
Comparative Code Structure Analysis using Deep
Learning for Performance Prediction

Tarek Ramadan, Tanzima Z. Islam, Chase Phelps
{t r297,tanzima,chaseleif}@txstate.edu

Texas State University

Nathan Pinnow, Jayaraman J. Thiagarajan
{pinnow2,jayaramanthi1}@llnl.gov

Lawrence Livermore National Laboratory

Abstract—Performance analysis has always been an af-
terthought during the application development process, focusing
on application correctness first. The learning curve of the existing
static and dynamic analysis tools are steep, which requires
understanding low-level details to interpret the findings for
actionable optimizations. Additionally, application performance
is a function of a number of unknowns stemming from the
application-, runtime-, and interactions between the OS and
underlying hardware, making it difficult to model using any deep
learning technique, especially without a large labeled dataset. In
this paper, we address both of these problems by presenting
a large corpus of a labeled dataset for the community and
take a comparative analysis approach to mitigate all unknowns
except their source code differences between different correct
implementations of the same problem. We put the power of deep
learning to the test for automatically extracting information from
the hierarchical structure of abstract syntax trees to represent
source code. This paper aims to assess the feasibility of using
purely static information (e.g., abstract syntax tree or AST) of
applications to predict performance change based on the change
in code structure. This research will enable performance-aware
application development since every version of the application
will continue to contribute to the corpora, which will enhance
the performance of the model. We evaluate several deep learning-
based representation learning techniques for source code. Our
results show that tree-based Long Short-Term Memory (LSTM)
models can leverage source code’s hierarchical structure to dis-
cover latent representations. Specifically, LSTM-based predictive
models built using a single problem and a combination of multiple
problems can correctly predict if a source code will perform
better or worse up to 84% and 73% of the time, respectively.

Index Terms—Comparative performance modeling, machine
learning, Long Short-Term Memory Networks, Deep Graph
Learning

I. INTRODUCTION

The application development life cycle comprises a perpet-
ual loop of design-development-testing. At least one-fourth of
the life cycle for both scientific and commercial applications
is spent in rigorous testing. However, performance modeling
and analysis have mostly been an afterthought, with pro-
gram correctness taking center. Most production environments
assess program correctness through nightly regression tests
to ensure building integrity in commercial and government
research laboratories but do not consider performance. To
combat the absence of performance prediction tools during
code development, developers often spend a great deal of
time in posterior dynamic (runtime) analysis by executing
the target program and measuring the metrics of interest,
e.g., time or hardware performance counters. Even though
dynamic analysis is more thorough, this process costs hours

for data collection and analysis time and requires a human in
the loop. The cost of dynamic analysis motivates the need
for static analysis based on information available before a
code runs, such as code structure represented as an abstract
syntax tree (AST). This work takes the first step toward
developing such static analysis tools that can eventually predict
the execution time of applications before running them by
correlating code patterns to performance problems. While the
need for performance regression tests and dynamic analysis
will exist, this effort aims at reducing the time and effort spent
by developers in dynamic analysis.

The problem of predicting the absolute execution time of
applications based on code structure alone is challenging since
the execution time is a function of many factors, including
the underlying architecture, the input parameters, and the
application’s interactions with the OS. Hence, all work in
the literature aiming to predict the absolute execution time
based on static information (e.g., code structure) alone suf-
fers from poor accuracy [20; 24]. In contrast, this paper
circumvents that problem by taking a comparative approach
to attribute changes in source code structure to performance
f(δCode)→ δPerformance and subsequently assess whether a
new application will run faster or slower on the same system
for similar input. In this context, we define model accuracy
as the percentage of times the model (trained on an arbitrary
dataset) correctly predicts the label (slower or otherwise) for
a test code compared to another one, where the train and the
test datasets are disjoint. E.g., DP -vs-DFS = 82% means
that a model trained on data from several solutions to a
Dynamic Programming (DP ) problem can accurately predict
the performance difference between a random pair of solutions
to the Depth First Search (DFS) problem 82% of the time.
Since we take a comparative approach, factors that impact
applications outside of code structure get nullified. The three
use cases of this research are—selecting the best algorithm to
solve a problem out of several alternative solutions, predicting
performance as a code evolves, and automatically generating
semantically similar code suggestions with expected perfor-
mance change. While the first two use cases can directly apply
the source code embeddings generated in this research, the last
one requires combining embeddings with code generation.

To learn the correlation between δ(Code) and
δ(Performance), we propose a novel static analysis
approach that leverages a deep learning technique on Abstract
Syntax Trees (AST). By directly operating on ASTs, we gain

1

ar
X

iv
:2

10
2.

07
66

0v
2 

 [
cs

.L
G

] 
 2

2 
A

pr
 2

02
1



Tag Contest Count Min (ms) Median (ms) Max (ms) StdDev Algorithms
A 4 C 6616 86 1269 4063 445 Hashing [5]
B 230 B 6099 31 658 1872 386 Binary search and number theory [6]
C 1027 C 832 72 437 1455 344 Greedy [3]
D 914 D 612 206 534 1965 464 Data structure and number theory [4]
E 1004 C 505 3 80 137 48 Constructive algorithm
F 1006 E 599 51 214 1647 471 DFS, Graphs, and Trees [2]
G 1037 D 207 5 90 450 63 DFS, Graphs, and Trees [2]
H 489 C 5192 2 9 29 15 Dynamic programming (DP)
I 919 D 475 2 285 800 202 DFS, DP, Graphs

TABLE I: Information about the selected problems. Run times are in milliseconds. The Contest column indicates a specific problem (e.g.
C in 4 C) in a contest (e.g., 4 in 4 C) from Codeforces. The tags (A-I) are only assigned for ease of reference.

crucial structural information about code while dispensing
variations in coding styles. To analyze the AST using deep
learning, we build upon techniques initially designed for
natural language processing, given the relevant nature between
coding language and natural language. We propose to leverage
tree-structured Long Short-Term Memory (LSTM) [34], which
automatically learns to represent information inherent to a
hierarchical data structure such as an AST to a vector form.

In this effort, we also present a curated dataset comprising
over 4M programs, annotated with execution times and mem-
ory usage on the same system, from the online programming
contest platform Codeforces [1]. We identified thousands of
submissions that have significant variations in execution times
to build a reliable model. Our work’s biggest strength is
the models’ generalizability since they produce high-quality
predictions (84% accurate on a single problem and 73% on
multiple problems) for different algorithms solving different
problems. While we do not anticipate entirely dispensing
the need for performance analysts during optimizations, our
methodology can reduce the amount of time, effort, and
resources consumed in a posterior analysis by informing
developers of cases where code changes introduce inefficiency.

In summary, the contributions of this paper include:
• An extensive labeled dataset of programs representing 1, 278

different problems and 4, 313, 322 correct solutions to those
problems with varying ranges of execution times. Such a
dataset will be useful for further investigating generative
deep learning techniques for automatic well-performing
code generation.

• Demonstrate the applicability of deep-learning for static
code analysis to learn relationships between code structure
changes and performance, assuming code versions run on
the same machine.

• An empirical study to make suitable recommendations for
deep learning architecture design, training data sampling,
and data augmentation to build predictive models.

• A pipeline that can be integrated into the development
phase of applications to improve prediction accuracy during
production.

• A discussion on the frontiers of generating well-performing
code based on the work presented in this paper.

II. DATASET DESCRIPTION

This section describes the data collection process, along
with a brief discussion of the data characteristics. This dataset
will be made publicly available via Github along with the
pipeline presented in this paper.
A. Data Collection

We collected the dataset from an online platform, Code-
forces [1], that organizes programming contests regularly.
Each contest consists of a set of problems to which users
submit their solutions. The online judge system automatically
evaluates each solution for correctness using several test cases
(typically 5 to 13, though the number varies among problems)
and reports their corresponding runtime and memory usage.
The dataset contains several unique solutions to each problem
with varying runtime and memory usage characteristics, from
which a deep learning model can “learn”.

We develop a Python tool to automatically retrieve a list
of contests from the Codeforces website using their provided
API and disregard any contest that has not yet finished.
Subsequently, our data collection tool carries out an API
request for a list of submission IDs for each contest in the
retrieved list. For each problem, our tool parses all submissions
ignoring those marked by Codeforces as incorrect solutions.
Finally, our tool enters each problem set along with source
code, source language, runtime, and memory usage properties
to a database for each test case.

This process results in a total of 4, 313, 322 correct solu-
tions, spanning across 1, 278 problems. The distribution of so-
lution times ranges from 6 problems, each having over 40, 000
submissions to 600 problems, each having less than 1, 000
submissions. Each problem is unique in regards to its difficulty
and popularity. For training, it is crucial to select problem sets
that have a sufficient number of solutions and are of sufficient
difficulty such that runtime and memory usage across solutions
show non-trivial variability. In this paper, we only focus on
submissions written in C++, and the tests are averaged to
obtain a mean runtime for each problem. However, the tool
is generic in its ability to collect all programs written in all
languages. We present the performance of the built models in
Section VI from seven groups of algorithms. Table I presents
statistics and descriptions of these nine selected problems

2



ROSE Prediction
c1

c2 AST2

AST1

Neural 
Network

Node 
Rep.

Code 
Rep.

Input Processing Deep Representation Learning Predictive ModelSource 
code

Node 
Rep.

Code 
Rep.

Fig. 1: An overview of the proposed deep-learning methodology. Deep representation learning model builds code representation that the
predictive model uses to predict if the second code is expected to be more efficient (in terms of execution time).

(Tags A-I). These problems are automatically selected based
on sufficient variation in execution times and more than 100
correct solutions. While not all of the algorithms in our dataset
represent scientific applications, Dynamic Programming (DP)
and Graph Traversal are two of the 13 dwarfs of scientific
applications, and shortest path algorithms are core to several
commercial ones.
B. Generating Code Pairs

As described in the previous section, we formulate the
problem of comparative performance analysis as correlating
δ(Code) for a pair of source codes with δ(performance).
This formulation takes a differential approach instead of
predicting the absolute performance of a new or a variant
of the same application, which can be intractable given that
execution time is a factor of a large number of variables.

Our pipeline automatically generates pairs of codes from
the selected problems for training a robust model to facilitate
this formulation. Since the ordering of every set of codes
could be considered as a unique pair, for N submissions,
there exists a total of N2 possible pairs. Though data-driven
approaches such as deep neural networks are typically known
to require large amounts of data, we argue that all possible
pairs are not required to train a robust model. Not all pairs
add unique information for the model to learn, and repetitive
training creates a model that has been overfitted. Hence, in
Section VI-D, we evaluate the data requirements to build a
robust model. The state-of-practice method for reducing the
training dataset is to use random subsets of input. Hence,
we explore the use of random subsets (of code pairs) of
varying sizes for training the models and make appropriate
recommendations. For every pair of programs, we generate
the target variable (binary) as follows: if the first element of
the pair has a higher execution time, we label it as positive,
otherwise negative. This formulation emulates a developer
looking to determine if a new version of the program will
have a lower (improved) runtime. Our experiments also study
the impact of including two-way ordering of every pair of
codes, i.e., (a, b) and (b, a) on the model accuracy.

III. PROPOSED APPROACH

Figure 1 shows an overview of our approach that con-
verts each source code to an AST by using the ROSE [30]
compiler and subsequently utilizes a deep neural network

to learn embeddings from ASTs that incorporate structural
information automatically. Embedding learning is an active
area of research with several algorithms such as deep graph
convolutional network [31], deep graph attention network [36],
and LSTM [33]. An adequate representation improves the
accuracy of the downstream analysis tasks (e.g., performance
prediction in our case) by capturing discriminatory information
that contributes to determining a label. These embeddings
then become the input to a classifier module that implements
a fully connected neural network to perform the prediction.
While this paper mainly focuses on ASTs to build a deep
learning pipeline for static program modeling, we expect that
information gathered during compile-time, such as control and
data flow graphs, may improve a model’s accuracy.
A. Problem Formulation:

Formally, let us denote the ASTs for a pair of source code
by pi and pj respectively, where every pi ∈ P is a submission
pertinent to the problem P. We define a deep feature extractor
F that processes an AST to produce a latent representation
z ∈ Z, where Z denotes the latent space. Mathematically, this
process is expressed as F : P 7→ Z. Since the goal is to
predict if the AST of pj is expected to have a lower execution
time than pi, we first concatenate their features to produce
z̄ij = [zi, zj ]. As a result, when the dimensionality of the latent
space Z is d, the size of the concatenated feature z̄ij becomes
2 ∗ d. The classifier function C maps the concatenated feature
z̄ij ∈ Z̄ into the target variable yij ∈ Y, where the output
space Y is discrete and assumes one of the two values 0 or
1. In other words, the classifier mapping can be expressed as
C : Z̄ 7→ Y.

The feature extractor F consists of two components. First,
it learns to represent each code construct of an AST (node of a
tree) using an embedding lookup function that assigns a feature
vector to each node depending on its type (e.g., for loops
or if statements). Second, it learns representation for the
entire AST or a sub-tree using the deep learning algorithm (z).
In this paper, we propose tree-LSTM for automatic feature
representation. Section III-B discusses our rationale in details.
Our proposed approach jointly infers the representations for
each of the nodes and subsequently for the entire AST. This
automated learning approach alleviates the need for any man-
ual feature engineering technique, which presents a nontrivial

3



Fig. 2: Proposed training strategies based on tree-structured LSTMs for processing ASTs. Arrows going from root to leaves (and vice versa)
indicate information flow in the LSTM, arrows between trees indicate information flow between layers.

challenge for source code. The classifier is implemented as
a feed-forward network and produces the likelihood of one
version of the code being superior to the other in terms of
expected performance. This likelihood is then encoded into a
decision label using Equation ??:

pred(pi, pj)→

{
0 ti < tj ; piis faster
1 ti ≥ tj ; pj is faster or equivalent

(1)

B. Tree-Structured LSTMs for AST Modeling
Since conventional solutions such as fully connected net-

works and convolutional neural networks typically utilize
unstructured high-dimensional and image data, they can not
directly handle ASTs. Consequently, there has been a recent
surge in deep learning techniques designed specifically for
these challenging data types. Tree LSTM [34] is a deep
learning architecture for processing tree-structured data. Re-
cent work has demonstrated that leveraging the hierarchical
structures of languages, both natural and programming, gives
models salient characteristics of the data and improves perfor-
mance on the downstream tasks [12; 34]. Consequently, we
propose using tree-structured LSTM, a specific construction
of recurrent neural networks, to produce concise vector repre-
sentations for each source code.

Intuitively, our model uses hierarchical accumulation to
encode each non-terminal node’s representation by aggregating
the hidden states of all of its descendants. The accumulation
process occurs in two stages. First, the model induces the value
states of non-terminals with hierarchical embeddings, which
helps the model become aware of the hierarchical and sibling
relationships between the nodes. Second, the model performs
an upward cumulative-sum operation on each target node (the
node whose representation is being learned), accumulating all
elements in the branches originating from the target node to its
descendant leaves. In Section VI, we thoroughly evaluate the
performance of tree-LSTM with Graph Convolution Network
(GCN) based deep representation learning models suitable for
structured graph data. We demonstrate that the accuracy of the
predictions are higher with embeddings built using tree-LSTM
compared to that of GCN.

Broadly, tree-LSTM is a recurrent neural network
(RNN) [37], designed to perform feature extraction from
arbitrary length sequence data via the recursive application

of a transition function on a hidden state vector. It operates
by taking in the hidden state of the previous element of the
sequence and the input for its current element. At each time
step t, the hidden state vector ht is a function of the input
vector xt (vector representation of the tth element in the
sequence) and its previous hidden state ht−1. Consequently,
the ht can be interpreted as a concise representation of the
sequence of elements observed up to time t. In a typical RNN,
the transition function is implemented as follows:

ht = tanhWxt + Uht−1 + b, (2)
where W , U , and b are learnable parameters, and tanh denotes
the hyperbolic tangent nonlinearity. An inherent limitation of
RNNs is that as the sequence length grows the problem of
exploding or vanishing gradients makes training very diffi-
cult [26]. Consequently, the LSTM architecture addresses this
limitation in learning long-term dependencies by introducing
a memory cell that preserves the states over long periods of
time [13; 33]. For a time step t, an LSTM unit is typically
comprised of vectors from an input gate it, forget gate ft,
output gate ot, memory cell state ct and hidden state ht.
Intuitively, the forget gate controls the extent to which the
memory cell’s previous states are forgotten, the input gate
controls how much each unit is updated, and the output
gate controls the exposure of the internal memory state. In
a nutshell, the hidden state vector in an LSTM unit is a gated,
partial view of the internal memory cell state. Mathematically,
the transition equations can be derived as follows:

it = σ(W ixt + U iht−1 + bi),

ft = σ(W fxt + Ufht−1 + bf ),

ot = σ(W oxt + Uoht−1 + bo),

ut = σ(Wuxt + Uuht−1 + bu),

ct = it � ut + ft � ct−1,
ht = ot � tanh(ct). (3)

A limitation of this architecture is that it allows only strictly
sequential information propagation. However, in the case of
ASTs, the information flow happens to multiple children from
a given parent node. Hence, we propose a new architecture
for the tree-LSTM technique to deal with information flow
through an AST [34]. The crucial difference between an LSTM
unit and a tree-LSTM unit is that the gating vectors and
memory cell updates are dependent on the states of possibly

4



many child units. Additionally, instead of a single forget gate,
the tree-LSTM unit contains one forget gate for each child,
which allows it to selectively leverage information from each
child. Section IV-B describes the input vector at each node.
Figure 2(a) shows that the transition function is applied to the
leaf nodes first and then progressively moves up the tree to the
root node. Mathematically, this can be described as follows:
Assuming that the C(j) denotes the set of children of a node
j,

h̃j =
∑

k∈C(j)

hk,

ij = σ(W ixj + U ih̃j + bi),

fjk = σ(W fxj + Ufhk + bf ),

oj = σ(W oxj + Uoh̃j + bo),

uj = σ(Wuxj + Uuh̃j + bu),

cj = ij � uj +
∑

k∈C(j)

fjk � ck,

hj = oj � tanh(cj). (4)
Note that, after processing the entire AST (or a selected sub-
tree), the classifier function uses the final hidden representation
at the root node (of the sub-tree) for prediction.

IV. METHODS

As described in the previous section, our goal is to jointly
infer node representations (depending on the node type) and
AST representations, with the overall objective of predicting
performance. To achieve this goal, we need to address the
following tasks: (1) generate ASTs, (2) represent nodes of an
AST as a vector (encoding lookup), and (3) combine node
embeddings for representing source code (AST modeling). In
this section, we describe how we address each of the tasks
in detail, along with implementation specifics. We follow the
notations introduced in the previous section.
A. AST Generation

The first step towards applying deep neural networks to
codes is to create an appropriate representation. In general,
the code can be treated as a text excerpt and processed with
standard language modeling tools such as word or document
embeddings. However, we advocate using abstract syntax trees
since they are better descriptors of a code structure. This
transformation leads to an additional challenge that the neural
network should leverage the inherent tree structure of ASTs.

To generate the ASTs, we use the ROSE [30] compiler in-
frastructure. ROSE is a flexible, portable, and scalable source-
to-source compiler infrastructure widely used in the scientific
community comprising the national laboratories, universities,
and the industry. The AST from ROSE is modified only to
include internal nodes that are part of the source code’s func-
tion definitions. This process removes irrelevant information
from the tree and allows models to train faster. For simplicity,
the source code’s function definitions are all set as children of
a root node. While these simplifications make the embedding
learning process simpler, more fine-grained representation of
the tree nodes could provide additional information for the
model to exploit. Finally, the AST generation process outputs

a list of the node IDs and a list of links between nodes to
represent the tree.
B. Constructing Node Embeddings

We assign a unique ID to each type of internal node (e.g.,
for, while), consistent across all trees in the database. A
node type gets the same ID even when they appear multiple
times in the same tree. Following standard practices in the nat-
ural language processing area, our machine learning pipeline
transforms the user-defined tokens (IDs in ASTs) into vector
representations. A naive approach for constructing a vector
representation from an AST is using one-hot encoding, where
each ID can be assigned a 1−sparse binary vector with the
value 1 at the location of the ID and 0 elsewhere. Since such
a vector’s size is a function of the total number of unique
IDs in the dataset, it is high-dimensional (often referred to
as cursed representations). Such representations can lead to
severe overfitting when building predictive models.

Hence, we investigate a different approach in this work
that assigns a specific vector representation for each ID using
an embedding lookup structure. We fix the dimensionality of
the embedding at λ, and initialize the embeddings randomly.
However, the neural network training process can subsequently
tune the embeddings. The total number of parameters to
be optimized in this step is λ × D, where D is the total
number of unique IDs in our dataset. This embedding layer
will allow the model to infer similarities between nodes in
terms of their performance impact, much more effectively than
simple one-hot encoding. Once encoded, these embeddings are
passed along to train a model for generating representations
for the entire tree. In this paper, we initialize using random
embeddings. In the future, we will investigate using pre-
trained embeddings by adapting word embedding techniques
(e.g., Skip-gram [21], GloVe [27]) from the Natural Language
Processing (NLP) literature.
C. Training Models

Following the state-of-practice in neural networks, we ad-
vocate using multiple layers in our tree-LSTM architecture. In
this design, the hidden states at the end of one layer are used
as the next layer’s node representations. This process typically
leads to greater refinement of each sub-tree’s representations
as each layer provides a better representation of the tree
structure. In addition to this native implementation, which
we refer to as uni-directional tree-LSTM, we also consider
two variants: bi-directional tree-LSTM, and alternating tree-
LSTM. In the first variant, we allowed the tree transition to
be bi-directional, i.e., from root to leaf nodes and leaf to root
nodes. As illustrated in Figure 2(b), two different tree-LSTMs
run independently, with one having hidden states going from
child to parent and the other going from parent to child.
The parent node copies its representation to all its children
instead of just sending its representation to a single node.
This information propagation pattern enables a node’s hidden
state to include information from its children and its ancestors.
Finally, the two representations are concatenated together to
form a unified representation for a node. Since our approach
uses the final root node representation to make the prediction,

5



the downward pass in the bi-directional training’s final layer
is not required. In the second variant of the tree-LSTM,
bi-directional training is simplified by alternating forward
and backward passes. As shown in Figure 2(c), a 3−layer
tree-LSTM will be constructed with 2 forward layers and 1
backward layer between them. Compared to the bi-directional
training, this contains only half the number of parameters
to train, avoids overfitting in practice, and produces highly
effective latent representations for ASTs. In our experiments,
we find that the alternating tree-LSTM consistently produces
the best performance in all cases.
D. Classifier Design

Since our approach’s overall objective is to perform compar-
ative analysis, we first concatenate the hidden representations
for the two ASTs and subsequently pass it to a fully connected
classifier with the sigmoid activation. This classifier’s number
of parameters is 2 ∗ d, where d is the size of the latent
representation in our tree-LSTM. We then compute the binary
cross-entropy loss between the predicted probabilities and the
correct labels to optimize the network’s unknown parameters.

V. EXPERIMENTAL SETUP

This paper evaluates our proposed methodology using nine
individual problems (presented in Table I), and a combined
dataset comprising 100 submissions picked randomly from
100 different problems (referred to as MP in Figure 3). We
calculate the accuracy of a model based on the percentage
of times the model correctly classifies a code as slower or
otherwise compared to another one.
A. System

We run our experiments on the Google Cloud Platform
(GCP). Specifically, we use a machine with eight virtual CPUs,
30 GB RAM, and one NVIDIA Tesla P100 GPU with 16GB
memory. Each CPU consists of 2.30GHz Intel (R) CPU with
4 cores and is based on the x86 64 Architecture. The GPUs
are equipped with CUDA 10.0 toolkit by NVIDIA.
B. Deep Representation Learning Techniques

In this paper, we evaluate the efficacy of our proposed
tree-LSTM (described in Section III-B) based representation
learning technique compared to that of a more generic one—
Graph Convolution Network (GCN) [16; 31]. The GCN is a
generalization of Convolution Neural Networks (CNN) [15],
where the GCN stacks multiple graph convolution layers to ex-
tract a high-level node representation that takes N -dimensional
data to graph data. A GCN model takes the graph-structured
data as input and generates a vector representing a source-
code. The GCN applies semi-supervised node classification,
which classifies each node of the tree to help decide the type
for the whole AST. We extend the GCN model by creating
a wrapper layer that combines information from an internal
node’s directly connected nodes. The significant difference
between GCN and tree-LSTM is in information flow to each
internal node–GCN leverages all neighboring nodes compared
to tree-LSTM which leverages knowledge of parent-child
relationships. The source-code embeddings are then passed
from GCN to the classifier, as described in Section IV-D.

A B C D E F G H I MP
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tree-LSTM GCN

Training Dataset

N
or

m
al

iz
ed

 A
cc

ur
ac

y

Fig. 3: The overall model evaluation and generalizability of our pro-
posed tree-LSTM approach compared to a traditional GCN method.
The X-axis shows the training dataset, and the Y-axis shows the
accuracy. The lines show the accuracy of models in classifying
the performance differences (lower or otherwise) between random
pairs of disjoint submissions for the same problem (as the training
problem). The boxplots show models’ accuracy in classifying the
performance difference between random pairs of disjoint submissions
from all others problems except the training one.

C. Hyper-parameter Tuning
For automated hyper-parameter tuning, we leverage the

Optuna optimization framework [7]. For GCN, we observe that
the most critical parameters to tune for the given downstream
prediction task are the number of convolution layers and the
hidden layer’s size. We vary the number of convolutional
layers from 1 to 16 for GCN (more than that exhausts GPU
memory) and the hidden layer’s size from 8 to 256. Our
experiments show that (6, 117) as the number of convolutional
layers and the hidden layer’s size, respectively achieves the
best accuracy (68.5%). For tree-LSTM, we use 100 hidden
states and the feature embedding vectors of length 120. With
these parameters, we achieve the best accuracy (73%) for the
large dataset.

VI. RESULTS

In this section, we present a detailed evaluation of the
proposed approach. The details about the dataset can be found
in Section II. We used a subset of the submissions (disjoint
from training dataset) to demonstrate results. In this study, we
evaluate the following: (a) the effectiveness of our proposed
tree-LSTM architecture compared to GCN in building source-
code representations and the generalizability of the predictive
models built on them; (b) the architectural choices for the
best model; (c) the design choices for data sampling and
augmentation; and (d) the prediction sensitivity to runtime
variation.
A. Model Evaluation and Generalization

This experiment’s objective is two-fold–(a) test the effec-
tiveness of our proposed tree-LSTM architecture compared to
GCN in building source-code representations and their impact
on model accuracy, and (b) determine how well the predictive
model can generalize to unseen problems. For this experi-

6



ment, we train models on submissions from a problem and
measure the accuracy of the model in predicting the change
in performance (positive or negative) for unseen submissions
from (i) the same problem (disjoint set), (ii) different problem
but the same algorithmic group, and (iii) other problems from
diverse algorithmic groups. Figure 3 shows training datasets
along the X-axis. The boxplots along the Y-axis show models’
accuracy in classifying the performance difference between
random pairs of disjoint submissions from diverse problems.
The line plots show the accuracy of pi vs pi, where the training
and testing datasets are disjoint submissions of the problem pi.
Generalization: From Figure 3, we can observe that a model
built for a specific problem predicts the label of a disjoint
set of submissions from (i) the same problem with up to
81% accuracy (line chart for training set E); (ii) different
problems from different algorithmic groups with up to 80%
accuracy (boxplot for the problem E). Further investigation
shows that the highest accuracy is incurred when the con-
structive algorithm to solve problem E classifies random pairs
of submissions from a DFS problem G. Also, a model built
on the same problem can accurately classify the difference in
execution times between random pairs of disjoint submissions
from other problems from the same algorithmic group with up
to 82% accuracy. E.g., model built on DFS problem F classifies
submissions from another DFS-based problem G with up to
82% accuracy. These observations show that the model is
learning problem characteristics and not just remembering
programming constructs.

To test our approach’s generalizability, we build a model
using a large dataset by randomly selecting 100 submissions
from 100 different problems with sufficient variation in exe-
cution times and more than 1000 correct solutions. We denote
this dataset as MP (for multiple problems). We then evaluate
a model trained on MP to predict performance differences of
submissions from both A-I and these 100 problems (disjoint
test set). Figure 3 shows that the predictive model trained on
MP can accurately classify performance difference between
random pairs of solutions with up to 84% accuracy for
A-I (boxplot) and 73% accuracy for a disjoint set of MP
submissions (line chart).
Tree-LSTM vs GCN: From Figure 3 we can observe that
the prediction task with the tree-LSTM-based embeddings
consistently outperforms that built using the GCN model. The
tree-LSTM based representations capture crucial hierarchical
information about code structure that a generic graph-based
model fails to do, which explains GCN’s poor performance.
B. ROC vs Accuracy Metric

In addition to the accuracy metric, we evaluate all our
models based on the receiver operator curve (ROC) to study
how the prediction task’s performance varies as the confidence
threshold changes. The confidence threshold of the models’
output (probability) determines if the performance difference
between two code pairs should be classified as positive or
negative. Increasing the confidence threshold lowers the false
positive rate and equivalently the true positive rate. Having a
lower false positive means that if a model classifies the change

F G I
F .80 .72 .67
G .82 .76 .68
I .76 .67 .77

TABLE II: Models trained and evaluated on different problems
in similar algorithm groups (DFS and Graphs). Rows indicate the
training dataset, and columns display the test set. While problems F
and G share the same algorithmic classes (DFS, Graphs, and Trees),
the problem I has a partial overlap (DFS, DP, Graphs). This result
indicates that a more considerable overlap in problem characteristics
will result in higher prediction accuracy.

Layers Uni-Directional Bi-Directional

1
0.773 0.769
0.780 0.78

2
0.765 0.767
0.789 0.786

3
0.766 0.77
0.783 0.767

Alternating layers
0.77 (A) and 0.804 (C)

TABLE III: Prediction performance of the proposed approach
problem set A and C. We report the results obtained using different
architectural choices.

in execution time as increasing, the application developer
can confidently invest the time and effort to resolve coding
inefficiencies (perhaps by using other tools). E.g., in Figure 4,
we can observe that the ROC for the problem A, obtained using
the 3− layer alternating tree-LSTM architecture, achieves a
high area under the ROC metric of 0.85, which implies 85%
true positive rate. Since this measure agrees with the accuracy
metric, we only report the experiments’ accuracy scores.
C. Impact of Architectural Choice

This experiment’s objective is to evaluate the impact of the
different architectural choices for the tree-LSTM (the best
representation learning model for source-code, as found in
Section VI-A) on the overall prediction accuracy. Table III
presents the impact of three architectural choices on the
accuracy of the prediction task. We increase the number of
layers from 1 to 3 for the uni- and bi-directional architectures
and observe an insignificant change in the accuracy. The bi-
directional architecture is significantly more complicated and
takes much longer to train since information is combined from
both the forward and backward passes at every layer. The lack
of improvement in model accuracy indicates overfitting due to
the arbitrary increase in model complexity. The alternating
architecture produces an equivalent representation compared
to the other architectures, e.g., the alternating architecture
improves the downstream predictive task’s performance by 2%
for problem C. However, the alternating architecture combines
information once during the forward pass followed by the
backward pass, thereby gathering more information than a uni-
directional one. In comparison, its accuracy is similar to that
of the bi-directional architecture while being faster to train.
D. Impact of Data Sampling and Augmentation

A crucial aspect of modern machine learning methods is the
complex trade-off between the task complexity and the amount

7



Fig. 4: ROC curve on the validation set obtained using the multi-layer
alternating Tree-LSTM architecture on problem set A.

0 1500 2000 4000500 1000 2500 35003000 0 40 10020 60 80
Percentage of Pairs used for TrainingNumber of Submissions in Train Set

Te
st

 A
cc

ur
ac

y

0.66

0.68

0.70

0.72

0.74

0.76

0.64

0.73

0.74

0.75

0.76

0.77

0.72

Te
st

 A
cc

ur
ac

y

(a) (b)

Fig. 5: (a) Accuracy of the model based on a percentage of maximum
pairs for 2048 submissions. (b) Accuracy changes based on training
set characteristics.

of training data required to produce reliable models. Hence, we
study the impact of data sampling on our approach’s observed
performance. We vary the number of submissions, with a fixed
ratio of pairs for every case and the number of pairs for a given
number of submissions.
Impact of number of submissions during training: First,
we increase the number of submissions in the training set from
32 to 4096 by powers of 2. For each case, we construct the
training pairs by selecting a random 75% of all possible pairs
in that case. For all tests, we use the same test set of submis-
sions. Figure 5(a) shows results for the problem set A with
the multi-layer alternating tree-LSTM architecture. Figure 5(a)
shows that the accuracy steadily improves as the number of
submissions grows. However, beyond 1000 submissions, there
is a diminishing return. Since data collection and annotation
are time-consuming, having a reasonable number of training
samples improves this methodology’s adaptability in practice.
Impact of the percentage of pairs during training: We also
investigate the question of how many pairs should be included
from those submissions for training. We perform this study by
increasing the percentage of pairs used for a fixed number of
submissions. In particular, we select the number of submis-
sions at 2048 and vary the ratio of pairs used. Interestingly,
Figure 5(b) shows that the accuracy initially improves rapidly
as the number of pairs (randomly chosen) increases, achieving
an accuracy improvement of 10%, however, the accuracy score
then begins to dip. However, there is a dip in the accuracy
score. We continue to include more pairs since complex
models such as deep networks tend to overfit when the training

Te
st

 A
cc

ur
ac

y

0 500 1000 1500 2000 0 400 1000 1200 1600200 800 1400 0 400 1000 1200 1600200 800 1400
0.800

0.825

0.850
0.875

0.900

0.925

0.950

0.975

1.000

0.820

0.840

0.860
0.880

0.900

0.920

0.940

0.960

0.980

0.750

0.800

0.850

0.900

0.950

1.000

Minimum Runtime Difference to Distinguish (ms)
(a) Problem A (b) Problem B (c) Problem C

Fig. 6: Studying the sensitivity of the proposed approach.

-20 0 30-10 10 20-100 0 100-50 50

-100

-50

0

50

100

150

-150

-10

-5

0

5

10

15

-15

(a) Node embeddings (b) Code embeddings

Fig. 7: Visualization of the learned representations of nodes and ASTs
obtained using t-SNE. (a) Two-Dimensional Representation of the
node embeddings. Green are operations, red are other expressions,
blue are statements, yellow are literal values, and black are support
nodes. (b) Two-Dimensional Representation of the AST latent repre-
sentations. Each color corresponds to one of the problem sets.

data’s complexity is high. This observation motivates the need
for further investigation of sampling strategies for optimal
performance.
Impact of the ordering of pairs during training: We
evaluate how important it is for the model to train on both
orderings of a single pair ((a, b) and (b, a)). We compare
a training set containing only one ordering pair to a model
trained on the same number of overall teams, with half
being the others’ reverse. We find that the accuracy improves
marginally, up to 2% from using symmetrical pairs as opposed
to non-symmetrical ones (the figure is not included due to
space limitation).
E. Prediction Sensitivity

When comparing the execution times, the small differences
are less significant than the large differences, e.g., a 1-
millisecond difference is treated the same as that with 4000.
To evaluate how sensitive the model predictions are to the
variation in the submissions’ execution times, we sort the
evaluation sets and record accuracy for pairs with a difference
beyond a certain threshold.

Figure 6 shows the results for models trained on problems
A, B, and C. With these three problems, we can observe that
the accuracy of the prediction task consistently improves with
the increase in the minimum difference that the model needs
to resolve. Further investigation uncovers that a massive differ-
ence in execution time for source code typically comes from
having either loop constructs (e.g., for, while) or significantly
longer code. Hence, it becomes easier for the model to spot
discriminatory structure in the source code when source code
variants differ significantly in execution times. The execution
times of all the problems in this dataset are reasonably close.
These results indicate that as we move toward problems with a
more significant difference in execution time between versions,
the model will perform better.

8



F. Visualizing Learned Representations
We initialize nodes with random embedding vectors, and the

model subsequently learns representations of each node from
the data. To evaluate the effectiveness of the learning process,
we map the embeddings down from the λ = 120 dimensional
space to a two-dimensional space and plot in Figure 7. For
the low-dimensional projection, we leverage the unsupervised,
non-linear t-Distributed Stochastic Neighbor Embedding (t-
SNE) technique [18] that is primarily used for data exploration
and visualizing high-dimensional data.
Node representations: Near nodes in t-SNE have similar
representations, nodes with equal value along one axis have
some similarities, and unequal nodes separated across both
axes are significantly different, hence they should have dif-
fering representations. Figure 7(a) shows that the tree-LSTM
model discovers that the string and char literal representations
are closely related. The model learns that plus plus and
plus assign operators are close in nature, hence group
them closely. Since the for and while representations share
similar values along a single axis, it indicates that the model
can encode their similarities into the representations while still
capturing their differences.
Code representations: Similarly, we use our model to
generate code embeddings for three different problems with
100 submissions each and project those to two-dimensional
representations (red, blue, and green). In Figure 7(b), we
observe that the model can create distinctly different represen-
tations from other problems. We also observe that problems
represented with red and green often have grouped clusters
indicating more similarity than to the problem in blue.

VII. DISCUSSIONS
Figure 3 shows that the predictive model based on tree-

LSTM representations can achieve up to 84% accuracy for a
model built on an individual problem E and 73% accuracy
for model built using a mixture of submissions from hundreds
of problems. While the former shows the applicability of the
proposed method in studying performance evolution of the
same problem over time, the latter demonstrates that in saving
time and effort for application developers a majority of the
time. Once deployed in a continuous learning environment,
this framework can improve the model’s accuracy by adding
new observations based on the nightly tests performed in most
production-based software development environments.

Section VI-E discusses that it is easier for the model to
resolve a higher threshold (large increase in execution time to
be considered poor performance) than a smaller one. A devel-
oper can select our model through a threshold to prefer true
positive cases over false negatives (or vice versa). E.g., with a
runtime difference in 1 second between two applications, the
model’s accuracy reaches close to 100%. Also, we observe that
even though the random initial embeddings are useful, using
other sophisticated methods such as Deepwalk [28] to generate
initial node representations may help the models to train faster
and perform better. Further, these node representations could
be made transferable between tasks in analyzing an AST.
Additionally, adding more information, such as the data flow

graph, can help the model learn to distinguish problems at a
higher level.

VIII. RELATED WORK

The area of software engineering has seen a surge in
applying LSTM and its variants in generating code, code sum-
mation using natural language [32], bug detection [11], bug
report classification [29], author attribution [8], source code
retrieval [35], and source code defect prediction [11]. Machine
learning-based program analysis has been studied long in the
literature [9; 17]. Hindle et al. [14] compare programming
languages to natural languages and conclude that programs
have rich statistical properties. These properties are difficult
for a human to capture, but they justify using learning-based
approaches to analyze programs. Others have applied deep
learning for performance analysis, [10] used sequential LSTMs
on normalized source code to predict optimization heuristics.
Related work such as [22; 23] applied a convolutional neural
network over the AST to classify the type of problem the
source code is trying to solve. [34] performed sentiment
analysis for natural language processing using a single layer
and directional tree LSTM to build up the representation of
the whole tree based upon each node’s children, with the
leaves being the words in the sentence. Others have looked
at using AST for performing static performance analysis [19].
While using similar methods, including upward and downward
passes, their approaches did not include an in-depth learning
analysis of the AST in the context of comparative performance
prediction. Neamtiu et al. [25] have applied deep learning
to the program structure information to classify programs.
In contrast, our approach, albeit similar, solves a different
problem of attributing the change in performance to code
structure changes.

IX. CONCLUSION

This work aims at designing a generic and accurate method
for performance modeling that can provide insight into how a
change in the program impacts the performance (positive or
negative). We implement a tree-structured deep-neural network
architecture to represent the code as a vector to perform the
comparison. We then compare two such vector representations
from two applications using a feed-forward neural network.
This framework can inform a developer about how changes
made to their code will affect the performance without nec-
essarily needing to be trained on the specific problem. We
trained and evaluated our models on both individual problems
and a combined dataset of hundreds of them. Such information
available during coding can significantly reduce the need for
running applications every time a code change is made and
assist in performance-aware application development.

REFERENCES

[1] Codeforces: Online Programming Competition. https://
Codeforces.com.

[2] Contest 1027C – Military Problem. http://codeforces.
com/problemset/problem/21006/E.

[3] Contest 1027C – Minimum Value Rectangle. http:
//codeforces.com/problemset/problem/21027/C.

9

https://Codeforces.com
https://Codeforces.com
http://codeforces.com/problemset/problem/21006/E
http://codeforces.com/problemset/problem/21006/E
http://codeforces.com/problemset/problem/21027/C
http://codeforces.com/problemset/problem/21027/C


[4] Contest 914D – Bash and a Tough Math Puzzle. http:
//codeforces.com/problemset/problem/2914/D.

[5] Contest 4C – Registration. http://codeforces.com/
problemset/problem/24/C.

[6] Contest 230B – TPrime. http://codeforces.com/
problemset/problem/230/B.

[7] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings
of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2623–2631,
2019.

[8] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros
Mancoridis, and Rachel Greenstadt. Source code au-
thorship attribution using long short-term memory based
networks. In European Symposium on Research in
Computer Security, pages 65–82. Springer, 2017.

[9] Kyle R Canavera, Naeem Esfahani, and Sam Malek.
Mining the execution history of a software system to
infer the best time for its adaptation. In Proceedings
of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, page 18. ACM,
2012.

[10] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and
Hugh Leather. End-to-end deep learning of optimization
heuristics. 2017 26th International Conference on Par-
allel Architectures and Compilation Techniques (PACT),
pages 219–232, 2017.

[11] Hoa Khanh Dam, Trang Pham, Shien Wee Ng, Truyen
Tran, John Grundy, Aditya Ghose, Taeksu Kim, and
Chul-Joo Kim. A deep tree-based model for software
defect prediction, 2018.

[12] Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. Tree-to-sequence attentional neural machine
translation. arXiv preprint arXiv:1603.06075, 2016.

[13] Alex Graves and Jürgen Schmidhuber. Framewise
phoneme classification with bidirectional lstm and other
neural network architectures. Neural networks, 18(5-6):
602–610, 2005.

[14] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel,
and Premkumar Devanbu. On the naturalness of soft-
ware. In 2012 34th International Conference on Software
Engineering (ICSE), pages 837–847. IEEE, 2012.

[15] Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. A convolutional neural network for modelling
sentences. arXiv preprint arXiv:1404.2188, 2014.

[16] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[17] Huihua Lu, Bojan Cukic, and Mark Culp. Software
defect prediction using semi-supervised learning with
dimension reduction. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Soft-
ware Engineering, pages 314–317. ACM, 2012.

[18] Laurens van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of machine learning

research, 9(Nov):2579–2605, 2008.
[19] Kewen Meng and Boyana Norris. Mira: A framework

for static performance analysis. CoRR, abs/1705.07575,
2017. URL http://arxiv.org/abs/1705.07575.

[20] Kewen Meng and Boyana Norris. Mira: A framework for
static performance analysis. In 2017 IEEE International
Conference on Cluster Computing (CLUSTER), pages
103–113. IEEE, 2017.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

[22] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao
Wang. TBCNN: A tree-based convolutional neural
network for programming language processing. CoRR,
abs/1409.5718, 2014. URL http://arxiv.org/abs/1409.
5718.

[23] Lili Mou, Ge Li, Yuxuan Liu, Hao Peng, Zhi Jin, Yan Xu,
and Lu Zhang. Building program vector representations
for deep learning. CoRR, abs/1409.3358, 2014. URL
http://arxiv.org/abs/1409.3358.

[24] Sri Hari Krishna Narayanan, Boyana Norris, and Paul D
Hovland. Generating performance bounds from source
code. In 2010 39th International Conference on Parallel
Processing Workshops, pages 197–206. IEEE, 2010.

[25] Iulian Neamtiu, Jeffrey S Foster, and Michael Hicks. Un-
derstanding source code evolution using abstract syntax
tree matching. ACM SIGSOFT Software Engineering
Notes, 30(4):1–5, 2005.

[26] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
On the difficulty of training recurrent neural networks.
In International conference on machine learning, pages
1310–1318, 2013.

[27] Jeffrey Pennington, Richard Socher, and Christopher D
Manning. Glove: Global vectors for word representation.
In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pages
1532–1543, 2014.

[28] Bryan Perozzi, Rami Al-Rfou’, and Steven Skiena. Deep-
walk: online learning of social representations. In KDD,
2014.

[29] Hanmin Qin and Xin Sun. Classifying bug reports into
bugs and non-bugs using lstm. In Proceedings of the
Tenth Asia-Pacific Symposium on Internetware, Internet-
ware ’18, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450365901. doi:
10.1145/3275219.3275239. URL https://doi.org/10.1145/
3275219.3275239.

[30] Dan Quinlan and Chunhua Liao. The rose source-
to-source compiler infrastructure. In Cetus Users and
Compiler Infrastructure Workshop, in conjunction with
PACT 2011, October 2011.

[31] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
Modeling relational data with graph convolutional net-
works. In European Semantic Web Conference, pages
593–607. Springer, 2018.

10

http://codeforces.com/problemset/problem/2914/D
http://codeforces.com/problemset/problem/2914/D
http://codeforces.com/problemset/problem/24/C
http://codeforces.com/problemset/problem/24/C
http://codeforces.com/problemset/problem/230/B
http://codeforces.com/problemset/problem/230/B
http://arxiv.org/abs/1705.07575
http://arxiv.org/abs/1409.5718
http://arxiv.org/abs/1409.5718
http://arxiv.org/abs/1409.3358
https://doi.org/10.1145/3275219.3275239
https://doi.org/10.1145/3275219.3275239


[32] Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto,
Atsushi Miyamoto, and Tadayuki Matsumura. Auto-
matic source code summarization with extended tree-
lstm, 2019.

[33] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
Lstm neural networks for language modeling. In Thir-
teenth annual conference of the international speech
communication association, 2012.

[34] Kai Sheng Tai, Richard Socher, and Christopher D
Manning. Improved semantic representations from tree-
structured long short-term memory networks. In Pro-
ceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1556–1566, 2015.

[35] Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou
Zhao, Jian Wu, and Philip S. Yu. Multi-modal attention
network learning for semantic source code retrieval,
2019.

[36] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang
Ye, Peng Cui, and Philip S Yu. Heterogeneous graph
attention network. In The World Wide Web Conference,
pages 2022–2032, 2019.

[37] Ronald J Williams and David Zipser. A learning al-
gorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

11


	I Introduction
	II Dataset Description
	II-A Data Collection
	II-B Generating Code Pairs

	III Proposed Approach
	III-A Problem Formulation:
	III-B Tree-Structured LSTMs for AST Modeling

	IV Methods
	IV-A AST Generation
	IV-B Constructing Node Embeddings
	IV-C Training Models
	IV-D Classifier Design

	V Experimental Setup
	V-A System
	V-B Deep Representation Learning Techniques
	V-C Hyper-parameter Tuning

	VI Results
	VI-A Model Evaluation and Generalization
	VI-B ROC vs Accuracy Metric
	VI-C Impact of Architectural Choice
	VI-D Impact of Data Sampling and Augmentation
	VI-E Prediction Sensitivity
	VI-F Visualizing Learned Representations

	VII Discussions
	VIII Related Work
	IX Conclusion

