
The University of Manchester Research

Loopapalooza: Investigating Limits of Loop-Level
Parallelism with a Compiler-Driven Approach
DOI:
10.1109/ISPASS51385.2021.00030

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Zaidi, A., Iordanou, K., Luján, M., & Gabrielli, G. (2021). Loopapalooza: Investigating Limits of Loop-Level
Parallelism with a Compiler-Driven Approach. In Proceedings of the 2021 IEEE International Symposium on
Performance Analysis of Systems and Software https://doi.org/10.1109/ISPASS51385.2021.00030

Published in:
Proceedings of the 2021 IEEE International Symposium on Performance Analysis of Systems and Software

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1109/ISPASS51385.2021.00030
https://research.manchester.ac.uk/en/publications/12bca3fa-1605-48f9-b42d-19ac078ab570
https://doi.org/10.1109/ISPASS51385.2021.00030


Loopapalooza: Investigating Limits of Loop-Level
Parallelism with a Compiler-Driven Approach

Ali Mustafa Zaidi1, Konstantinos Iordanou2, Mikel Luján2, and Giacomo Gabrielli1

1Arm Research
{ali.zaidi, giacomo.gabrielli}@arm.com

2Department of Computer Science, University of Manchester, UK.
{firstname.surname}@manchester.ac.uk

Abstract—Improving sequential performance of out-of-order
processors is becoming harder. Further improvements may re-
quire exploitation of thread-level parallelism, on top of ILP, as
it can provide better design and performance scaling. Unfortu-
nately, previous “speculative multithreading” approaches have
shown small gains and/or incur a high cost, particularly for
general-purpose, non-numeric applications.

This paper investigates the fundamental limits to sequential
performance scaling through speculative multithreading — we
present an LLVM compiler-driven limit study framework that
investigates the limits of loop-level parallelism at run-time. This
new study of loop-level parallelism demonstrates the potential for
up to 4.6x and 7.2x geometric mean speedup on SpecINT2000
and SpecINT2006. Thanks to the additional consideration of
recent parallelization schemes, such as generalized DOACROSS
(HELIX), these potential speedups are higher than reported by
previous state-of-the-art limit studies.

Our analysis further categorizes the various inter-thread
dependencies and ordering constraints with respect to the specific
architectural choices and techniques each would require for
implementation. We then evaluate the relative importance of each
such constraint for different application (benchmark) types, and
provide insight into the cost/benefit trade-offs when designing
systems for efficiently implementing speculative multithreading.
Such insights should help the design of bespoke systems for spec-
ulative multithreading while achieving better speedups, efficiency,
and scaling, relative to typical approaches which, thus far, have
relied upon adapting conventional multi-core systems.

Index Terms—Speculative Multithreading, Thread Level Spec-
ulation, Loop level parallelism, Auto-parallelization, LLVM

I. INTRODUCTION

Out-of-order CPUs employ increasingly complex techniques
to extract instruction level parallelism (ILP) from a single
thread to continue scaling sequential performance. However,
with the end of Dennard scaling [1], and a slowing Moore’s
Law [2], it is not possible to offset the quadratically increasing
resource and energy requirements of evermore aggressive ILP
techniques by transitioning to smaller process nodes. There
are now two major constraints when attempting to improve
single-thread performance.

• Complexity Wall: Pollack’s Rule [3] observes that a
linear scaling of O(n) in sequential performance incurs
an O(n2) increase in CPU complexity, and thus energy
and resource requirements. Typically this increased com-
plexity was offset with the shift to a newer, cheaper-per-
transistor process node, but with Moore’s Law slowing

[2] architects must accept ever-diminishing performance
returns from quadratically more expensive designs.

• ILP Wall [4]: Even if unlimited microarchitecture scaling
were possible, there is a fundamental limit to how much
ILP is available to extract from a single thread (approx.
7 instructions per cycle (IPC) for non-numeric code).

Previous work has investigated Speculative Multithreading
(SpMT), or Thread Level Speculation (TLS), as a means
of overcoming both the ILP and complexity walls [23].
SpMT/TLS attempts to exploit an orthogonal, coarser-
granularity of parallelism beyond ILP by partitioning a single
thread into multiple threads of execution. As early as 1992,
Lam et al. [6] observed that such exploitation of thread-level
parallelism (TLP) across multiple-flows of control can expose
up to an order-of-magnitude greater parallelism.

Unfortunately, SpMT/TLS research has not been able to
practically materialize these hoped-for, order-of-magnitude
speedups. While some gains are observed for numeric applica-
tions, non-numeric applications either see very limited gains,
or otherwise incur substantial inefficiencies [7]–[14]. These
challenges stem from the fact that these studies attempt to
repurpose conventional coherent multi-core architectures for
finer-grained SpMT – something they were not designed for.

The best speedups for integer applications are demonstrated
by research projects that redesign a scalable architecture from
the ground-up specifically for SpMT/TLS [16], [17], or other-
wise enhance a conventional multicore with support for low-
latency inter-thread dependency propagation [15]. Yet despite
these advantages, and supported by specialized SpMT com-
pilers, these attempts too exhibit inadequate scaling efficiency,
e.g. with speedups of 19x on 64 cores (for the most amenable
benchmarks) [17], or 6.5x on 16 cores for SpecINT2006 [15].

The practical challenges of designing an efficient, scalable
SpMT/TLS architecture – one that achieves high speedups
without incurring 2-3x greater area/energy/complexity – re-
quires an in-depth understanding of the key limitations for
SpMT/TLS performance scaling. We consider such key limita-
tions to be rooted in the inter-thread dependencies and ordering
constraints that must be efficiently addressed.

This paper investigates the limits of TLP in the context
of loop-level parallelism. Each loop iteration is partitioned
into an individual thread of speculative execution. We then



categorize the variety of inter-thread dependencies that must
be preserved in order to maintain correct sequential execution
semantics. Each category of dependency type may need to be
handled differently, and the relative impact of each category
on achievable speedups in the limit can guide the amount
of architectural/system-level design/resource effort justifiable.
Based on this analysis, we are then able to order the relative
importance of various proposed architectural, compiler, soft-
ware, run-time, and system-level features. That order would
be required to maximize the TLP speedup potential when
designing a pragmatic SpMT/TLS system. This paper makes
the following contributions:

• We present a categorization of inter-thread dependencies
across speculatively generated threads (Section II). This
categorization highlights the distinct ways these depen-
dencies must be managed across the system, both in the
compiler, and in the execution architecture.

• We develop a loop-level parallelism analysis infrastruc-
ture that evaluates the potential limits of parallelism
achievable (Section III). This infrastructure, Loopa-
palooza, can be configured to evaluate the impact of
addressing each of the categories of dependencies through
potential architectural techniques or parallelization strate-
gies, and appropriately estimate speedups in the limit
accordingly.

• Based on our infrastructure, we present an analysis of
the impact of various parallelization schemes, and accel-
eration of various dependency types, on the achievable
speedup for a broad class of application types. We
indicate the relative importance of addressing each type
of dependency to achieving maximum parallelization for
each class of application (Section IV).

• Based on our analysis, we highlight from prior-art, var-
ious architectural and compiler proposals that might be
well suited to efficiently addressing the most important
of these speedup-limiting dependency types.

Although we focus our experimental study on TLS for
loop-level parallelism, the analysis of inter-thread dependen-
cies applies also to broader techniques such as function-
call/continuation level TLS, or more general TLS as applied
to ‘control quasi-independent regions’ [18], as all of the
dependency categories would still apply.

II. CATEGORIZATION OF ORDERING CONSTRAINTS

The goal of speculative multithreading is to allow for paral-
lel execution of ‘control quasi-independent regions’ (CQIRs).
CQIRs are code regions with control-flow that are highly likely
to execute in succession, such as iterations of a loop, or a
function call and its continuation [18]. Running CQIRs as
independent threads allows exploitation of TLP orthogonally
to any ILP that may be exploited within each thread.

However, while these regions may be quasi-independent in
terms of control-flow, there may be substantial data (RAW),
and false (WAR, WAW) dependencies between them, through
both registers and memory, that must be preserved for correct-
ness. Furthermore, speculative execution must also preserve

the sequential observable semantics of the program by en-
suring any other I/O or side-effects occur only in the strictly-
sequential program order intended by the programmer, as well
as respect any architectural constraints on execution order,
such as those imposed by the memory consistency model.

Table I summarizes the various ordering constraints and
Loop-Carried Dependencies (LCDs) that restrict parallel exe-
cution of loop iterations. This section discusses the limitations
on relaxing these constraints to expose parallelism. We split
dependencies not only by their nature (True, False, Structural),
but also whether they manifest through ‘registers’ or memory.
The primary distinction between the latter two is that the
occurrence of register dependencies is known at compile-time,
whereas memory dependencies are assumed to only manifest
at run-time. As the name suggests, register LCDs are typically
mapped to CPU registers, whereas memory LCDs manifest
through load/store instructions.

We further subdivide these LCDs into ‘frequent’ and ‘infre-
quent’ types, with the former indicating that the dependency
occurs each iteration, while the latter indicating that occur-
rence is rare, perhaps due to infrequent address aliasing, or a
rarely-taken control-flow path through the iteration.

A. True Static Loop-Carried Dependencies (LCDs)

We classify True Static (Register) LCDs for loops broadly
into ‘computable’ and ‘non-computable’. Computable register
LCDs are those for which a compiler analysis can deter-
mine a static, compile-time known scalar evolution expression
(SCEV). Examples include induction variables (IV), and mu-
tual induction variables (MIV), but also, broadly any register
LCD for which we can express its per-iteration value solely as
a function of the iteration count. Thus, although, these are true
LCDs, they are not considered a constraint on parallelization,
as their value within each iteration of a loop can be generated
thread-locally based on an iteration index. As described later
in Section III, we rely on Scalar Evolution analysis [19] of
LLVM to identify computable register LCDs.

All remaining register LCDs, for which we cannot find a
SCEV expression, are then classified as non-computable regis-
ter LCDs. However, as most register LCDs (for all non-trivial
loops) are expected to fall in this category, it is necessary
to attempt further classification of these, depending on what
options may be available to accelerate them. These are further
subdivided into the following categories:

• Reduction Accumulators: these have a recognizable, ex-
clusively reduction/accumulation pattern across the loop
iterations. While the updated values in each iteration
may not be fully determined at compile-time, the update
pattern itself is bounded and well understood.

• Predictable Register LCDs: although not compile-time
computable, these LCDs are predictable at run-time
through simple and known value prediction schemes.

• Unpredictable Register LCDs: All remaining register
LCDs fall into this category.

Reduction LCDs manifest as read-modify-write operations
in each iteration, but unlike a general non-computable LCD,



TABLE I: Various ordering constraints and dependencies restricting execution of loop iterations in parallel.

Dependencies
Type Category Frequency of Occurrence Classification

TRUE
Register RAW Frequent

(Mutual) Induction variables (IVs & MIVs)
Reduction accumulators

Non-computable and unpredictable register LCDs
Infrequent Non-computable but predictable register LCDs

Memory RAW
Frequent Compile-time known memory LCDs

Frequent dynamically aliasing memory LCDs

Infrequent Compile-time known LCDs under infrequent control-flow paths
infrequent dynamically aliasing memory LCDs

FALSE Register WAW & WAR Execution model and architecture dependentMemory WAW & WAR

STRUCTURAL Register (SP) Frequent for loops containing function callsMemory (Stack)

they follow a very specific accumulator-like pattern, and thus
may be ‘decoupled’ from the remainder of the execution of
the loop – removing the reduction as serializing dependency
between iterations, but implementing it instead as an acceler-
ated operation off the critical path of the loop. Tree or linear-
chain based reduction functionality (for associative and non-
associative reductions, respectively) can be added to SpMT
architectures. Such techniques would gather the intermediate
values from parallel iterations and reduce them independently.
Examples of such hardware functinality can already be found
in advanced SIMD/Vector architectures, e.g. Arm SVE [20].

Our second category of non-computable register LCDs
relies on the fact that though a register LCD may not have
a compile-time knowable SCEV, it may still evolve highly
predictably at run-time. Thus, in cases where we can assume
the presence of a run-time data value predictor targeting
such LCDs [18], for every instance of these that is correctly
predicted, the dependency need not be considered a sequential-
izing dependency between iterations. If such a dependency is
found to be highly predictable, we can classify it as an ‘infre-
quent’ register LCD, given that its manifestation as a value-
misprediction is rare, and depends on its run-time behavior.
Several previous works have investigated the application of
value predictors to SpMT (see [23] for a survey).

All remaining Register LCDs are then finally classified
under the true, frequent, unpredictable, non-computable LCD
category. Unlike the other classes of register LCDs, this one
cannot be assumed removed from the parallel loop execution
critical path by the compiler or clever architecture. Thus it
can only be handled in parallelization schemes that support
per-iteration inter-thread data-flow synchronization such as
DOACROSS, or HELIX (a generalized DOACROSS) [14],
[22]. Hopefully, as we see improvements in compiler analyses
(for SCEVs, and capture broader classes of reduction patterns),
as well as more sophisticated value-prediction schemes, more
such dependencies could be moved into one of the earlier
categories, further improving opportunities for parallelism.

B. True Dynamic Loop-Carried Dependencies (LCDs)

Unlike Register LCDs, Memory LCDs cannot always be
identified at compile-time. While pointer analysis may be
applied to refine the confidence on when a memory RAW

hazard may exist between any two iterations, typically such
analysis either provides poor confidence, leading to requiring
conservative synchronization to ensure correct ordering, or
impractical levels of compiler effort [14]. Instead of points-to
analysis, our limit study framework relies on dynamic conflict-
tracking during execution in order to classify true dependen-
cies through memory as either ‘frequent’ or ‘infrequent’.

C. Frequency of LCDs and Parallel Execution Models

This classification of LCDs into ‘frequent’ and ‘infrequent’
matches with the available options for parallel execution
typically considered for SpMT systems [23]. The execution
models for SpMT studied hereafter are: DOALL, Partial-
DOALL, and DOACROSS/HELIX.

(1) DOALL: All loop iterations may be started specula-
tively, and execute assuming no conflicts. If a conflict occurs,
abandon parallel execution, and mark the loop as suitable for
serial execution only (Figure 1a). This model does not support
any memory LCDs or non-computable register LCDs.

(2) Partial-DOALL (PDOALL): Similar to DOALL, all
loop iterations may be started speculatively. But upon conflict,
the conflicting iteration thread and all younger iterations must
abort and discard their speculative state. Parallel execution
of this and all future iterations can however restart after the
conflict is resolved (Figure 1b). This model only supports
infrequent memory and register LCDs.

(3) DOACROSS/HELIX: All loop iterations may be started
speculatively, but iteration execution also includes synchro-
nization points where younger, consumer iterations must wait
for older, producer iterations to signal that it is safe to proceed
(Figure 1c). This allows all iterations to continue execution
non-speculatively with all RAW dependencies, including fre-
quent ones, correctly satisfied through synchronization.

HELIX is a generalization of the traditional DOACROSS
approach, which only supports a single point of synchro-
nization between iterations. Thus if multiple memory LCDs
existed, DOACROSS synchronization would occur only after
the last write in the previous iteration and immediately before
the first read in the next iteration. HELIX instead allows
support for multiple synchronization points, one for each
distinct memory LCD that a compiler can isolate, thereby
potentially exposing more parallelism [14], [15], [22].



iter 0 iter 1 iter 2 iter 3

T0 T1 T2 T3Time

(a) DOALL execution

T0 T1 T2 T3Time

iter 0 iter 1

iter 2 iter 3

LCD detected

(b) partial-DOALL execution

T0 T1 T2 T3Time

iter 0
iter 1

iter 2
iter 3

(c) DOACROSS / HELIX execution

Fig. 1: Parallel execution models.

Infrequent memory LCDs may be handled through specu-
lative techniques that treat each thread as an ‘ordered trans-
action’ - much like transactional memory systems, each it-
eration/thread is treated like an executing transaction, and
if a memory LCD violation occurs, the ‘younger’ thread(s)
must restart to fix their misspeculated execution [5], [23]. The
PDOALL model simulates such an execution environment.

Note that if the frequency of conflicts for an LCD is
sufficiently high, the PDOALL approach would be unsuitable
as it would provide little gain over serial execution, even if
one ignores the overheads of thread spawning, commit, and
conflict checking. Worse still, it would incur substantial energy
overheads from the unnecessary speculative execution of all
the threads that repeatedly get restarted.

Frequent LCDs are instead, better handled through non-
speculative approaches, such as those proposed for the
DOACROSS/HELIX [14], [15], [22], that rely on explicit
synchronization between iterations to correctly order producer
and consumer operations. This approach can also be used to
support frequent non-computable register LCDs, for instance,
by either lowering these to memory [14], or providing other
architectural mechanisms to pass values between iterations at
synchronization points [15]. Note that although such manda-
tory synchronization between iterations may reduce paral-
lelism compared to the earlier parallel SpMT approaches, it
allows us to support all frequent LCDs through both registers
and memory, thus potentially enabling much broader coverage
of loops that can now be parallelized.

D. False Loop-Carried Dependencies (LCDs) through Regis-
ters and Memory

While the RAW, or true memory dependencies are critical
for program correctness, the WAW, WAR, and RAR ordering
anti-dependencies must also be preserved in a real system
to maintain correct observable semantics (WAW, WAR), as
well as architectural memory consistency behaviors (WAR,
RAR). However, these anti-dependencies need not manifest as
sequentializing dependencies, particularly if we can separate
the speculative execution of loop iterations from their commit.

As highlighted in [23], there are two main strategies for
implementing data version management in an SpMT sys-
tem: lazy and eager. Lazy versioning stores speculative state
separately from the main program state, and the speculative
state is committed to this main memory only upon successful
commit of the speculative thread in the correct order of threads.

And if the speculative thread is aborted, the speculative state
is directly discarded without ever becoming observable by
the rest of the system. Eager versioning on the other hand
performs all speculative updates in place in the main program
state, so all speculative updates are immediately visible to
the whole system. A separate undo log of updates is also
maintained by each thread to be used in case a roll-back of
changes must be performed if a thread is aborted.

The advantage of eager versioning is that the process of
committing a speculative thread has zero cost, where lazy
versioning may incur a commit cost for marking state as
no-longer speculative, or copying to main state. This may
be beneficial when thread aborts are expected to be rare.
Unfortunately, eager versioning makes all speculative changes
observable out of order. Thus, if we wish to avoid any
violations of a program’s sequential observable semantics,
while still utilizing eager versioning, we must categorize and
treat all false dependencies as carefully as we would the
true dependencies. Note that if an SpMT execution model is
designed without the assumption of having implicit sequential
execution ordering, or sequential observable semantics, as is
the case with the explicitly ordered tasks model used by
SWARM [16], [17], eager versioning remains a viable option.

For systems based on more conventional architectures, a
simpler alternative may be to rely on lazy versioning instead,
wherein the system effectively decouples execution of a thread
from its commit (i.e. when its effects become observable).
In-order commit ensures that all writes appear to occur in
the correct program order, thus resolving WAW and WAR
dependencies. This is analogous to how a typical out-of-order
processor decouples execution of instructions from commit –
the former is only restricted by the true dataflow dependencies,
while the latter must occur in correct program order.

For simplicity, we assume in the remainder of the paper that
all false dependencies are handled appropriately through lazy
versioning, coupled with in-order commit of thread state.

E. Structural Loop-Carried Dependencies (LCDs)

Another machine model artifact that can restrict concurrency
is the call stack, for cases where a loop iteration being
parallelized may call a function. Assuming the function being
called is itself parallelizable (e.g. read-only or pure, thread-
safe, or infrequently conflicting with subsequent calls in
future iterations), it may be beneficial to instantiate multiple
copies of a function as its invoking loop iterations execute



concurrently. Unfortunately, due to the sequential, LIFO nature
of conventional call stacks, updates to the stack pointer are
required to occur in sequential program order, and the same
set of call stack locations are expected to be used by each of
these function calls, even though across distinct calls these are
neither true nor false dependencies as classified above.

Explicitly parallel, work-stealing run-times typically employ
‘cactus-stacks’ [24] in order to overcome this problem, as
these allow for disjoint stack space allocations for concurrent
instances of function calls. While, the implementation of such
cactus-stacks is an part of the parallel user-space work-stealing
run-time that manages explicit parallel execution, it is possible
to presume that similar principles may be adapted for an
implicitly parallel SpMT system without requiring such a run-
time - by treating both the stack pointer and allocations to the
stack frame as part of the speculative, transactional state of an
uncommitted iteration, it would be possible to disambiguate
between concurrent instances of the stack frame created by
parallel iteration-threads, while preserving sequential observ-
able semantics through in-order commit, and without causing
conflicts due to this particular structural hazard.

Thus again, we assume reliance on lazy versioning for
speculative state and in-order commit, together with special
consideration for stack frames, in order to enable paralleliza-
tion across function-calls in our study. An alternative approach
is to use compiler-directed heap-based allocation of function-
local data, as used by MIT SWARM [16], [17], which again is
permissible due to their explicitly parallel task ordering model
and relaxed expectations about sequential semantics.

III. LOOPAPALOOZA – THE LIMITS STUDY FRAMEWORK

Loopapalooza (LP) is not an auto-parallellization tool, but
rather an analysis framework that estimates parallel speedups
achievable over sequential code from combinations of the
different parallel execution models and dependency constraint
relaxations described in Section II. It achieves this by adding
instrumentation to a sequential program at compile-time, to
track loop entry, iterations, exits, as well as potential de-
pendencies such as memory accesses, function calls, and
register LCD values. To produce an estimate of the loop-level
parallelism available for a given program, LP has a compile-
time and a run-time component, described below.

A. Loopapalooza Compile-time Component

Unlike previous limit studies on parallelism, LP takes a
compiler-driven approach by leveraging static analysis as
much as possible, in this case from the LLVM framework,
in order to help categorize dependencies across loop itera-
tions. The compile-time component takes as input the LLVM
intermediate representation (IR) of the compilation units after
they have been optimized (using -Ofast). It then applies
various transform passes to help simplify loop analysis. In
particular, loops and induction variables are canonicalized
using the loopsimplify and indvars passes; the canonicaliza-
tion of loops is important to be able to uniquely identify
loops within arbitrarily complex loop nests. LP then uses the

scalar evolution (SCEV) pass to assist the categorization of
static dependencies as computable (IVs and MIVs) or non-
computable, and the recurrence descriptor from the induction
variable users pass to detect reduction patterns.

These are then followed by custom instrumentation passes,
developed specifically for LP to insert call-backs to the run-
time component. These call-backs are used at run-time to keep
track of the dynamic IR instruction count, to signal entry/exit
to/from functions, to record loop entry, iteration, and exit
boundaries, and to track addresses of memory accesses that
can be involved in run-time dependencies. Based on the afore-
mentioned SCEV and recurrence analyses, we separate the
computable and reduction register LCDs, from the remaining
non-computable LCDs. For configurations that evaluate the
efficacy of value prediction for the latter, LP can then insert
call-backs to track the per-iteration values they produce.

LLVM IR instruction counts per basic block are hard-coded
at compile time into a call-back for each basic block. At run-
time these call-backs allow us to track a total IR instruction
count to represent a sequential run-time metric. The loop
header, loop latch and loop exit call-backs can sample this
running sequential IR cost counter to establish loop start,
iteration start and iteration length time-stamps per iteration
for each loop being tracked. The run-time can then use
these time-stamps to derive additional counters ‘simulating’
a parallel execution cost for the DOALL scheme for each
suitable instrumented loop. The call-backs tracking memory
addresses are additionally used to simulate parallel costs for
the PDOALL and HELIX-style approaches, by tracking and
comparing time-stamps for conflicting accesses.

We use this combination of compile-time analysis and run-
time instrumentation to ensure that all loop-carried depen-
dency types described in Section II can be properly accounted
for. The advantages of this compiler-directed approach are
threefold. First, unlike more idealistic trace-based limit studies,
using existing compiler analyses directly relates our results to
what may be practically achievable by code generation when
targeting prospective future SpMT architectures. Second, as
the quality of such analyses continues to improve, and those
improvements should be reflected in the overall achievable
speedups. Third, by using compile-time analysis to filter out
accelerated dependencies, dependencies statically proven not
to occur, as well as non-parallelizable loops (for a particular
configuration), the overheads of run-time dependency tracking,
both in terms of execution time and memory footprint, can be
minimized. This allows LP to scale to large applications.

B. Loopapalooza Run-time Component

The run-time component is a C++ library that is linked with
the instrumented program, and implements the instrumentation
call-backs inserted in the code by the compile-time component.
It is primarily responsible for monitoring the occurrence of
dependencies and for determining the overall speedup over
sequential execution. The final cost, in terms of execution



time1, of a loop is determined by the specific parallel execution
model, selected among the models described in Section II,
handles the conflicting iterations.

Under DOALL, when a conflict is detected across loop
iterations, the loop is marked as sequential and the final loop
cost is calculated as the sum of the costs of the individual
loop iterations. If there are no conflicts across iterations, the
loop is considered parallel and the final loop cost is the cost
of the slowest iteration (see Figure 1(a)), as determined using
the loop start, and the largest loop iteration time-stamp.

Under Partial-DOALL, when a conflict is detected, the loop
is still considered a candidate for parallelization. However,
when the number of conflicting iterations exceeds 80% of the
total number of iterations, the loop is marked as sequential.
Until a conflict is detected, the cost of the loop matches
the cost of the slowest iteration as above for DOALL. Upon
conflict detection, the cost of the slowest iteration encountered
up to that point is added to the loop start (or completion of
the previous parallel region) time-stamp. This becomes the
new starting time-stamp for a new Partial-DOALL phase. The
internal counters tracking the longest iteration are reset to
again start tracking the slowest iteration in this new parallel
phase. The tracking continues until a new conflict is detected
again, or until the loop exits. In other words, as Figure
1(b) illustrates, when a conflict is detected under the partial-
DOALL execution model, we resolve the dependency by
delaying the start of the conflicting iteration to match the end
of the slowest iteration from the previous conflict-free phase
of execution.

The HELIX-style model can tolerate frequent LCDs be-
tween iterations by assuming the presence of synchronization
among iterations. This synchronization is modeled by tracking
two separate values. We record the cost of the slowest iteration
to execute in the entire loop (iterslowest). Then, assuming all
iterations start in parallel at the same time-stamp, we also
record the largest time-stamp delta between each producer
and consumer for any manifesting LCD between iterations
(deltalargest). Then, for a loop with numiter iterations, the
parallel loop execution cost is then calculated as:

HELIXtime = iterslowest + deltalargest ∗ numiter.

Finally, loops for which HELIXtime is greater than the serial
execution time, we mark these as serial, and only record their
serial execution time. Once the loop execution cost for the
innermost loops is generated based on the execution model, it
is then propagated up to the nest of parent loops and functions.
Thus, these outer loops may also compute their parallel and
non-parallel execution costs.

C. Loopapalooza – Value Prediction

LP supports emulation of value prediction for non-
computable register LCDs. Currently four types of value

1Note that LP always takes the dynamic LLVM IR instruction count as the
approximation of execution time for regions of code. Furthermore, as this is a
limit study, we assume infinite resources are available, allowing for arbitrary
degrees of parallelism, only limited by the defined LCDs.

TABLE II: Configuration flags and their definitions.

Flag Definition
-reduc0 Reductions are treated as non-computable LCDs.
-reduc1 Reductions are considered parallel with no overheads
-dep0 Non-computable LCDs are not considered parallelizable.
-dep1 Non-Computable LCDs are lowered to memory (and treated

as frequent memory LCDs).
-dep2 Non-computable LCDs are accelerated using ‘realistic’ value

prediction.
-dep3 Non computable register LCDs are accelerated using perfect

value prediction.
-fn0 Loops with any function calls are marked as sequential.
-fn1 Only user and library function calls identified by the com-

piler as pure (read-only with no side effects) are considered
parallel.

-fn2 Function calls solely to -fn1 functions, thread-safe (re-entrant)
library functions, and user functions that have been appropri-
ately instrumented by LP to capture memory read- and write-
sets can be marked as parallel.

-fn3 All function calls can be parallelized.

predictors are supported: (a) last-value, (b) stride, (c) 2-delta
stride, and (d) Finite Context Method [40]. These are inte-
grated into the run-time component of LP and they can be used
individually or combined together as a hybrid predictor that
selects between the individual predictors based on confidence
counters. For this study, we assume perfect hybridization,
in that if any of our predictors correctly predicts an LCD
value, we assume we have a correct prediction. The set of
predictors may be expanded, and more realistic hybridization
schemes can also be implemented to test their effects. But
for this limit study, assuming perfect hybridization suffices to
illustrate the sensitivity of SpMT to predictable register LCDs,
while avoiding inaccuracy introduced due to a rudimentary or
unoptimized hybridization scheme.

D. Loopapalooza – Limitations

The LP framework has some limitations in the estimation of
the available loop-level parallelism. However, given the nature
of the limit studies herein described, we believe that such
limitations are reasonable and their impact on the observed
trends is minimal. Firstly, the estimation of potential speedups
from parallelization is based on dynamic LLVM IR instruction
counts. That means no microarchitectural aspects are taken
into account in the speedup calculation - this is appropriate
for limit-study style first-order analyses. Secondly, there is no
accounting for execution time spent in system calls and/or pre-
compiled library calls which we are unable to instrument with
our call-backs. However, for the considered benchmarks, the
only pre-compiled libraries are the C/C++ standard libraries.
Finally, parallelization overheads (spawn, schedule, sync, com-
mit, etc.) are not taken into account, though this is in line
with our goal to determine an upper bound for the amount of
exploitable parallelism within loops.

IV. EXPERIMENTAL RESULTS – LIMIT STUDY

We investigate the limits to loop-level parallelism under
DOALL, Partial-DOALL and HELIX-style execution models
for a variety of configurations and analyze the progressive



reduc0-dep0-fn0

reduc1-dep0-fn0

reduc0-dep0-fn0

reduc0-dep2-fn0

reduc1-dep2-fn0

reduc0-dep0-fn2

reduc0-dep2-fn2

reduc1-dep2-fn2

reduc0-dep3-fn2

reduc0-dep3-fn3

reduc0-dep0-fn2

reduc1-dep0-fn2

reduc0-dep1-fn2

reduc1-dep1-fn2
D

O
A

LL
Pa

rti
al

-D
O

A
LL

H
EL

IX
-s

ty
le

1 2 4 9
1.1
1.1
1.1
1.2
1.2

1.1
1.2
1.2

2.0
2.0

1.7
2.2

4.5
4.6

1.3
1.3
1.3

1.6
1.6

1.4
2.0
2.0

2.4
2.6

2.1
2.2

7.1
7.2

Achieved speedup in logarithmic scale

cint2006 cint2000

Fig. 2: GEOMEAN Speedups for non-numeric benchmarks
(SpecINT 2000 & 2006) under various configurations.

reduc0-dep0-fn0

reduc1-dep0-fn0

reduc0-dep0-fn0

reduc0-dep2-fn0

reduc1-dep2-fn0

reduc0-dep0-fn2

reduc0-dep2-fn2

reduc1-dep2-fn2

reduc0-dep3-fn2

reduc0-dep3-fn3

reduc0-dep0-fn2

reduc1-dep0-fn2

reduc0-dep1-fn2

reduc1-dep1-fn2

D
O

A
LL

Pa
rti

al
-D

O
A

LL
H

EL
IX

-s
ty

le

1 2 4 9 18 36 73 150
1.6

2.2

1.6

2.9

4.6

1.7

3.2

6.0

20.2

91.9

4.1

6.4

14.2

21.6

3.1
3.6

3.1
3.7
4.0
4.3

5.5
6.6

8.5
10.1
9.5

13.7
36.1
37.9

2.1
2.7

2.1
3.3

4.1
6.4

9.8
10.7

44.3
47.1

36.1
42.8
50.6
50.6

Achieved speedup in logarithmic scale

eembc cfp2006 cfp2000

Fig. 3: GEOMEAN Speedups for numeric benchmarks
(EEMBC, SpecFP 2000 & 2006) under various configurations.

gain in limit speedup as various parallelization constraints are
gradually relaxed. We discuss the implications for potential
implementations at each step. We group our benchmarks into
numeric (EEMBC, SpecFP 2000 & 2006) and non-numeric
(SpecINT 2000 & 2006), and Figures 3 & 2 present the results
for these groups, respectively.

Table II summarizes the configuration flags used, with
a brief definition for each. The minimum SpMT con-
figurations attempted are the reduc0-dep0-fn0 and
reduc1-dep0-fn0 for the DOALL execution model. For
the former, reductions prevent loops from being considered
parallel (reduc0), while loops with reductions are paral-

lelizable in the latter (reduc1). Besides, reductions, non-
computable register LCDs prevent parallelization (dep0), and
so does the presence of any function calls (fn0).

Even with such highly restrictive configurations, we observe
that numerical benchmarks (Figure 3) exhibit gains ranging
from 1.6x–3.1x with reduc0, and rising to between 2.2x–
3.6x with reduc1. In contrast, the non-numeric suites achieve
much poorer gains, ranging from 1.1x–1.3x in the limit,
even with infinite resources. Further relaxations of register
LCDs (dep1-dep3) are incompatible with DOALL, as it
does not support non-computable register LCDs, while further
relaxations of function parallelization (fn1-fn3) provided no
gains for both classes of benchmarks under DOALL.

To explore the criticality of infrequent register and mem-
ory LCDs to loop-level parallelism, we investigate various
configurations for the Partial-DOALL (PDOALL) model. The
minimum reduc0-dep0-fn0 PDOALL achieves identical
results to its DOALL counterpart for both benchmark classes,
indicating that infrequent memory LCDs, which PDOALL
supports, are not the bottleneck at this configuration, but rather
non-computable register LCDs are. As we permit predictable,
non-computable register LCDs to be parallelized with the
reduc0-dep2-fn0 PDOALL configuration, we observe a
substantial increase to 2.9x–3.7x for non-numeric benchmarks,
followed by another further increase to 4.0x–4.6x as reductions
are also parallelized with reduc1-dep2-fn0 PDOALL.
Note that SpecFP2000 benefits greatly from both reduc1 and
dep2, while SpecFP2006 and EEMBC benefit more from the
latter and some from the former. The reduc0-dep2-fn0
and reduc1-dep2-fn0 PDOALL configurations provide
a more modest rise from 1.1x–1.3x to 1.2x–1.6x for non-
numerical benchmarks, with reduc1 having no effect.

Next, permitting parallelization across function calls (fn2)
exhibits further substantial gains for the numerical bench-
marks2. EEMBC benefits more from this as it per-
forms even better with reduc0-dep0-fn2 PDOALL than
reduc1-dep2-fn0 PDOALL, while the SpecFP suites
show cumulative benefits of relaxing all three types of de-
pendencies, with reduc1-dep2-fn2 PDOALL. Of the
non-numeric benchmarks, SpecInt2006 benefits from the
dep2-fn2 combination, rising from 1.6x to 2.0x, while
SpecInt2000 sees only a marginal increase to 1.2x.

At this point, it is unclear whether parallelism in non-
numeric applications is being restricted by the limitations of
our value predictors (for dep2), the presence of non thread-
safe function calls (fn2), or the presence of frequent LCDs
(recall that PDOALL performs poorly in the presence of the
latter). To investigate this, we attempt a set of unrealistic
configuration options: dep3 assumes we have a perfect value
predictor, in essence, removing all non-computable register
LCDs (including reductions) from limiting PDOALL paral-
lelization, while fn3 assumes all function calls are thread-
safe. With these, we find that SpecInt2000 finally increase

2Results with fn1 are ommitted, as this configuration is not unique; after
parallelizing the call stack, we could parallelize all instrumented and thread-
safe function calls. Table II includes -fn1 to help define -fn2.



cfp2
000

_ref
_17
7_m

esa

cfp2
000

_re
f_17

9_a
rt_1

cfp2
000

_ref
_17
9_a
rt_2

cfp2
000

_re
f_18

3_e
qua

ke

cfp2
000

_ref
_18
9_lu

cas
_for

tran

cfp2
000

_re
f_19

1_fm
a3d

_for
tra
n

cfp2
006

_te
st_4

16_
gam

ess
_for

tra
n

cfp2
006

_te
st_4

33_
mil
c

cfp2
006

_te
st_4

34_
zeu
smp

_for
tra
n

cfp2
006

_te
st_4

35_
gro
ma
cs_
fort
ran

cfp2
006

_tes
t_4
36_
cact

usA
DM

_for
tran

cfp2
006

_te
st_4

37_
lesl
ie3
d_fo

rtra
n

cfp2
006

_tes
t_4
44_
nam

d

cfp2
006

_tes
t_4
50_
sop
lex
_tes

t

cfp2
006

_tes
t_4
53_
pov
ray

cfp2
006

_tes
t_4
54_
calc

ulix
_for

tra
n

cfp2
006

_tes
t_4
59_
Gem

sFD
TD
_for

tran

cfp2
006

_tes
t_4
81_
wrf
_for

tran

cfp2
006

_te
st_4

82_
sph
inx
3

cint
200

0_r
ef_1

64_
gzi
p_g
rap
hic

cint
200

0_r
ef_1

64_
gzi
p_lo

g

cint
200

0_r
ef_1

64_
gzi
p_p
rog
ram

cint
200

0_r
ef_1

64_
gzi
p_r
and

om

cint
200

0_r
ef_1

64_
gzi
p_s
our
ce

cint
200

0_r
ef_1

75_
vpr
_pla

ce

cint
200

0_r
ef_1

75_
vpr
_rou

te

cint
200

0_r
ef_1

76_
gcc
_16
6

cint
200

0_r
ef_1

76_
gcc
_20
0

cint
200

0_r
ef_1

76_
gcc
_ex
pr

cint
200

0_r
ef_1

76_
gcc
_int

egr
ate

cint
200

0_r
ef_1

76_
gcc
_sci

lab

cint
200

0_r
ef_1

86_
cra
fty

cint
200

0_r
ef_2

52_
eon
_coo

k

cint
200

0_r
ef_2

52_
eon
_ka
jiya

cint
200

0_r
ef_2

52_
eon
_ru
shm

eier

cint
200

0_r
ef_2

55_
vor
tex
_len

dia
n1

cint
200

0_r
ef_2

55_
vor
tex
_len

dia
n2

cint
200

0_r
ef_2

55_
vor
tex
_len

dia
n3

cint
200

0_r
ef_2

56_
bzi
p2_
gra
phi
c

cint
200

0_r
ef_2

56_
bzi
p2_
sou
rce

cint
200

6_t
est
_40
1_b
zip
2_d
rye
r

cint
200

6_t
est
_40
1_b
zip
2_p
rog
ram

cint
200

6_t
est
_40
3_g
cc

cint
200

6_t
est
_42
9_m

cf

cint
200

6_t
est
_44
5_g
obm

k_c
apt
ure

cint
200

6_t
est
_44
5_g
obm

k_c
onn
ect

cint
200

6_t
est_

445
_go
bm
k_c
onn
ect_

rot

cint
200

6_t
est
_44
5_g
obm

k_c
onn
ecti
on

cint
200

6_t
est
_44
5_g
obm

k_c
onn
ecti
on_
rot

cint
200

6_t
est
_44
5_g
obm

k_c
uts
ton
e

cint
200

6_t
est_

445
_go
bm
k_d
niw

og

cint
200

6_t
est
_45
6_h
mm

er

cint
200

6_t
est_

458
_sje

ng

cint
200

6_t
est
_46
2_li

bqu
ant
um

cint
200

6_t
est
_46
4_h
264

ref

cint
200

6_t
est
_47
3_a
sta
r

1

2

4

8

16

32

64

1.3

78
.7

77
.8

5.4

3.9

1.4

2.8 2.5

12
.5

4.3

19
3.1

97
.3

1.1

2.2

1.0 1.0

9.9

39
.7

7.0

1.1

1.3

1.0 1.1 1.1 1.0 1.0

1.5 1.4 1.3 1.5 1.3

1.0 1.0 1.0 1.0

1.3 1.1 1.3 1.5 1.5

1.2 1.2 1.2

3.3

2.6

1.5

1.8

1.3

1.5 1.3 1.4

1.1 1.0

18
8.4

1.2

1.7

13
.9

19
.7

14
.4

32
.9

3.9

20
0.9

21
.1

26
5.2

38
68
1.3

8.4

21
1.0

60
96
.2

4.3

1.8

1.0 1.0

41
.9

95
.8

4.6

1.3

2.3

1.2 1.4 1.4

59
04
.8

30
98
.8

5.4

2.2 2.4

3.8

2.1

11
.1

1.0 1.0 1.0

2.0

1.7

2.1

2.7 2.4

4.1

5.3

2.4

1.7

7.5

10
.8

6.3

13
.7

8.4

27
.4

3.2 3.6

39
5.6

59
.2

1.1 1.2

Partial DO-ALL best

HELIX-style best

Ac
hi
ev
ed
 S

pe
ed
up

 in
 L

og
ar
ith

mi
c 
Sc
ale

Fig. 4: All SPEC speedups for the best PDOALL (reduc1-dep2-fn2) and HELIX (reduc1-dep1-fn2) configurations.

PDOALL
reduc0-dep0-fn2

HELIX-style
reduc0-dep0-fn2

HELIX-style
reduc0-dep1-fn2

0 20 40 60 80 100 120
Dynamic Coverage (GEOMEAN)

eembc cint2006 cint2000 cfp2006 cfp2000

Fig. 5: Coverage for selected configurations.

from 1.2x to 2.0x, while SpecInt2006 increases from 2.0x
to 2.6x for reduc0-dep3-fn3 PDOALL. These are re-
spectable gains, but the impracticality of implementing per-
fect value-prediction or perfect function call parallelization
indicates that this may not be the best avenue to explore to
accelerate such applications. The numeric benchmarks benefit
even more from these relaxations, exhibiting 10x–92x gains
for reduc0-dep3-fn3 PDOALL.

To further extract parallelism from non-numeric applica-
tions, we must consider parallelism in the presence of frequent
register and memory LCDs. The HELIX-style configuration
natively simulates synchronization to handle frequent memory
LCDs, while we combine HELIX with dep1, to support
frequent register LCDs, by simply lowering these to memory.
With frequent memory dependencies and function paralleliza-
tion both supported under dep0-fn2 HELIX, both non-
numeric suites are able to achieve approx. 2.2x speedup,
and with the addition of frequent register LCDs through
dep1-fn2 HELIX, we finally find respectable speedups for
the non-numeric suites, with speedups of 4.6x & 7.2x for
SpecINT2000 and SpecINT2006 respectively. The HELIX

configurations also benefit the numeric suites, as they increase
from 6.0x–10.7x for the best realistic PDOALL configuration
(reduc1-dep2-fn2 PDOALL) to 21.6x–50.6x for the bext
HELIX-like configuration (reduc1-dep1-fn2 HELIX).

Lessons Learnt — We observe that non-numeric bench-
marks are sufficiently complex that their loops are serialized
due to frequent true LCDs, both through memory and registers,
as well as frequent structural (call-stack) hazards, due to
the commonality of function-calls within loops. All of these
dependencies are relaxed through dep1-fn2 HELIX-style
configurations, to unleash substantial parallelization potential.
Note that the key factor in this gain is not strictly per-loop
parallelism, but rather coverage in terms of of the amount
of dynamic instructions that execute within parallel loops.
Figure 5 illustrates the dramatic increase of this coverage as we
transition from dep0-fn2 PDOALL to dep0-fn2 HELIX,
and then to dep1-fn2 HELIX. Recall from Amdahl’s Law,
that parallel speedup is a function of both degree of parallelism
and fraction of code parallelized (i.e. coverage).

In contrast, numeric benchmarks are more balanced in their
sensitivity to each class of ordering constraint highlighted by
Table I. While they are more sensitive to infrequent register
and memory dependencies, they still benefit from the increased
coverage afforded by the HELIX style (Figure 5). Loop
structure, control-flow and memory access patterns are mostly
regular, and often compile-time predictable for this class.

Figure 4 shows individual benchmark performance across
all of the SPEC benchmark suites for the best HELIX and
PDOALL configurations. While the HELIX style approach
provides a more consistent gain across the non-numeric bench-
marks, there are a few cases where the PDOALL results
are better, for instance, 179 art, 450 soplex, 482 sphinx, and
429 mcf. PDOALL is a speculative technique that only incurs
a restart cost upon conflict, while HELIX is a non-speculative
technique that imposes synchronization between all neighbor-
ing iterations irrespective of whether it is needed dynamically.
Thus for loops parallelizable using either technique, it is quite
likely that PDOALL would provide better per-loop speedups
than HELIX, particularly if the inter-iteration conflict-rate is
low. The consistently higher overall speedups achieved by



HELIX are more due to the much higher coverage enabled
by this technique, and the fact that loops with high conflict
rates incur higher restart costs with Partial DOALL than
synchronization costs with HELIX.

V. RELATED WORK

A review of auto-parallelization or TLS is beyond this paper
and can be found in [23] [5] [55]. The most recent and
comprehensive study of TLS performance potential appeared
in 2010 by Ioannou et al. [47]. That study was able to simulate
various TLS techniques, such as multiversioned caches, out-of-
order thread spawning, dynamic dependency synchronization,
checkpointing, and data and return value prediction. A trace-
driven approach was used, and simulated an idealized 16-core
system, considering options such as perfect value prediction,
perfect dependency synchronization. A key observation was
that significant potential for performance improvement exists
mostly because of high coverage parallel inner loops (99%,
94% and 95% parallel inner loops coverage reported for SPEC
CPU2000, CPU2006 and SPECJVM, respectively).

Furthermore, load imbalance and poor coverage were major
factors limiting speedup, and thus effective task selection
was significant for exploiting parallelism. In contrast, LP is
compiler-driven instead of trace-driven, thus it can provide
insights on the relationships between speedup, dependency
categories, and coverage. Ioannou et al. [47] used ‘perfect’
value prediction, whereas we use specific predictors. LP
also supports detailed parallel execution models for DOALL,
PDOALL and HELIX. LP, however, distinguishes between
limitations to parallelism and the challenges of effective run-
time scheduling, focuses on the former, and does not consider
aspects of the latter such as task selection and scheduling for
bounded resources.

Kejariwal et al. [51] and [52] also explored the limits of
TLP. They also considered overheads of threading, as well
as the mispeculation penalties that occur from TLS. Their
analysis claims that on SPEC CPU2000, TLS has a limited
arithmetic mean speedup potential of 39.16% and a geometric
mean speedup potential of 18.18% at the loop level. However,
their analysis neither considered outer loops parallelization,
nor out-of-order spawning of threads (nested parallelism).

Mentioned in previous sections are the SWARM [16], [17]
and HELIX [14], [15], [22] projects. Both proposed frame-
works for SpMT, and exhibit significant speedups. However,
both achieved these gains in very different ways. SWARM
proposed a novel architecture for executing explicitly ordered
tasks, departing significantly from the conventional threaded
von-Neumann model typically considered. With their T4
SpMT compiler framework partitioning sequential code into
a hierarchical nested tree of fine-grained light-weight ordered
tasks (to allow exploitation of parallelism from multiple levels
of a loop nest), they were able to achieve GEOMEAN 19x
speedup on 64 cores, for benchmarks without any frequent
LCDs. Unfortunately, SWARM cannot support frequent LCDs,
so they offered no meaningful speedups for benchmarks with
frequent LCDs (1.2x from 64 cores).

In contrast, HELIX supports frequent LCDs through inter-
thread synchronization, and can parallelize outer loops, but
does not support nested parallelism. Their first attempt [14]
relied on helper-thread based prefetching to accelerate syn-
chonization. Unfortunately, while it accelerated numeric
benchmarks (12x from 16 cores), synchronization latency
was too great, reducing coverage and thus speedup for non-
numeric benchmarks (2.1x from 16 cores). Their follow-on
work reduced synchronization latency by simulating a single-
cycle ring-cache between neighbouring threads [15]. This
substantially improved coverage and thus per-loop speedup for
non-numeric benchmarks as well (6.5x from 16 cores).

Our LP framework simulates characteristics of both HELIX
and SWARM/T4, supporting both frequent LCDs, and multi-
level nested loop parallelization. The results confirm the
importance of supporting frequent LCDs when parallelizing
non-numeric benchmarks.

VI. CONCLUSIONS

This paper has investigated the fundamental limits to se-
quential performance scaling through speculative multithread-
ing – we present a compiler driven limit-study framework
that investigates the limits of loop-level parallelism at run-
time. A distinguishing feature of our framework is the ability
to evaluate the effects of various parallelization strategies,
constraints and data dependencies. Our analysis categorizes
the various inter-thread dependency types and ordering con-
straints with respect to the specific architectural choices and
techniques each would require for implementation, evaluates
the relative importance of each such constraint for different
application types, and provides insight into the cost/benefit
trade-offs when designing systems for efficiently implement-
ing speculative multithreading.

This new limit study of loop-level parallelism demonstrates
that it is possible to achieve as much as 4.6x and 7.2x speedup
on SpecINT2000 and SpecINT2006 benchmarks. Thanks to
our additional consideration of recent parallelization schemes,
such as generalized DOACROSS (HELIX), these speedups are
higher than reported by previous state-of-the-art limit studies.

These results are encouraging in terms of hidden parallelism
in loops which is currently not exploited by either vector-
ization and/or finer-grain ILP extraction. The new insights
should help the design of bespoke systems for speculative
multithreading while achieving better speedups, efficiency, and
scaling, relative to typical approaches which, thus far, have
relied on adapting conventional multi-core systems.

ACKNOWLEDGMENTS

We would like to thank Robert Kovacsics and Niall Murphy
for their contributions and insights in the early stages of this
work. Iordanou is funded by an Arm Ltd. & EPSRC iCASE
PhD Scholarship. Luján is funded by an Arm/RAEng Research
Chair award and a Royal Society Wolfson Fellowship.



REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam and D.
Burger, ”Dark silicon and the end of multicore scaling”, 2011 in 38th
Annual International Symposium on Computer Architecture (ISCA)

[2] Thomas N. Theis and H. S. Philip Wong. 2017. ”The End
of Moore’s Law: A New Beginning for Information Technol-
ogy”, 2017 in Computing in Science & Engineering, DOI:
https://doi.org/10.1109/MCSE.2017.29

[3] Shekhar Borkar, ”Thousand Core Chips: A Technology Perspective”,
2007 in Proceedings of the 44th annual Design Automation Conference,
DOI: https://doi.org/10.1145/1278480.1278667

[4] David W. Wall, ”Limits of instruction-level parallelism”, 1991 in
Proceedings of the Fourth International Conference on Architectural
support for programming languages and operating systems, DOI:
https://doi.org/10.1145/106972.106991

[5] Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano,
”A Survey on Thread-Level Speculation Techniques.”, 2016 in ACM
Comput. Surv. 49, 2, Article 22 DOI: https://doi.org/10.1145/2938369

[6] Monica S. Lam and Robert P. Wilson, ”Limits of control
flow on parallelism.”, 1992 in Proceedings of the 19th an-
nual international symposium on Computer architecture, DOI:
https://doi.org/10.1145/139669.139702

[7] Manohar K. Prabhu and Kunle Olukotun, ”Using thread-level specu-
lation to simplify manual parallelization”, 2003 in Proceedings of the
ninth symposium on Principles and practice of parallel programming,
DOI: https://doi.org/10.1145/781498.781500

[8] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C.
Mowry, ”Compiler optimization of scalar value communication between
speculative threads”, 2002 in Proceedings of the 10th International
conference on Architectural support for Programming Languages and
operating systems, DOI: https://doi.org/10.1145/605397.605416

[9] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd
C. Mowry, ”The STAMPede approach to thread-level speculation.”,
2005 in ACM Transactions on Computer Systems pp. 253–300, DOI:
https://doi.org/10.1145/1082469.1082471

[10] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose
Renau, and Josep Torrellas, ”POSH: a TLS compiler that exploits
program structure”, 2006 in Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, DOI:
https://doi.org/10.1145/1122971.1122997

[11] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J.
Bridges, and David I., ”Parallel-stage decoupled software pipelin-
ing.”, 2008 in Proceedings of the 6th annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, DOI:
https://doi.org/10.1145/1356058.1356074

[12] R. Ranjan, P. Marcuello, F. Latorre and A. González, ”P-
slice based efficient speculative multithreading,”, 2009 in In-
ternational Conference on High Performance Computing, DOI:
https://doi.org/10.1109/HIPC.2009.5433216

[13] Carlos Madriles, Pedro Lopez, Josep Maria Codina, Enric Gibert,
Fernando Latorre, Alejandro Martinez, Raul Martinez, and Antonio
González, ”Anaphase: A Fine-Grain Thread Decomposition Scheme for
Speculative Multithreading”, 2009 in Proceedings of the 18th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
DOI: https://doi.org/10.1109/PACT.2009.27

[14] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa
Reddi, Gu-Yeon Wei, and David Brooks, ”HELIX: automatic paral-
lelization of irregular programs for chip multiprocessing.” 2012, in
Proceedings of the Tenth International Symposium on Code Generation
and Optimization, DOI: https://doi.org/10.1145/2259016.2259028

[15] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,
Gu-Yeon Wei, and David Brooks, ”HELIX-RC: an architecture-compiler
co-design for automatic parallelization of irregular programs”, 2014 in
Proceeding of the 41st Annual International Symposium on Computer
Architecture, DOI:https://doi.org/10.1145/2678373.2665705

[16] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer and D.
Sanchez, ”Unlocking Ordered Parallelism with the Swarm Archi-
tecture”, 2016 in IEEE Micro, vol. 36, no. 3, pp. 105-117, DOI:
https://doi.org/10.1109/MM.2016.12

[17] Victor A. Ying, Mark C. Jeffrey, and Daniel Sanchez, ”T4: com-
piling sequential code for effective speculative parallelization in
hardware”, 2020 in Proceedings of the ACM/IEEE 47th An-

nual International Symposium on Computer Architecture, DOI:
https://doi.org/10.1109/ISCA45697.2020.00024

[18] P. Marcuello and A. González, ”Thread-spawning schemes for spec-
ulative multithreading”, 2002 in Proceedings Eighth International
Symposium on High Performance Computer Architecture, DOI:
https://doi.org/10.1109/HPCA.2002.995698

[19] https://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.
pdf

[20] Nigel Stephens, Stuart Biles, Matthias Boettcher , Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, Alastair Reid, Alejandro Rico and Paul
Walker, ”The ARM Scalable Vector Extension”, 2017 in IEEE Micro,
vol. 37, no. 2, pp. 26-39, DOI: https://doi.org/10.1109/MM.2017.35

[21] P. Marcuello, J. Tubella and A. Gonzalez, ”Value prediction for specula-
tive multithreaded architectures”, 1999 in Proceedings of the 32nd An-
nual ACM/IEEE International Symposium on Microarchitecture, DOI:
https://doi.org/10.1109/MICRO.1999.809461

[22] Niall Murphy, ”Discovering and exploiting parallelism in DOACROSS
loops”, PhD Thesis, 2016, University of Cambridge, Computer Labora-
tory, https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-882.pdf

[23] Paraskevas Yiapanis, Gavin Brown, and Mikel Luján. 2015. Compiler-
Driven Software Speculation for Thread-Level Parallelism.”, 2016 in
Transactions on Programming Languages and Systems, 38, 2, Article 5,
DOI: https://doi.org/10.1145/2821505

[24] I-Ting Angelina Lee, Silas Boyd-Wickizer, Zhiyi Huang, and Charles E.
Leiserson, ”Using memory mapping to support cactus stacks in work-
stealing runtime systems.”, 2010 in Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques, DOI:
https://doi.org/10.1145/1854273.1854324

[25] Leslie Lamport, ”The parallel execution of DO loops”, 1974 in Commun.
ACM 17, 2, 83–93. DOI: https://doi.org/10.1145/360827.360844

[26] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali,
and Calin Casçaval, ” How much parallelism is there in irregular
applications?” 2009 in Proceedings of the 14th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming, DOI:
https://doi.org/10.1145/1504176.1504181

[27] François Irigoin, Pierre Jouvelot, and Rémi Triolet, ”Semantical inter-
procedural parallelization: an overview of the PIPS project”, 1991 in
Proceedings of the 5th international Conference on Supercomputing,
DOI: https://doi.org/10.1145/109025.109086

[28] K. Kennedy, K. S. McKinley, and C. W. Tseng, ”Interactive parallel
programming using the ParaScope Editor”, 1991 in IEEE Transactions
on Parallel and Distributed Systems, vol. 2, no. 3, pp. 329-341, DOI:
https://doi.org/10.1109/71.86108

[29] T. Brandes, S. Chaumette, M. C. Counilh, J. Roman, A. Darte, F.
Desprez, and J. C. Mignot, ”HPFIT: a set of integrated tools for the
parallelization of applications using High Performance Fortran. PART I:
HPFIT and the TransTOOL environment.”, 1997 in Parallel Computing,
DOI: https://doi.org/10.1016/S0167-8191(96)00097-X

[30] Makoto Ishihara, Hiroki Honda, and Mitsuhisa Sato, ”Development and
Implementation of an Interactive Parallelization Assistance Tool for
OpenMP: iPat/OMP.”, 2006 in Transactions on Information and Systems,
DOI: https://doi.org/10.1093/ietisy/e89-d.2.399

[31] D. A. Padua, R. Eigenmann, Jay Hoeflinger, Paul Petersen, Peng
Tu, Stephen Weatherford, Keith Faigin, ”Polaris: A new-generation
parallelizing compiler for MPPs.”, Technical report, In CSRD No. 1306.
UIUC, 1993.

[32] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R. Murphy, Shih-
Wei Liao, E. Bugnion and M.S Lam., ”Maximizing multiprocessor
performance with the SUIF compiler.”, 1996 in Computer, vol. 29, no.
12, pp. 84-89, DOI: https://doi.org/10.1109/2.546613

[33] Open64. http://www.open64.net
[34] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall, ”The imple-

mentation of the Cilk-5 multithreaded language.”, 1998 in Proceedings
of the ACM SIGPLAN 1998 conference on Programming language de-
sign and implementation, DOI: https://doi.org/10.1145/277652.277725

[35] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper
Lin, Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong,
Henry Hoffmann, David Maze, and Saman Amarasinghe, ”A
stream compiler for communication-exposed architectures.”, 2002
in ACM SIGOPS Operating Systems Review 36, 5, 291–303,
DOI:https://doi.org/10.1145/635508.605428

[36] P. Husbands Parry, C. Iancu, and K. Yelick., ”A performance
analysis of the Berkeley UPC compiler.”, 2003 in Proceedings of

https://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf
https://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-882.pdf
http://www.open64.net


the 17th annual international conference on Supercomputing SC,
DOI:https://doi.org/10.1145/782814.782825

[37] Vijay A. Saraswat, Vivek Sarkar, and Christoph von Praun., ”X10:
concurrent programming for modern architectures.”, 2010 in Proceedings
of the 12th ACM SIGPLAN symposium on Principles and practice of
parallel programming, DOI: https://doi.org/10.1145/1229428.1229483

[38] J. Torrellas, “Thread-Level Speculation”, 2011, Encyclopedia of Parallel
Computing. DOI: https://doi.org/10.1007/978-0-387-09766-4 170

[39] J. Salamanca, J. N. Amaral and G. Araujo, ”Using Hardware-
Transactional-Memory Support to Implement Thread-Level Specula-
tion”, 2018 in IEEE Transactions on Parallel and Distributed Systems,
DOI: https://doi.org/10.1109/TPDS.2017.2752169

[40] Yiannakis Sazeides and James E. Smith., ”The predictability of data val-
ues.”, 1997 in Proceedings of the 30th annual ACM/IEEE international
symposium on Microarchitecture.

[41] R. Odaira and T. Nakaike, ”Thread-level speculation on off-
the-shelf hardware transactional memory,”, 2014 in IEEE
International Symposium on Workload Characterization, DOI:
https://doi.org/10.1109/IISWC.2014.6983060

[42] Maurice Herlihy and J. Eliot B. Moss., ”Transactional memory:
architectural support for lock-free data structures.” 1993 in
SIGARCH Computer Architecture News, 289–300. DOI:
https://doi.org/10.1145/173682.165164

[43] T. N. Vijaykumar, S. Gopal, J. E. Smith, and G. Sohi, “Spec-
ulative versioning cache”, 2001 in IEEE Transactions on Paral-
lel and Distributed Systems, vol. 12, no. 12, pp. 1305-1317, doi:
https://doi.org/10.1109/71.970565

[44] S. C. Goldstein, K. E. Schauser, and D. E. Culler, “Lazy threads:
Implementing a fast parallel call”, 1996 in Journal of Parallel and
Distributed Computing, DOI: https://doi.org/10.1006/jpdc.1996.0104

[45] Chuan-Qi Zhu and Pen-Chung Yew, ”A Scheme to Enforce Data
Dependence on Large Multiprocessor Systems” 1987 in IEEE Trans-
actions on Software Engineering, vol. SE-13, no. 6, pp. 726-739, DOI:
https://doi.org/10.1109/TSE.1987.233477

[46] G. Ottoni, R. Rangan, A. Stoler and D. I. August, ”Automatic thread
extraction with decoupled software pipelining”, 2005 in 38th An-
nual IEEE/ACM International Symposium on Microarchitecture, DOI:
https://doi.org/10.1109/MICRO.2005.13

[47] Nikolas Ioannou, Jeremy Singer, Salman Khan, Polychronis Xekalakis,
Paraskevas Yiapanis, Adam Pocock, Gavin Brown, Mikel Lán
and Marcello Cintra, ”Toward a more accurate understanding
of the limits of the TLS execution paradigm”, 2010 in IEEE
International Symposium on Workload Characterization, DOI:
https://doi.org/10.1109/IISWC.2010.5649169

[48] P. Marcuello and A. González, ”A quantitative assessment of thread-
level speculation techniques”. 2000 in Proceedings of the 14th In-
ternational Parallel and Distributed Processing Symposium, DOI:
https://doi.org/10.1109/IPDPS.2000.846040

[49] J. T. Oplinger, D. L. Heine and M. S. Lam, ”In search of
speculative thread-level parallelism,” 199 in International Confer-
ence on Parallel Architectures and Compilation Techniques, DOI:
https://doi.org/10.1109/PACT.1999.807576

[50] F. Warg and P. Stenström, ”Limits on speculative module-level
parallelism in imperative and object-oriented programs on CMP
platforms”, 2001 in Proceedings of International Conference
on Parallel Architectures and Compilation Techniques, DOI:
https://doi.org/10.1109/PACT.2001.953302

[51] Arun Kejariwal, Xinmin Tian, Wei Li, Milind Girkar, Sergey Kozhukhov,
Hideki Saito, Utpal Banerjee, Alexandru Nicolau, Alexander V. Vei-
denbaum, and Constantine D. Polychronopoulos, ”On the performance
potential of different types of speculative thread-level parallelism.”,
2006 in Proceedings of the 20th annual international conference on
Supercomputing, DOI: https://doi.org/10.1145/1183401.1183407

[52] Arun Kejariwal, Xinmin Tian, Milind Girkar, Wei Li, Sergey Kozhukhov,
Utpal Banerjee, Alexander Nicolau, Alexander V. Veidenbaum, and
Constantine D. Polychronopoulos ”Tight analysis of the performance
potential of thread speculation using spec CPU 2006”, 2007 in Proceed-
ings of the 12th ACM SIGPLAN symposium on Principles and practice
of parallel programming, DOI: https://doi.org/10.1145/1229428.1229475

[53] V. Packirisamy, A. Zhai, Wei-Chung Hsu, P. Yew and T. Ngai, ”Explor-
ing speculative parallelism in SPEC2006”, 2009 in IEEE International
Symposium on Performance Analysis of Systems and Software, DOI:
https://doi.org/10.1109/ISPASS.2009.4919640

[54] Manohar K. Prabhu and Kunle Olukotun, ”Exposing speculative thread
parallelism in SPEC2000.”, 2005 in Proceedings of the tenth ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
DOI: https://doi.org/10.1145/1065944.1065964

[55] Samuel P. Midkiff., ”Automatic Parallelization. An overview of funda-
mental compiler techniques.”, 2012, Morgan and Claypool Publishers,
DOI: https://doi.org/10.2200/S00340ED1V01Y201201CAC019

[56] Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown, Mikel Luján,
”Optimizing software runtime systems for speculative parallelization”
2013 in Transactions on Architecture and Code Optimization, DOI:
https://doi.org/10.1145/2400682.2400698


	Introduction
	Categorization of Ordering Constraints
	True Static Loop-Carried Dependencies (LCDs)
	True Dynamic Loop-Carried Dependencies (LCDs)
	Frequency of LCDs and Parallel Execution Models
	False Loop-Carried Dependencies (LCDs) through Registers and Memory
	Structural Loop-Carried Dependencies (LCDs)

	Loopapalooza – The Limits Study Framework
	Loopapalooza Compile-time Component
	Loopapalooza Run-time Component
	Loopapalooza – Value Prediction
	Loopapalooza – Limitations

	Experimental Results – Limit Study
	Related Work
	Conclusions
	References

