current sense output, and a logic analyser
for monitoring microcontroller pins; both measurements were
triggered by a common GPIO pin.

IV. MODEL OVERVIEW

Simulation target. We target a typical embedded system,
comprising a microcontroller, power management circuitry,
and a power supply, as described in Section III. The proof-of-
concept implementation of Fused targets the MSP430FR5994
microcontroller. This microcontroller has been widely used
in the energy-driven computing community because its low-
power, byte-addressable and non-volatile FRAM memory en-
ables efficient state retention through power cycles. Fused’s
microcontroller model implements a subset of the modules
within an MSP430FR5994, including the CPU, a bus, memo-
ries, some internal peripherals, and some externally interfacing
peripherals. An overview of Fused is shown in Fig. 2.

Requirements. The main requirement when modelling an
energy-driven computer is that execution must be modelled
simultaneously with power consumption and supply. Addition-
ally, to aid in early design space exploration, the model needs
to be flexible, and relatively fast.

Implementation. Fused is implemented using SystemC, an
open C++ based IEEE-standardised language for designing
and modelling digital electronic devices [25]. This brings the



MCU Virtual prototype External circuitry Supply

GDB
Server

GDB
client Bus

CPU

FRAM

Cache

SRAM
TIMER

State &
Event
Log

Power
est.

GPIO

ADC

PMM

PWR GOOD

−

+

vref

vcc vcap C1

.elf

← icc

Fig. 2. Model architecture of Fused. This proof-of-concept implementation targets the system shown in Fig. 1, but all modules within the virtual prototype,
external circuitry and supply can readily be modified or replaced.

advantage of combining several different models of computa-
tion to enable flexible and fast design space exploration, while
allowing more detailed modelling where necessary.

Most of the modules within Fused are implemented us-
ing Transaction Level Modelling (TLM), a high-level fast
and flexible modelling methodology. Where it is more ap-
propriate, e.g. within peripherals and for interrupts, RTL-
like modelling is used. Furthermore, by use of the SystemC
Analogue and Mixed-Signal extensions (SystemC AMS) [26],
complex power supplies and power management circuits can
be modelled in a closed loop with execution.

GDB server. Fused hosts a GDB server that acts as the
software interface to the model so that code can be debugged
in the same way as on a hardware platform, using breakpoints,
single-stepping, memory examination, and more.

Because Fused models power and execution in a closed
loop, the analog circuitry also pauses when execution is halted
by the debugger. Thus Fused adds the capability of stepping
through code in lockstep with the dynamic power supply and
energy storage. This is an essential feature, when researching
intermittent computers that race to finish saving state before
the stored energy runs out. Using monitor outputs, such as an
execution trace linked to the supply voltage, the programmer
can refine the application by iterative testing using Fused.
When satisfactory results are achieved, the same application
binary can be deployed onto the real device.

CPU. Fused includes CPU models for the Cortex M0 and
the MSP430 instruction set architectures that execute unmod-
ified binaries. All memory accesses from the CPU models
go through the SystemC bus, and they use Fused’s API to
consume simulation time. Fused is designed to be flexible,
so that other microcontrollers and instruction set architectures
can be modelled with minimal effort. We focus our evaluation
on Fused on an MSP430-based microcontroller, because it is
currently the most widely used platform in published works
on intermittent computing due to its energy-efficient on-chip
FRAM NVM.

Bus. The bus model is implemented using a blocking TLM
interface, i.e. only a single transaction can be active at any
time. This model corresponds well to a crossbar bus. For
evaluation, the data and bus width are set to 16 bit.

Peripherals. The bus communicates with peripherals using
a TLM blocking interface. This means that all peripherals

have a simple, common interface, so adding new peripherals
requires minimal effort. Some peripherals have one or more
interrupt request outputs, which are routed to the CPU via an
interrupt arbiter. Externally facing peripherals have their ports
routed to the top level microcontroller interface, so that they
can interact with external digital and analog signals.

Power management module (PMM). The PMM monitors
the supply voltage, and controls the core voltage within the
microcontroller, turning it on when the supply voltage reaches
approximately 1.88 V, and turning it off when it drops below
approximately 1.80 V. Fused models this behaviour with a sig-
nal PWR GOOD. While PWR GOOD is asserted, execution
continues, otherwise it is halted. A reset to default values for
all internal registers and volatile memory is performed on the
positive edge of PWR GOOD.

Memory. The bus communicates with memory through a
blocking TLM read/write interface, where the memory module
annotates the transaction with access delay. The volatile byte-
addressable SRAM memory has a simple single-cycle ac-
cess delay. The non-volatile byte-addressable FRAM memory
caches reads to reduce power consumption and average access
latency. Its access time is nominally one clock cycle, but
additional wait states on miss can be added by use of a control
register; this is to avoid access time violations when running
the CPU at clock speeds above 8 MHz. The cache consists of
four 64 B lines arranged in two sets. From experiments with
the MSP430FR5994 (see Section VI), we found that writes go
directly to FRAM, invalidating hits in the cache, and that the
replacement policy is likely to be LRU (least recently used).
Because the memory model in Fused is implemented in TLM,
changing the bus parameters, memory sizes and delays, etc.
requires minimal effort.

Event & state logging. Fused implements a global logger
that records states and event rates at runtime. Each module
registers its events during elaboration and reports the event
on each occurrence. Similarly, they report their state at the
beginning of simulation, and when it changes. Event counts
within a configurable time step (e.g. 100 µs) are then aggre-
gated, logged, and reported to the power estimator.

Power estimator. The power estimator computes the current
consumption of the microcontroller based on the state and
event counts within the current time step. It estimates current
consumption rather than power, because of the targeted plat-



2 2.2 2.4 2.6 2.8 3 3.2 3.4

1

1.02

1.04

1.06

1.08

Supply Voltage (V)

C
ur

re
nt

(n
or

m
.)

Fig. 3. Average current draw across all workloads as a function of supply
voltage, normalised to the current draw at 2V.

form’s on-chip linear voltage regulator, which draws nearly
constant current regardless of supply voltage. This current is
then fed to the external circuitry.

External circuitry and power supply. Circuitry external
to the microcontroller is modelled in the timed data flow
(TDF) model of computation, i.e. essentially a set of equations
that are evaluated according to a static schedule. For the
purposes of this paper, the model includes a constant-current
power supply model, also modelled in TDF, but it is trivial
to exchange this with a different supply that e.g. models an
energy harvester, or replays traces.

V. POWER MODELLING METHODOLOGY

This section describes the proposed methodology for pro-
filing and modelling the energy consumption of real hardware
platforms. This is useful both for modelling real systems, and
for estimating the effect of changes to the hardware. The power
model is modular, so if hardware is unavailable, the parameters
can also be found from e.g. an RTL power estimation flow. The
proposed methodology is similar to instruction-level power
modelling (ILPM) [27], commonly used for high-level power
modelling of microcontrollers. However the power model used
herein is focussed on memory access energy, in place of
per-instruction energy, because the target platform’s energy
consumption depends more strongly on memory accesses than
on instructions. The authors expect the energy consumption of
memories to be an increasingly important factor when devel-
oping microcontrollers that utilise emerging NVMs. Another
key difference is that the model developed herein relies on far
fewer parameters, and thus substantially decreases the burden
on writing test programs.

The primary objective of the power model used for this
demonstration of Fused, is to obtain an explainable model with
a high degree of generality, and thereby avoiding overfitting
(rather than demonstrating the highest possible accuracy).
To this end, a minimal set of generic features are used,
mainly based on memory accesses. Other users of Fused, may
choose to include more numerous and detailed features to gain
accuracy, especially if tailoring the model towards specific
hardware or investigating the power consumption of specific
instructions.

The power estimator of Fig. 2 estimates power consumption
in the current time step based on module states and event-
counts. To do that, it multiplies each event count with its

0 10 20 30 40
0.5

1

1.5

kF-raw

aes-FFF

fp-FFF

dijkstra-SSS

memcpy-FSS

Time (ms)

C
ur

re
nt

(m
A

)

Fig. 4. A selection traces showing that current consumption is highly
application-dependent, and can exhibit significant variations over time.

energy consumption, and similarly sums the current consump-
tion of each module state. The current consumption, icc, per
timestep can be expressed as

icc = (
ΣEkck
vcore∆t

+ ΣIm,s) · creg(V ),

where Ek is the energy consumption per occurrence of event
k, ck is the number of occurrences of event k within the
current time step, vcore is the core supply voltage, ∆t is the
duration of the timestep, Im,s is the current consumption of
module m in state s, and creg(V ) is a factor to compensate
for current variation as a function of supply voltage. The first
term within the parentheses converts dynamic energy (events)
into current consumed at the core voltage, the second sums
the current consumption of states. Note that the target platform
demonstrated herein uses an internal linear regulator to convert
the external supply voltage, vcc to the internal supply voltage,
vcore, and thus should ideally draw constant current regardless
of supply voltage (within operating bounds). However, the cur-
rent consumption increases significantly when vcc approaches
the maximum operating voltage of 3.6 V, as shown in Fig. 3.
To compensate for this, the current consumption is multiplied
by creg(V ), implemented as a lookup table of the sample
points from Fig. 3.

Power profiling. To find the energy and current consump-
tion attributable to each event and state, respectively, we
propose a power profiling flow based on correlating current
measurements from hardware with event and state logs from
simulation. This method leverages timing accurate simulation
to pinpoint how much power consumption to attribute to each
event.

First, traces of the current consumption of all workloads are
measured on real hardware. In this step, it can be beneficial
to use a high sampling rate, effectively to obtain a large
number of samples per workload, so that the model can
be trained robustly with fewer workloads. Figure 4 shows
three examples of current traces from three workloads chosen
to demonstrate that the average current consumption varies
substantially between applications, and, in some applications,
also varies rapidly over time. Thus a model that assumes
constant power consumption over time and across workloads,
is bound to have large errors.



Then, the workloads are simulated to collect event and
state logs. A GPIO pin is used to indicate the start of each
iteration of the workloads, so that measured current traces
and simulated logs can be synchronized temporally. These
synchronized event logs and current traces are then passed on
to a regression step, which estimates the energy consumption
attributable to each state and event.

Feature selection and linear regression. Fused can record
an arbitrary amount of events during simulation, but not all of
these are useful for power modelling. To obtain an explainable
and stable model with a high degree of generality, a minimal
set of generic features was chosen:

• FRAM-RHIT: Read hits in the FRAM cache. These reads
are served from the cache, without incurring FRAM
accesses.

• FRAM-RMISS: Read misses in the FRAM cache. These
cause a read from FRAM, loading a cache line, before
serving the data.

• FRAM-W: Writes to FRAM. The written data goes
directly to FRAM. If the data is present in the cache,
the relevant cache line gets discarded.

• SRAM-RW: Total number of accesses to SRAM.
• EX: CPU execution cycles, here defined as cycles where

the CPU does not fetch or store any data.
Fused also records the rate of occurrence of each instruc-

tion, addressing mode and more. Including these features may
improve the accuracy of the power model, but would require
a vast set of workloads to ensure that every instruction is
exercised sufficiently.

For the final regression step, the non-negative least squares
(NNLS) method is used to ensure non-negative values for all
events and states, corresponding to physical intuition (events
cannot generate energy). The correlation coefficient of each
event k, coeffk, is multiplied by vcore and the timestep
between samples, ∆t, to obtain Ek, the energy-consumption
per occurrence of the event:

Ek = ∆t · vcore · coeffk.

Hardware boot. When powering up the microcontroller,
energy is consumed before any code is executed. We observed
that the current draw during hardware boot was similar across
power cycles. Fig. 5 shows the boot-current trace averaged
over 128 power cycles, measured by power-cycling the MCU
while measuring the current consumption with an oscilloscope.
To simulate the real hardware, Fused’s PMM replays the
current trace of Fig. 5 during boot, and delays execution for its
duration. Most simulators can safely ignore this boot current,
because the systems they target rarely reboot; for energy-
driven computers, however, reboots can be frequent, and
may constitute a significant part of total energy consumption
(demonstrated in Fig. 11).

VI. EXPERIMENTAL VALIDATION

Computational kernels & benchmarks. To train the re-
gression model, and evaluate simulation accuracy, a suite of
computational kernels and benchmarks was assembled. The

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

1

2

3

Time(ms)

C
ur

re
nt

(m
A

)

Fig. 5. Current consumption during hardware boot.

computational kernels are small assembler programs written to
exercise specific features of the targeted MCU. These features
include: write and read accesses to FRAM and SRAM, sparse
and dense reads from FRAM (to exercise the cache), jumps,
and copying data between memories. They are not necessarily
representative of real workloads, but help in validating correct
execution, and in training the power model.

As representative workloads of embedded systems, several
benchmarks from the BEEBS [28] online repository were
ported. The benchmarks include common mathematical and
data structure operations, and cryptographic workloads such as
AES encryption, and SHA256 hashing. For brevity, we do not
detail each benchmark, but the source code for all benchmarks
is available online in the repository associated with this paper.
A list of the workloads can be found in the horizontal axis of
Fig. 8. For the remainder of this paper, the term “workloads”
will be used when referring to both benchmarks and kernels.

Because the current consumption of the target platform
depends heavily on memory allocation and access patterns,
we generated several permutations of
{CODE,DST DATA, SRC DATA} ∈ {FRAM,SRAM},

i.e. permutations of allocating each of the three sections
(lhs) to each of the memories (rhs). This is denoted in the
benchmark names as CDS, where C is the code section, D is
the destination data section, and S is the source data section.
A kernel with its code allocated to SRAM, that copies data
from FRAM to SRAM would thus get the suffix SSF. The
stack (where used) was allocated to SRAM.

Execution time. To evaluate the simulator’s execution time
accuracy, the completion time of all workloads was simulated
and measured on real hardware. A GPIO pin indicated the start
and completion of each workload. The geometric mean error,
across all benchmarks, between the simulated and measured
completion time, was found to be 0.20 %, and the maximum
error 1.16 %. The measured and simulated execution time of
all benchmarks are available in the dataset associated with this
paper, but are omitted here in the interest of brevity.

Cache model. To validate the cache model in Fused, the
simulated cache miss rate was compared to the real hardware
miss rate. Herein, we define the miss rate as being the ratio
of cache misses over accesses, i.e. including both reads and
writes. However, there are no direct ways of measuring miss
rate on the real platform, so an indirect measurement was used.

To measure the miss rate,the execution time was measured
while setting the FRAM cache miss penalty, WS, to 0 and to



ae
s-

FF
F

ae
s-

FS
S

ae
s-

M
S

ae
s-

SF
F

di
jk

st
ra

-F
SS

fp
-F

FF
fp

-F
SS

kc
ac

he
-l

in
ea

r
kc

ac
he

-s
pa

rs
e

kF
kF

-r
aw

kF
-w

si
ng

le
kF

-w
si

ng
le

sp
ar

se
L

R
U

Te
st

m
at

m
ul

-F
FF

m
at

m
ul

-F
SS

m
at

m
ul

-S
FF

m
at

m
ul

-t
ile

d-
FF

F
m

at
m

ul
-t

ile
d-

FS
S

m
at

m
ul

-t
ile

d-
SF

F
m

em
cp

y-
as

m
-F

FF
m

em
cp

y-
as

m
-F

FS
m

em
cp

y-
as

m
-F

SF
m

em
cp

y-
as

m
-S

FF
m

em
cp

y-
as

m
-S

FS
m

em
cp

y-
as

m
-S

SF
m

em
cp

y-
FF

F
m

em
cp

y-
FF

S
m

em
cp

y-
FS

F
m

em
cp

y-
SF

F
m

em
cp

y-
SF

S
m

em
cp

y-
SS

F
ne

ttl
e-

sh
a2

56
-F

SS
ne

w
lib

-e
xp

-F
SS

ne
w

lib
-l

og
-F

SS
ne

w
lib

-m
od

-F
SS

ne
w

lib
-s

qr
t-

FS
S

sg
lib

-a
rr

ay
bi

ns
ea

rc
h-

FS
S

sg
lib

-a
rr

ay
he

ap
so

rt
-F

SS
sg

lib
-d

lli
st

-F
SS

sg
lib

-h
as

ht
ab

le
-F

SS
sg

lib
-l

is
tin

se
rt

so
rt

-F
SS

sg
lib

-l
is

ts
or

t-
FS

S
sg

lib
-q

ue
ue

-F
SS

sg
lib

-r
bt

re
e-

FS
S

0

50

100

C
ac

he
m

is
s

ra
te

(%
) Measurement Simulation

Fig. 6. Cache miss rate across benchmarks with more than 1000 total FRAM
accesses.

15 clock cycles; setting WS = 15, causes the CPU to stall for
15 clock cycles on every cache miss, and hence the execution
time becomes highly sensitive to the miss rate. The miss rate
of a workload can then be calculated as

MR =
fclk(tWS15 − tWS0)

15
· 1

nR + nW
.

The first term calculates the total number of cache misses, and
the second calculates the access rate. The clock frequency is
denoted fclk, tWS15 is the execution time when setting WS =
15, tWS0 the execution time when setting WS = 0, and nR +
nW is the number of read and write accesses to FRAM.

Figure 6 shows the measured and simulated miss rate. The
geometric mean error between measurement and simulation
is 2.69 %. However, the model significantly underestimates
the miss rate for certain programs. In the worst case, i.e. for
sglib-listsort-FSS, the measured miss rate was 30 %, but the
simulated miss rate was only 17 %.

The cache in the MSP430FR5994 is sparsely described
in documentation. The cache is specified as a two-way set
associative cache with a total of four lines holding 64 bits
each. However, the documentation does not declare which
replacement policy and write policy is used.

To ascertain which write policy is used, we wrote a micro
benchmark, kF-raw, that repeatedly writes to and then reads
from the same location in FRAM. The cache miss rate was
found to be 100 %, meaning that: on a write to FRAM, if the
destination data already exists in the cache, it gets invalidated
rather than updated. This is often referred to as a write-around
policy.

The read policy of the cache is not specified in docu-
mentation, so we simulated LRU (least recently used), FIFO
and LFU (least frequently used) policies and picked the one
that best correlated to measurements. Additionally, we wrote
a micro-kernel, LRUTest, that is designed to be sensitive to
whether the replacement policy is LRU or FIFO (the two most
likely candidates). The measurements from the LRU test, and
from correlation indicate that the replacement policy is LRU.

The results of this analysis of cache miss rates indicate that
the cache used in the MSP430FR5994 does implement write-
around write policy, and a LRU-like read policy, but that there

0 0.2 0.4 0.6 0.8

EX
FRAM-RHIT

FRAM-RMISS
FRAM-W

SRAM-RW

0.2

0.21

0.64

0.68

0.2

Energy (nJ)

Fig. 7. Energy consumption per occurrence of events included in the power
model.

is additional undocumented behaviour during reads, that our
cache model does not cover.

Power estimation. To train and evaluate Fused’s power
model, we ran a set of 60 workloads on the hardware platform,
and recorded 30 ms current traces, starting from the beginning
of each workload (as indicated by a GPIO pin). The measured
traces were sampled at 1.25 MHz, and averaged over 128 runs
of each workload. Simulations were performed with a timestep
of 100 µs. The measured traces were then downsampled by
averaging, to match the simulation sample rate, before the
correlation step. The final sampling rate for the training
data was set to 100 µs to allow some degree of temporal
misalignment between measurement and simulation.

The estimated energy of each event, obtained through
NNLS, is shown in Fig. 7. Accesses to FRAM are in excess of
3× more costly in energy than those that can be served by the
FRAM cache, or SRAM. This implies that, without knowing
the cache miss rate of specific applications, power estimates
will be severely inaccurate.

Figure 8 shows the measured average current of each
workload on the left bars, and their estimated average current
on the right bars. Current is used in place of power because
of the targeted platform’s on-chip linear voltage regulator. To
evaluate the power model for unseen workloads, the set of
workloads were divided into a training and a test set.

The bars for the estimated current also show the contri-
butions attributable to each power model event. In general,
FRAM-RMISS and FRAM-W are the strongest two predictors
of current consumption, as expected from the device data
sheet. The kernels kF-raw and kcache-sparse are both designed
to have very high rates of access to FRAM; the first repeatedly
reads and writes to the same FRAM-allocated variable (to test
the write policy), the second consists entirely of long jumps
that force a cache miss every second clock cycle. On the low-
current end are workloads which operate mostly out of SRAM,
or have very low miss rates in FRAM. Across all benchmarks,
the geometric mean error of the current estimates is 3.4 %, and
the maximum error is 23.0 %.

VII. CASE-STUDY: SIMULATING INTERMITTENT
COMPUTING SYSTEMS

To demonstrate Fused’s ability to simulate truly energy-
driven systems, we simulate a state-of-the art reactive inter-
mittent computing system [8] running AES encryption, and
compare it to real hardware.



FRAM-RHIT FRAM-RMISS FRAM-W SRAM-RW EX Test sets

m
em

cp
y-

FS
S

kr
eg

is
te

rs
m

em
cp

y-
as

m
-F

SS
kS

-w
si

ng
le kS

m
at

m
ul

-S
SS

m
em

cp
y-

SS
S

m
at

m
ul

-t
ile

d-
SS

S
sg

lib
-l

is
tin

se
rt

so
rt

-F
SS

fp
-S

SS
m

em
cp

y-
SS

F
m

at
m

ul
-S

FF
ae

s-
SS

S
fp

-S
FF

m
em

cp
y-

as
m

-S
SS

m
em

cp
y-

FF
S

m
em

cp
y-

as
m

-S
SF

m
at

m
ul

-t
ile

d-
SF

F
di

jk
st

ra
-S

SS
m

em
cp

y-
SF

S
m

em
cp

y-
SF

F
m

em
cp

y-
FS

F
m

em
cp

y-
as

m
-F

FS
ae

s-
SF

F
m

em
cp

y-
as

m
-S

FS
ae

s-
FS

S
m

em
cp

y-
as

m
-S

FF
ne

w
lib

-s
qr

t-
FS

S
kc

ac
he

-l
in

ea
r

m
em

cp
y-

FF
F

sg
lib

-d
lli

st
-F

SS
di

jk
st

ra
-F

SS
L

R
U

Te
st

m
em

cp
y-

as
m

-F
SF

ne
w

lib
-e

xp
-F

SS
ne

w
lib

-l
og

-F
SS

ne
w

lib
-m

od
-F

SS
fp

-F
SS

fp
-F

FF
ne

ttl
e-

sh
a2

56
-F

SS
sg

lib
-a

rr
ay

bi
ns

ea
rc

h-
FS

S
sg

lib
-h

as
ht

ab
le

-F
SS

m
at

m
ul

-t
ile

d-
FS

S
sg

lib
-r

bt
re

e-
FS

S
m

at
m

ul
-F

SS
sg

lib
-q

ue
ue

-F
SS

m
at

m
ul

-F
FF

m
at

m
ul

-t
ile

d-
FF

F
m

em
cp

y-
as

m
-F

FF
ae

s-
FF

F
kF

-w
si

ng
le

kF
-w

si
ng

le
sp

ar
se kF

kc
ac

he
-s

pa
rs

e
kF

-r
aw

ae
s-

M
S

m
at

m
ul

-t
ile

d-
M

S
sg

lib
-l

is
ts

or
t-

FS
S

sg
lib

-a
rr

ay
he

ap
so

rt
-F

SS
m

at
m

ul
-M

S
ge

om
ea

n

0

1

2
18

.6
%

6.
1% 10
.5

%

5.
1%

3.
9%

3.
1%

2.
3%

1.
4% 11

.8
%

0.
5% 3.
2%

2.
8%

0.
8%

0.
6%

2.
5% 18

.3
%

0.
3%

0.
5%

8.
2% 1.

7%

2.
4% 9.

7%

10
.3

%

5.
5%

2.
5% 3.

9%

0.
6% 2.
8% 14

.1
%

8.
7%

2.
7% 5.
6%

5.
9%

23
.0

%

1.
6%

1.
7%

3.
0%

0.
2%

0.
3% 3.
4% 2.
9%

6.
1%

6.
7%

9.
4%

7.
8% 5.
0%

7.
8% 7.
0% 19

.0
%

2.
4% 2.
5%

0.
3% 4.

3% 3.
8%

5.
4%

1.
5%

1.
3%

15
.6

%

6.
1% 7.
8%

3.
4%

C
ur

re
nt

(m
A

)
Measured

Fig. 8. Measured (left bars) and predicted (right bars) current consumption across workloads, sorted according to measured current consumption. The stacked
predicted current breaks down the contributions of each feature. The number above each bar denotes the absolute percentage simulation error.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440
0

1

2

3

L
H
L
H
L
H
L
H

Active

Restore
Suspend

Start

vcap

vcc
icc

Time (ms)

Vo
lta

ge
(V

)
C

ur
re

nt
(m

A
)

Fig. 9. Simulation trace of a reactive intermittent computing system powered by a 200 µA current-limited power supply. The top traces show the logic levels
of GPIO pins indicating the operation of the device, and the lower traces show the microcontroller supply voltage (vcc), the storage capacitor voltage (vcap)
and the current draw (icc).

Reactive intermittent computing. Intermittent computing
systems (ICSs) use NVM to retain computational progress
through power cycles, enabling them to execute applications
opportunistically whenever energy is available. Reactive ICSs
[6], [8], [29]–[31] use supply voltage monitoring to detect
imminent power failures. When the supply voltage drops
below a threshold, they suspend their volatile state, i.e. save
volatile execution context to NVM, before brown-out. Then,
when power returns, they restore context from the previously
saved snapshot, and continue execution exactly where they left
off. To be able to suspend state before brown-out, they require
a tiny amount of energy buffering. In microcontrollers with
low-power FRAM memory, the capacitance already present
for power supply conditioning is usually sufficient to save a
snapshot state [6], [8], [29], [30], but may fail if the snapshot
is too large relative to the buffered energy. As an example, [8]
found that their system could safely save only up to 4 kB on
their platform which had 10 µF capacitance. Using Fused, one
can step through these critical operations in lockstep with the
energy-state to debug and validate correct operation.

In this case study, we evaluate Fused’s ability to model
intermittent systems with ManagedState [8]. While many inter-
mittent systems save the entirety of allocated volatile memory

when saving snapshots [5], [6], [29], ManagedState divides
memory into pages, and keeps track of active and modified
pages, so that it can load pages on demand, and suspend
only pages that are modified. In the context of simulation,
an important aspect of ManagedState is that, unlike most
reactive IC methods, the time and energy consumption of the
suspend and restore operations vary during runtime based on
how much state needs to be saved and restored. Furthermore,
ManagedState adapts its suspend threshold at runtime, depend-
ing on the number of pages that need to be saved during
the next suspend (the adaptive restore threshold was disabled
during these experiments, because the external comparator has
a constant restore threshold). These complications necessitate
simulation over analytical methods.

Experimental setup. The completion time of a workload
that encrypts a 2 kB string using AES was measured on the
hardware platform shown in Fig. 1. Power was supplied by a
current-limited power source connected to vin and GND. This
power source setup resembles that of a system connected to a
solar harvester, but under more controlled conditions for the
purposes of this demonstration. The current limit was varied
from 200 µA to 2 mA in 100 µA steps. To avoid damaging
the hardware, the power supply output voltage was limited



0.5 1 1.5 2
0

1

2

3

Always on

Supply current limit (mA)

C
om

pl
et

io
n

tim
e

(s
)

Simulation
Measurement

Fig. 10. Completion time of AES encryption when running intermittently,
powered by a current-limited power source.

to 3.59 V. For the following experiments, ManagedState was
configured to assert a pull-up on the “keep alive” GPIO pin
early in the boot process, and to de-assert it at the completion
of suspend.

Results & analysis. Figure 9 shows a sample trace from
Fused, where GPIO pins indicate when the system was active,
the start of the benchmark, when a previous snapshot was
restored, and when state was suspended.

Figure 10 shows the measured and simulated completion
time of the application, for a range of supply currents, mea-
sured as the duration between positive edges of the start
signal. The completion time increases exponentially with a
linear decrease in supply current, mostly due to increased
recharging time: as the supply current decreases, on-periods
become shorter, and charging periods longer. The maximum
error between simulation and measurement was 6.8 %, at the
lowest-current measurement point. The mean absolute error
was found to be 2.2 %. As indicated on the figure, the platform
is continuously on for input currents larger than 1.5 mA.

Figure 11 shows the simulated energy consumption of the
full system, calculated from the simulated current and voltage
traces, and divided into components. The energy denoted
“compute” is calculated as the energy consumption of the
MCU while it is active, but not restoring or suspending.
The increase in energy consumption at supply current limits
exceeding 1.4 mA is caused by an increase in the average
supply voltage; beyond 1.6 mA, the power supply is voltage-
limited to 3.59 V. The compute energy remains relatively
constant for supply current limits below 1.4 mA because
the average supply voltage remains nearly constant; this, in
turn, is because the comparator has a fixed on-threshold, and
ManagedState adjusts the suspend threshold so that the voltage
at the completion of suspend remains nearly constant. Hence,
the voltage waveform seen in Fig. 9 remains similar, although
temporally stretched/compressed.

The energy overhead of hardware-boot, suspend and restore
grows linearly with the number of power cycles required to
complete the workload. Even for the lowest-current measure-
ment point, where one iteration of the workload spans an
average of 70 power cycles, the combined energy overhead
of restore and suspend constitute only 6.5 %.

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9 2

0

1

2 Always on

Supply current limit (mA)

E
ne

rg
y

(m
J)

Compute HW-Boot Restore Suspend Ext.

Fig. 11. Full-system energy consumption when running AES encryption inter-
mittently, powered by current-limited power source. The energy consumption
is divided into stacked bars for the external circuitry (ext.), hardware boot
(HW-Boot), and the operational phases restore, compute and suspend.

The energy consumption of the external circuitry, however,
increases proportionally with total completion time, because
it is always powered on. These simulation results indicate
that, when the supply current is weak, reducing the current
consumption of the external circuitry would likely have a
larger impact than further optimisation of the suspend and
restore operations.

VIII. CONCLUSIONS

This paper presented Fused, a full-system simulator for
energy-driven computers. Its focus is on closed-loop energy
and performance simulation, as well as providing the flexibility
needed to explore new hardware and software designs to
improve energy-driven computers. Using Fused, a developer
can rapidly get an accurate picture of the interplay between
analog circuitry, digital hardware, and software.

Fused models execution time with a maximum error of
1.16 % across a broad set of 60 workloads. The power model
of Fused profiles current consumption of real hardware, and
correlates it to simulation events; this resulted in a power
model using only five parameters, that achieves geometric
mean error of 3.4 %, with a maximum error of 23.0 % across
the 60 workloads. To evaluate Fused’s ability to model truly
energy-driven systems, a case study simulated a state-of-the-
art intermittent computing system, and validated results against
real hardware. Fused modelled the completion time of an
application running intermittently with a mean and maximum
absolute error of 2.2 % and 6.8 %, respectively.

Our current research includes integrating more common
on-chip peripherals to broaden Fused’s application area, and
to explore the impact of emerging non-volatile memories on
energy-driven computing. Building on prior works, we plan
to integrate energy harvester models and traces, to aid in
the development and repeatable evaluation of energy-driven
devices.



REFERENCES

[1] Ericsson, “Ericsson Mobility Report June 2019,” Tech. Rep., 2019.
[2] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management

in energy harvesting sensor networks,” ACM Transactions on Embedded
Computing Systems, vol. 6, no. 4, pp. 32–es, Sep. 2007.

[3] G. V. Merrett and B. M. Al-Hashimi, “Energy-Driven Computing:
Rethinking the Design of Energy Harvesting Systems,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, May 2017.

[4] S. T. Sliper, O. Cetinkaya, A. S. Weddell, B. Al-Hashimi, and G. V.
Merrett, “Energy-driven computing,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol.
378, no. 2164, p. 20190158, Feb. 2020.

[5] B. Ransford, J. Sorber, and K. Fu, “Mementos: System Support for
Long-running Computation on RFID-scale Devices,” in Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XVI.
New York, NY, USA: ACM, 2011, pp. 159–170.

[6] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi,
D. Brunelli, and L. Benini, “Hibernus: Sustaining Computation During
Intermittent Supply for Energy-Harvesting Systems,” IEEE Embedded
Systems Letters, vol. 7, no. 1, pp. 15–18, Mar. 2015.

[7] B. Lucia and B. Ransford, “A Simpler, Safer Programming and Ex-
ecution Model for Intermittent Systems,” in Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’15. Portland, OR, USA: ACM, 2015, pp.
575–585.

[8] S. T. Sliper, D. Balsamo, N. Nikoleris, W. Wang, A. S. Weddell,
and G. V. Merrett, “Efficient State Retention Through Paged Memory
Management for Reactive Transient Computing,” in Proceedings of the
56th Annual Design Automation Conference 2019, ser. DAC ’19. Las
Vegas, NV, USA: ACM, 2019, pp. 26:1–26:6.

[9] K. Maeng, A. Colin, and B. Lucia, “Alpaca: Intermittent Execution
Without Checkpoints,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA,
pp. 96:1–96:30, Oct. 2017.

[10] A. Colin, G. Harvey, A. P. Sample, and B. Lucia, “An Energy-Aware
Debugger for Intermittently Powered Systems,” IEEE Micro, vol. 37,
no. 3, pp. 116–125, 2017.

[11] J. Hester, L. Sitanayah, T. Scott, and J. Sorber, “Realistic and Repeatable
Emulation of Energy Harvesting Environments,” ACM Transactions on
Sensor Networks, vol. 13, no. 2, pp. 1–33, Apr. 2017.

[12] A. Maioli, L. Mottola, M. H. Alizai, and J. H. Siddiqui, “On intermit-
tence bugs in the battery-less internet of things (WIP paper),” in Pro-
ceedings of the 20th ACM SIGPLAN/SIGBED International Conference
on Languages, Compilers, and Tools for Embedded Systems - LCTES
2019. Phoenix, AZ, USA: ACM Press, 2019, pp. 203–207.

[13] A. Chen, “A review of emerging non-volatile memory (NVM) technolo-
gies and applications,” Solid-State Electronics, vol. 125, pp. 25–38, Nov.
2016.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1–7,
May 2011.

[15] M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, and B. Al-Hashimi,
“Hardware-Validated CPU Performance and Energy Modelling,” in 2018
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). Belfast: IEEE, Apr. 2018, pp. 44–53.

[16] Y. Wang, Y. Liu, S. Li, D. Zhang, B. Zhao, M.-F. Chiang, Y. Yan,
B. Sai, and H. Yang, “A 3us wake-up time nonvolatile processor
based on ferroelectric flip-flops,” in 2012 Proceedings of the ESSCIRC
(ESSCIRC). Bordeaux, France: IEEE, Sep. 2012, pp. 149–152.

[17] Yizi Gu, Y. Liu, Y. Wang, H. Li, and H. Yang, “NVPsim: A simulator for
architecture explorations of nonvolatile processors,” in 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC). Macao,
Macao: IEEE, Jan. 2016, pp. 147–152.

[18] T. Wu, L. Zhang, H. Yang, and Y. Liu, “An Extensible System Sim-
ulator for Intermittently-powered Multiple-peripheral IoT Devices,” in
Proceedings of the 6th International Workshop on Energy Harvesting &
Energy-Neutral Sensing Systems, ser. ENSsys ’18. Shenzhen, China:
ACM, 2018, pp. 1–6.

[19] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu, J. Samp-
son, Y. Xie, and V. Narayanan, “Architecture exploration for ambient
energy harvesting nonvolatile processors,” in 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
Burlingame, CA, USA: IEEE, Feb. 2015, pp. 526–537.

[20] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “NVSim: A Circuit-
Level Performance, Energy, and Area Model for Emerging Nonvolatile
Memory,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 7, pp. 994–1007, Jul. 2012.

[21] M. Furlong, J. Hester, K. Storer, and J. Sorber, “Realistic Simulation
for Tiny Batteryless Sensors,” in Proceedings of the 4th International
Workshop on Energy Harvesting and Energy-Neutral Sensing Systems -
ENSsys’16. Stanford, CA, USA: ACM Press, 2016, pp. 23–26.

[22] J. Eriksson, A. Dunkels, and N. Finne, “Poster Abstract: MSPsim
– an Extensible Simulator for MSP430-equipped Sensor Boards,” in
Proceedings of the European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo Session, Delft, Netherlands, 2007, p. 2.

[23] A. Rodriguez Arreola, D. Balsamo, A. K. Das, A. S. Weddell,
D. Brunelli, B. M. Al-Hashimi, and G. V. Merrett, “Approaches to
Transient Computing for Energy Harvesting Systems: A Quantitative
Evaluation,” in Proceedings of the 3rd International Workshop on Energy
Harvesting & Energy Neutral Sensing Systems, ser. ENSsys ’15. Seoul,
South Korea: ACM, 2015, pp. 3–8.

[24] J. San Miguel, K. Ganesan, M. Badr, C. Xia, R. Li, H. Hsiao, and
N. Enright Jerger, “The EH Model: Early Design Space Exploration of
Intermittent Processor Architectures,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). Fukuoka,
Japan: IEEE, Oct. 2018, pp. 600–612.

[25] S. A. IEEE, “IEEE Standard for Standard SystemC Language Reference
Manual,” Sep. 2011.

[26] IEEE, “IEEE Standard for Standard SystemC(R) Analog/Mixed-
Signal Extensions Language Reference Manual,” Apr. 2016,
10.1109/IEEESTD.2016.7448795.

[27] C. Chakrabarti and D. Gaitonde, “Instruction level power model of
microcontrollers,” in 1999 IEEE International Symposium on Circuits
and Systems (ISCAS), vol. 1, May 1999, pp. 76–79 vol.1.

[28] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open Benchmarks for
Energy Measurements on Embedded Platforms,” arXiv:1308.5174 [cs],
Aug. 2013.

[29] D. Balsamo, A. S. Weddell, A. Das, A. R. Arreola, D. Brunelli, B. M. Al-
Hashimi, G. V. Merrett, and L. Benini, “Hibernus++: A Self-Calibrating
and Adaptive System for Transiently-Powered Embedded Devices,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 12, pp. 1968–1980, 2016.

[30] H. Jayakumar, A. Raha, and V. Raghunathan, “QUICKRECALL: A Low
Overhead HW/SW Approach for Enabling Computations across Power
Cycles in Transiently Powered Computers,” in 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on
Embedded Systems, Jan. 2014, pp. 330–335.

[31] K. Maeng and B. Lucia, “Supporting Peripherals in Intermittent Systems
with Just-in-time Checkpoints,” in Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion, ser. PLDI 2019. Phoenix, AZ, USA: ACM, 2019, pp. 1101–1116.


