arXiv:2201.01863v3 [cs.LG] 5 Apr 2023

CFU Playground: Full-Stack Open-Source
Framework for Tiny Machine Learning (TinyML)

Acceleration on FPGASs

Shvetank Prakash* Tim Callahan’ Joseph Bushagour Colby Banbury*
Alan V. Green' Pete Warden” Tim Ansell’ Vijay Janapa Reddi*

*Harvard University tGoogle $Purdue University Y Stanford University

Abstract—Need for the efficient processing of neural networks
has given rise to the development of hardware accelerators.
The increased adoption of specialized hardware has highlighted
the need for more agile design flows for hardware-software
co-design and domain-specific optimizations. In this paper, we
present CFU Playground— a full-stack open-source framework
that enables rapid and iterative design and evaluation of machine
learning (ML) accelerators for embedded ML systems. Our tool
provides a completely open-source end-to-end flow for hardware-
software co-design on FPGAs and future systems research.
This full-stack framework gives the users access to explore
experimental and bespoke architectures that are customized
and co-optimized for embedded ML. Our rapid, deploy-profile-
optimization feedback loop lets ML hardware and software
developers achieve significant returns out of a relatively small
investment in customization. Using CFU Playground’s design and
evaluation loop, we show substantial speedups between 55x and
75x. The soft CPU coupled with the accelerator opens up a new,
rich design space between the two components that we explore
in an automated fashion using Vizier, an open-source black-box
optimization service.

I. INTRODUCTION

Tiny machine learning (TinyML) is a fast-growing field at
the intersection of ML algorithms and low-cost embedded
systems. It enables on-device sensor data analytics (vision,
audio, IMU, etc.) at ultra-low-power consumption. Processing
data close to the sensor allows for an expansive new variety
of always-on ML use-cases that preserve bandwidth, latency,
and energy while improving responsiveness and maintaining
privacy [1]]. Given the need for energy efficiency when running
ML on these embedded platforms, custom processor support
and hardware accelerators for such systems could present the
needed solutions. However, the field of ML is still in its
infancy and fast-changing. Thus, it is desirable to avoid a
massive non-recurring engineering (NRE) cost upfront, espe-
cially for low-cost embedded ML systems. Building ASICs is
both costly and time-consuming. Moreover, since embedded
systems are often task-specific, there is an opportunity to avoid
general-purpose ML accelerators and instead explore task and
model-specific ML acceleration methods. This setting presents
the need for an agile design space exploration tool that allows
us to adapt to the changing landscape of ML and hardware.

To enable holistic hardware-software co-design and eval-
uation of domain-specific performance optimizations easily,

CFU Playground

Architectural
Suggestion % Renode Emulation

Custom TFLM

MLPerf Tiny \
Benchmarks

/\ é Kernels
o S Tensorflow Lite for o
- 2] Common Libraries e Model Profiling
Vizier
Search RISC-V Compiler
Space
o Cycle Counters. Custom Instructions
Algorithm s
H
k] LS VexRISC-V
Metrics © SeC cPU Custom Function Unit
Objective
Function F4PGA / Yosys+Nextpnr / Vivado / Radiant
e
E LiteX Supported R Monitori
g FPGA board esource Monitoring
Power =
W y -
Deplo Profile Optimize
Performance ploy 4

Area

Fig. 1: CFU Playground allows users to design and evaluate
model-specific ML enhancements to a “soft” CPU core. The
Playground is wrapped around Vizier, an open-source black-
box optimization service, to enable ML-driven design space
exploration.

we present CFU Playground It is a full-stack open-source
framework for iteratively (deploy—profile—optimize) explor-
ing the design space of lightweight accelerators in an ag-
ile manner (Figure [I). The framework is unique in that it
couples together various open-source software (TensorFlow
Lite Micro/TFLM, GCC), open-source RTL generation IP and
toolkits (LiteX, VexRiscv, Migen, Amaranth), and open-source
FPGA tools for synthesis, place, and route (yosys, nextpnr,
FAPGA/SymbiFlow, etc.). By using open source for the entire
stack, we enable the end-user to customize and co-optimize
hardware and software, resulting in a specialized solution
unencumbered by potential licensing restrictions and not tied
to a particular FPGA, board, or vendor. CFU Playground
yields large returns out of a relatively small investment in
customized hardware and is useful for the long tail of low-
volume applications.

Yet another novelty of CFU Playground is in its ability to
design custom function units (CFUs) for distinct ML opera-
tions. CFUs represent a novel design space that balances ac-

ICFU Playground is available at/www.github.com/google/CFU-Playground,

www.github.com/google/CFU-Playground

celeration with flexibility and reduces the overhead associated
with discrete accelerators. The full-stack solution presented
with our hardware-in-the-loop evaluation process works out-
of-the-box. It also accounts for end-to-end bottlenecks that
may arise elsewhere in the stack (software overheads, pre-
processing, etc.) but are often ignored when designing in iso-
lation. From an initial working, non-customized solution, the
user can incrementally specialize individual (hardware or soft-
ware) components to improve their application’s performance.
Due to the lightweight nature of CFUs, one can develop
and make changes quickly as compilation and deployment
targeting embedded ML platforms is rapid.

We use the framework to demonstrate how to design CFUs,
extending an FPGA-based RISC-V core in a way that is
fully integrated with the rest of the system software stack.
The primary reason CFUs are suitable for ML inference
is that there are often a few small yet critical hotspots. A
small amount of custom hardware that exploits the bit-level
flexibility of an FPGA can help accelerate large portions
of execution time. A tightly integrated CFU allows us to
leave complexity, setup, and outer loops in the software while
efficiently tackling the core computational bottlenecks in the
datapath. Moreover, as we demonstrate, CFUs allow us to
incrementally grow the unit until it almost becomes a full-
blown ML accelerator. Using our agile design flow, we show
how to accelerate the convolution operation of MobileNetV2
via a combination of optimizations such as loop unrolling,
SIMD multiply-accumulate, and pipelining to a 55x speedup.
It took a senior engineer only working part-time on the project
about five weeks to achieve this massive speedup.

Additionally, with a Keyword Spotting application, we show
how, due to the nature of the RISC-V soft CPU, the core can
not only be extended (new instructions added through the use
of a CFU) but also tailored (e.g., cache sizes modified) to
meet the platform’s constraints given limited resources. This
also enables the user to perform a design space exploration
between resources allocated to the CFU, CPU, or memory
system. Exploitation of this ability along with strategic use of
parallelism and pipelining led to an overall speedup of 75x.
It took an undergraduate-level intern with minimal FPGA and
hardware experience under four weeks to achieve this speedup,
owing to the various abstraction layers.

In summary, our contributions are as follows:

o An out-of-the-box, full-stack framework that fully in-
tegrates open-source tools across the entire stack to
facilitate rich community-driven ecosystem research and
development.

¢ An agile methodology to iteratively design and evalu-
ate tightly-coupled, bespoke accelerators for resource-
constrained, latency-bound TinyML applications.

« We demonstrate novel model-specific resource allocation
trade-offs between the CFU, CPU, and memory system
that enable optimal ML performance on resource-
constrained FPGA platforms for two important use cases.

’ Platform ‘ Freq. ‘ Memory ‘ Storage Power ‘ Price ‘
Cloud GHz 10+GB TBs-PBs 100 W-kW $1000+
Mobile GHz | Few GB GBs 1I~10 W $100+
Tiny MHz KBs Few MB | uW ~ mW | < $10

TABLE I: Cloud & Mobile ML Systems vs. TinyML systems.

« We bundle CFU Playground with Vizier, an open-source
black-box optimizer from Google to enable automated
design space exploration of the CPU paired with a CFU.

II. BACKGROUND & MOTIVATION
A. Tiny Machine Learning (TinyML)

TinyML is the deployment of machine learning (ML) al-
gorithms onto low-cost, low-power, and resource-constrained
microcontroller (MCU) systems. TinyML enables on-device
ML and achieves this using a fraction of the compute resources
needed for traditional ML systems. Table [I| compares TinyML
with traditional BigML (such as cloud and mobile systems)
and shows how TinyML is orders of magnitude smaller in
terms of compute, memory, storage, power, and cost. The
ML models running on-device can be used for intelligent, on-
device sensor analytics, unlocking always-on ML use-cases.
While there are many benefits to TinyML, the heterogeneity
of MCU hardware and limited resources available on them
presents new challenges.

MCUs typicallly only have ten to a few hundred KBs of
SRAM and one to two MBs of Flash. This severely limits
the size of the on-device ML models. Compute, memory, and
storage are also often tightly integrated, limiting the ability to
adapt the resources flexibly to various needs. While these sys-
tems have proved capable of basic ML tasks such as Keyword
Spotting, Visual Wake Words, and Anomaly Detection [2]],
specialized hardware is needed to support more advanced
applications while maintaining a low-power operating point.

B. Need for Agile and Full-Stack Research Frameworks

TinyML presents numerous challenges that we believe an
open-source ecosystem can address through systems research
and development. ML acceleration on microcontroller-class
hardware is a new area, so TinyML deployment tools and
runtime environments are often vendor-specific, leading to
software fragmentation across the hardware platforms [3|.

Moreover, many of the TinyML tools are not publicly
accessible. This lack of access makes isolating and comparing
accelerator performance challenging. In addition, hardware
customization is an iterative process, especially for ML de-
velopment in which the algorithm and model itself typically
undergo refinement. For example, there is often a back-and-
forth between the ML team and processor implementation
team—"“What if we quantize this layer to 4-bits?”’—to achieve a
solution that meets both the performance goals as well as the
embedded system’s resource constraints.

To that end, there is a clear and present need for agile design
space exploration tools, despite prior work (which we discuss
extensively in Section [V). While simulators are useful and

good for functional correctness, getting accurate performance
estimates is difficult. Modeling all features of a system (e.g.,
multiple clocks, asynchronous interfaces, mixes of memories
with different bandwidth and latency, etc.) accurately can
result in a slow simulation also. When running with hardware-
in-the-loop, users know that measurements collected are not
overlooking a key performance factor.

Additionally, if one is successful speeding up computation,
the system often becomes memory or I/O limited. Therefore,
modeling and evaluating the ML accelerator’s performance
from a full-stack system perspective is also important. Mod-
eling bus latencies including contention and arbitration is
inexact at best using simulators. Full-system cycle-accurate
simulations are too slow for agile design.

C. Design Space Exploration on FPGAs

FPGAs open up complex design space exploration for
customized microarchitectures that extend beyond the ML
accelerator and include the CPU. The opportunity exists with
an FPGA platform to customize the processor to adapt it to
perform the application’s computation efficiently. ML compu-
tations tend to be regular and repetitive, the same sequence
of operations repeated millions of times. We can focus on
improving the execution of this “hot” computation while using
standard instructions to perform the rest. A small amount of
custom hardware for these hotspots that exploit the bit-level
flexibility of FPGAs can translate to large improvements.

An FPGA platform also allows for an accelerator unit to
be tightly coupled into the CPU pipeline that can be easily
invoked by adding new custom instructions that complement
the CPU’s standard functions. It is an alternative to treating
ML accelerators as discrete processing units, which suffer
from “Al Tax” [4], [5]]. Along with the ease of programming,
tight coupling is beneficial for latency-bound applications [6]]
as needed for TinyML [2]]. Furthermore, the bit-level flexibility
of FPGAs allows efficient implementation of operations on
small data sizes and non-standard data representations, and
even packing, unpacking, and converting between data types.

An FPGA-based platform has benefits other than compu-
tational efficiency. In embedded ML applications, security
is often paramount due to their always-on nature. A soft
CPU provides transparency so that one knows exactly what
is inside, in contrast to needing to place blind trust in the
supply chain of the chips acquired. Another protection against
supply chain uncertainty is that if the original FPGA target
becomes unavailable, with minimal work you can switch to
another device or vendor since your “processor,” including
CPU and custom function unit(s), is just Verilog that can be
deployed on any FPGA with enough resources.

III. CFU PLAYGROUND OVERVIEW

There is a need for accessible and agile tools such as
CFU Playground for experimental TinyML and systems re-
search, which combine a collection of gateware, software and
hardware pieces, as shown in Figure |I{ In this section, we

funct7 | rs2 | rs1 | functd | rd | opcode

T
|
—
Register File_] .
i ;
T

: vy
\ aw / "\ cru /
]

CcpPu I CFU

Driver

256MB
DDR RAM

LiteX SoC

Fig. 2: Custom Func. Unit. Fig. 3: LiteX SoC.

describe the design of our framework and each of these major
components in greater detail.

A. Custom Function Unit (CFU)

The CFU7| is a small piece of custom logic added in
hardware to extend the CPU’s datapath to accelerate a discrete
function determined by the developer. A custom function unit
(CFU) can improve program hotspot execution in many ways.
A CFU can specialize operations for constant operands, per-
form multiple operations per cycle through parallel computa-
tion of independent operations, perform a fusion of successive
operations within a cycle, or pipeline the computations across
multiple cycles. Flexible, configurable storage also allows the
data to be stored and reused locally, thus reducing unnecessary
data movement. The user can also add and perform a combina-
tion of these iteratively to progressively improve performance.

The CFU follows the RISC-V R-format in which it receives
two operands from the register file and writes one result back.
A CFU can support state, multiple custom instructions, and
pipelining. Figure [2| depicts the architecture of the CFU in
relation to the rest of the CPU. The boundary between the CPU
and CFU is strictly logical. The current implementation flattens
the design and optimizes, places, and routes it all together.

B. Gateware

CFU Playground incorporates a CFU into a System-on-Chip
(SoC) on an FPGA to capture the full-stack system effects of
accelerating ML models. See Figure |3| Its gateware is built
upon the LiteX framework [8]]. LiteX provides a convenient
and efficient infrastructure to create FPGA soft cores and
SoCs. For any board to be used in CFU Playground, it must
first have a LiteX description. Most popular commercially-
available boards already have a description in the crowd-
sourced LiteX boards library. For a private prototype board,
the description can be created and maintained locally.

The CFU Playground user has access to the full set of LiteX
options for customizing the SoC. For example, on boards that
support an L2 cache, the L2 cache size can be changed simply
by adding this line to the project Makefile:

export EXTRA_LITEX_ ARGS='--12-size=16384’

2CFUs are part of the Composable Custom Extensions Project [7]. The
project’s proposal aims to create a solution the allows for creation of reusable
extensions for any hardware without having to wait years for ratification.
Thus, the CFU approach combines the advantages of standard and custom
extensions.

To make that change for all projects when using that board,
add this to the board’s customization in one line of Python:

args.l2_size = 16384

The soft core used in CFU Playground is VexRiscv, an open-
source implementation of a RISC-V CPU in SpinalHDL [9]].
VexRiscv was the winner of the soft CPU contest at the RISC-
V Summit and has been optimized for FPGAs. The design of
VexRiscv is highly configurable, providing the ability to easily
plugin or remove many different features for performance and
functionality such as pipelining stages, caches, and floating
point units. This customization ability lends itself well to
enabling the design space exploration of CPU vs. CFU.
Currently VexRiscv is the only soft CPU that supports the
specific CFU interface used. Future work aims to add the CFU
interface to other RISC-V CPUs. Nonetheless, this still gives
the developer a wide array of VexRiscv designs to explore.

C. Hardware

The gateware for CFU Playground is adaptable to a wide
range of FPGAs. Table [II| lists a few of the supported FPGA
boards. The gateware can fit on a board as small as Fomu [[10]]
for TinyML prototyping, which is 1 e¢m? and fits in a USB
port. However, when more resources are available, a more
powerful soft CPU and CFU can be built, and with more
memory, larger models can be run. Thus, the system is
inherently scalable.

The minimum requirements for the board and its FPGA
include the following. There must be some means of creating
a TTY / UART connection to interact with software on the
board. The FPGA needs enough resources to build VexRiscv
CPU variants. The system must have enough RAM (on the
FPGA or externally on the board) to provide working memory
for the software. There must be sufficient RAM or ROM to
hold code and constant data like the TensorFlow Lite model.

It is difficult to put an exact set of minimum requirements
on any of the resources for the evaluation hardware since they
are interchangeable to some degree. For example, the CPU can
be built purely out of LUTSs, but it will require many fewer
LUTs if it can use a block RAM for its register file and a DSP
block for its multiplier.

CFU Playground currently supports the Xilinx 7-Series as
well as the Lattice iCE40, ECPS, and CrossLink FPGAs. The
Fomu with the iCE40UP5k FPGA is close to the smallest
usable board. It features 5280 logic cells, 128kB on-chip
large RAM, 30 512-byte block RAMs, 8 16-bit x 16-bit
DSP/multiplier blocks, and fits into a USB slot. Verilog for the
CFU is compiled to a bitstream by either an open-source (e.g.,
F4PGA/SymbiFlow [11]]) or vendor-supplied FPGA toolchain.
We note that the CFU, though, can be written in any HDL
able to generate Verilog that the user chooses (e.g., Chisel,
Bluespec, Amaranth, etc.).

D. Software

To invoke the CFU hardware, custom instructions must be
added to the CPU’s instruction set. However, it is not the
compiler’s responsibility to find uses for the instructions. It

Board Look Up Tables (LUTs) | DSPs RAM ROM | Sys Clk Freq
Arty A7-100T 101,440 240 256MB | 16MB 100MHz
Arty A7-35T 33,280 90 256MB | 16MB 100MHz

OrangeCrab 24,000 28 128MB | 16MB 75MHz
ULX3S (12F) 12,000 12 32MB 4MB 50MHz
iCEBreaker 5280 8 128kB 16MB 24MHz

Fomu 5280 8 128kB 2MB 12MHz

TABLE II: Examples of embedded FPGA boards tested and
supoorted by CFU Playground.

only needs to generate them when requested by the user. This
is same process used in each of the hardware optimized kernels
in TensorFlow Lite for Microcontrollers (e.g. CMSIS-NN [12])
and allows us to use existing RISC-V compiler support,
which we value for rich open-source ecosystem research and
development in the future. Therefore, we can take a stock
RISC-V GCC toolchain, coupled with a macro we provide that
expands to “asm” directives to generate the encoded custom
instructions where necessary. The macro takes 4 arguments,
and returns one result:

g = cfu_op(funct7, funct3, a, b);

The macro directly generates the encoded 32-bit value, so
not even the assembler needs modification. “funct7” and
“funct3” are 7-bit and 3-bit fields respectively that specify
the opcode of the custom instruction. They must be compile-
time constant expressions. “a” and “b” are the C/C++ 32-
bit integer variables used as operands for the instruction, and
a 32-bit result is returned. The macro gets information from
the compiler regarding the register locations of operands and
result (a, b, and g in this example) to generate the correct
bit fields for register sources and destination in the encoded
instruction, so extra register-to-register copies are not needed.
For readability, the user may define a macro for each custom
instruction, in terms of the base cfu_op () macro as shown:
cfu_op (1,1, (a),0)
#define bit_reverse (a) cfu_op(l,2, (a),0)
#define simd_add(a, b) cfu_op (1,3, (a), (b))

As with any inline assembly instructions, these custom
instruction macros can be intermingled with regular C code.

When disassembling, the toolchain knows nothing about the
custom instructions, not even which bits specify registers, so
it simply writes out the 32-bits as a hexadecimal value. CFU
Playground converts the hexadecimal to readable assembly
including the source and destination registers.

This is an example of custom instruction macros intermixed
with regular C code:

#define single_popcount (a)

int *x;

int b;

tl = *xx;

t2 = cfu_op(0, 0, tl, Db);
t3 = cfu_op(l, 0, t2, b);
*x = t3;

And the following is the result of the example compiled and
then disassembled, illustrating how the custom instructions
can be used with no extra overhead:

400001a0: 00812783 1w a5, 8 (sp)
400001a4: 00d7878b cfu[0,0] a5, a5, a3
400001a8: 00d7978b cfu[l,0] a5, a5, a3
400001lac: 00f12423 sw a5,8(sp)

It is the user’s responsibility to call the custom opera-
tions in their code. The custom instruction macros can be
intermixed with regular C code, similar to any other C/C++
operation. TensorFlow Lite for Microcontrollers (TFLite Mi-
cro/TFLM) [13] is the inference framework that CFU Play-
ground uses for the deployment of the neural network. The
user must provide an optimized kernel that uses the new cus-
tom instructions to realize the runtime performance improve-
ments. Since CFU Playground and TFLite Micro use a source-
file overlay mechanism, no modifications are necessary to
the inference framework. Simply implementing the optimized
kernel in a separate file will cause the build to pick up the new
implementation. Typically, just one or two TFLite operation
types are targeted for acceleration, so only the kernels that
implement those op types need to be modified and optimized.
TFLite Micro uses an interpreter to perform inference and
can call the specifically optimized kernels for the individual
network layers.

Moreover, TFLite Micro provides flexible deployment at the
cost of a reasonably minimal memory and latency overhead
compared to vendor-specific frameworks. Thus, if the user
created new instructions to speed up the CONV_2D opera-
tion type, they would start by copying the TFLite library
file to the location under the current project directory:
./src/tensorflow/lite/kernels/internal/reference/integer_ops/conv.h
And then they would modify it to use the custom instructions.

The TFLite library kernels are general in that they can
handle any legal parameterization of the TF operations, and
any legal input or output tensor shapes. However, the user
may choose to handle only particular parameterizations with
their modified, optimized kernel. In this case, the modified
version of the kernel usually contains a check at entry; if the
parameters fall outside of the supported set, then execution is
delegated to the general kernel. At deployment, though, the
general version can be removed if the model(s) contain only
parameterizations that are supported by the specialized kernel.

E. Testing, Simulation, and Benchmarking

The menu-driven software contains kernel-level unit tests
from the TFLite Micro library. It also contains full-inference
golden tests, with set inputs and expected outputs for each
provided model. Additional models can be added as desired,
which we demonstrate in the evaluation section (Section [[V).

To support debugging and testing, users can write a software
emulation of their CFU, using the high-level C programming
language, that is functionally equivalent but of course much
slower, which can be swapped in for the real CFU. The

software emulation function has multiple uses. For example,
random or directed CFU-level unit tests running on the FPGA
board can feed the same sequence of inputs to both the real
CFU and to the software emulation, and expect to see the same
sequence of outputs to test for correctness. When execution
using the real CFU appears to be incorrect, the CFU can
be replaced by the software emulation to determine if the
problem is in the code that uses the custom instructions or
in the implementation of the user-defined CFU. Moreover,
the application running on the FPGA board has access to
printf () and terminal output, so printing variable values
during execution can be done as an alternative debugging
method. Some boards support a debug bridge to connect a
debugger to the running system. In this case, a debug-enabled
VexRiscv variant must be used and such variants readily exist.

CFU Playground also contains simple tests for running
the actual custom instructions against the software emulation
with random, exhaustive, or directed inputs. These are written
in C and run on the board’s SoC. Directed tests are more
appropriate for complex, stateful CFUs, and the existing code
can be easily adapted as appropriate for each project.

For complex CFUs written in Amaranth HDL (previously
known as nMigen [14]]), an open-source Python-based toolkit
for RTL design, unit test facilities are provided in Python
itself. Given Amaranth’s unit testing, and the other testing
methodologies described below, Verilog-level, simulation unit
testbenches for the CFU may not be needed, but the user can
certainly create their own.

CFU Playground also supports the Renode emulator [15],
which emulates the physical hardware system. While follow-
ing a hardware-in-the-loop process and running on a physical
board is recommended by CFU Playground, a Renode em-
ulation can be used to test CFUs on other boards without
having them. Renode performs ISA simulation of the CPU,
combined with cycle-accurate Verilog simulation of the CFU,
thus testing functional correctness of the CFU implementation.
It also simulates the RAM, ROM, and UART. The Renode
emulator also allows us to capture the waveforms from the
CFU operation, which is extremely useful for tracking down
errors in the hardware design of the user-defined CFU.

Moreover, to help the field progress, there has been an ef-
fort to benchmark these heavily resource-constrained TinyML
systems to drive standardization and innovation in the indus-
try [3]. CFU Playground comes packaged with the MLPerf
Tiny [2]] deep learning workloads for benchmarking purposes.

There are two interesting use cases in which an agile design
flow like ours can help support this benchmarking ecosystem
and research community. The first occurs when a user has a
specific idea for how to accelerate an existing model. Being
able to rapidly prototype and benchmark that idea before
going through the expensive and time consuming process of
building an ASIC accelerator can enable exploration of new
hardware architectures. The second use case addresses the
hardware lottery problem [16] and can enable exploration of
new model architectures. One of the reasons CNNs exploded
was because of their convenient mapping to existing hardware

(i.e., GPUs). However, if a user has an idea for a novel model
architecture for TinyML that is not well-suited for existing
hardware, CFU Playground could be used to quickly bootstrap
hardware for the new model architecture so that it could be
fairly benchmarked against existing model architectures that
already have mature hardware support. This could assist in
proving their model is efficient given the proper hardware.

F. Design Space Exploration

We package CFU Playground with the open-source version
of Vizier [17], a black-box optimization service based on the
Google’s internal Vizier framework. Using this service, our
framework enables automated design space exploration (DSE)
of the CPU coupled with CFU. The DSE parameters could
include branch predictors types (static, dynamic, dynamic
target), custom function units (SIMD, MAC, etc.), I- and D-
cache sizes, multipliers, dividers, shifters, etc. The user can
readily make these parameters available in Python to Vizier’s
search space using the API:

problem.search_space.select_root ()

.add_categorical_param(
name='prediction’,
feasible_values=[’'none’, ’static’,
"dynamic’, ’dynamic_target’]

)

Vizier’s service then returns different configurations to
explore based on what the user would like to optimize (e.g.,
resources or latency). Yosys [18], the open-source synthesis
tool used in CFU Playground, calculates the FPGA logic cell
resources required by a CPU-CFU design, which are then
passed to Vizier. Verilator [19], a cycle-accurate simulator
also packaged with the framework, is used to determine the
workload latency for Vizier when running experiments at
scale in the cloud. The latency can also be measured directly
on the board with our hardware-in-the-loop capability. CFU
Playground’s DSE feature allows users to tune their CPU for
their workload and analyze the trade-offs between CFU and
CPU components, which is extremely valuable in resource
constrained environments. Vizier’s systematic search is critical
for exploring the large and diverse design space, enabled by
CFU Playground, in a tractable amount of time. We provide a
vizier_dse.py script that can be executed out-of-the-box
to run this design space exploration loop (Figure [I).

IV. EVALUATION

In this section, we first present the design and evaluation
methodology used in CFU Playground (Section [[V-A). After
outlining how we facilitate guided optimizations during ex-
perimental design, we present two case studies to evaluate the
framework’s usability (Section [[V-B). Finally, using the accel-
erator designs from the case studies, we assess the trade-offs
between CPU and CFU using automation and highlight the
rich design space enabled by CFU Playground (Section [[V-C).

A. Development Life Cycle

CFU Playground enables a deploy-profile-optimize design
and evaluation loop that enable iterative, guided optimization

Deploy Profile Optimize

19
I
s
=
? o

g B RISC-V Custom

L Compiler Instructions
o ©
50
S ; Resource Custom CFU /
E Syt Memory Hierarchy
T

Repeat

Fig. 4: The workflow of CFU Playground that enables system-
atic development and evaluation of experimental and bespoke
cross-stack optimizations.

of resource-constrained ML systems. The toolchain is con-
structed such that a developer can, at any layer in the stack,
easily run their design, measure it’s performance at a fine
granularity, implement custom optimizations, and repeat.

Figure [] illustrates this evaluation workflow and highlights
components of CFU Playground that fulfill a role in the
design cycle at each layer in the deployment stack. The full-
stack spans across the Software, Gateware, and Hardware
components as we have illustrated in Figure [T}

Software Optimization: CFU Playground enables the de-
veloper to profile the model to understand baseline per-
formance. For example, TFLM’s built-in profiling shows
the name and running time of each TFLM operation (i.e.
CONV_2D, DEPTHWISE_CONV, etc.) as it executes. Cycle
counters can then be used to profile parts of the C code for
individual operations to identify hot spots.

Based on the profiling information, the developer can create
a custom TFLM op that does things like caching frequently
used variables and unrolling loops to get acceleration fairly
quickly this way via software optimization alone.

Hardware Acceleration: After simple software optimiza-
tions, the developer can identify opportunities for CFU acceler-
ation with resource monitors that can identify hardware bottle-
necks. Examples of such optimizations could include moving
loop-invariant variables into the CFU, making SIMD versions
of instructions, and making their corresponding custom in-
structions. Such optimizations can provide further significant
speedups in combination with software optimizations.

Automated Co-design: After the developer performs soft-
ware and hardware optimizations, there is still opportunity for
more specialization by exploring the design space of CPU +
CFU configurations. This allows for co-design between the
configurable processor and accelerator to help tailor the user’s
final design even further towards its specific task. To help
assess resource-performance trade-offs between the soft CPU
+ CFU configurations, the developer can use the framework’s
design space exploration infrastructure to automatically tune
their embedded ML system to meet constraints.

W DSP % Block Mem % WM Slice LUTs %

® Speedup

100
50

Resource utilization (%)

(3]
Speedup factor (log scale)

Fig. 5: MobileNetV2— 1x1 CONV_2D speedup.

B. Case Studies

To show how CFU Playground is useful in practice for end-
users and experimental designs, we show the iterative devel-
opment methodology using two common TinyML use cases:
Image Classification (IC) and Keyword Spotting (KWS).

The IC example showcases how CFU Playground enables it-
erative hardware-software improvements with ease. The KWS
example shows how we can co-optimize the CPU and the CFU
together in severely resource-constrained environments.

We focus on performance optimizations but the methods
can also extend to energy-related optimizations. All of these
examples and infrastructure are publicly available. The two
baselines mentioned in the following sections were obtained
running on a variant of the basic VexRiscv configuration (i.e.,
with no CFU acceleration).

1) Image Classification Acceleration on Arty: We
present how the CFU Playground makes it easy to
deploy—profile—optimize and achieve a speedup of 55x for
the most time-consuming TFLite operator, bringing operator
time down from 5.5 seconds to 0.10 seconds per inference.
We begin with software optimizations and then move down to
hardware, showing the co-design easily enabled by our tool.

Target Objective: The goal was to speed up the operation
type that dominated the runtime so that it became insignificant,
to show the use of our iterative methodology, which could then
be applied to all the other operations in theory as well.

Deploy: We targeted the MobileNetV2 (MNV2) model for
efficient image classification and optimized its performance on
an Arty A7-35T board, which has a Xilinx XC7A35T FPGA
with 256 MB of external DDR3 memory. The model was
quantized down to 8-bit integers (int8) as this is what the
TFLite Micro inference framework that we used supports.

Profile: Profiling of MNV2 on the Arty board showed
that the unaccelerated baseline application took about 900 M
cycles. About 95% of its execution time was spread across
three different types of convolutions: 1x1 2D Convolution
(63%), Depthwise Convolution (22.5%), and 3x3 2D Con-
volution (11%). Since most of the cycles were consumed
by the CONV_2D 1x1 layers, our primary focus was on
accelerating that particular operator. In the computation for
a 1x1 convolution, for each x, y spatial coordinate, an input
vector (the input tensor’s column at z, y with the length

——I FilterValueFetcher

Control Logic

e |

Madd4 Pipelins
I

Accumulator

Bias | Shift | Offset
Store | Store | Store

\:I Storage
\:I Calculation

\:I Control
Fig. 6: MNV2 CFU control logic and datapath design.

Post Processor
Pipeline

ByteToWord
Shifter

determined by the number of input channels) is multiplied
by a matrix to produce an output vector (the output tensor’s
column at x, y with length equal to the number of output
channels). The matrix contains the filter weights, has size
input channels x output channels, and is the same for every
x, y. Post-processing (applying bias, activation function, and
requantization) is applied to each output element.

Optimizations: Figure [5] shows the speedup and resource
usage as we stepped through each of the optimizations, iter-
atively. The optimization labels in Figure [5] will be used for
reference when describing them in the text. We began with
software optimizations to minimize hardware changes until
needed, and only then moved on to CFU hardware support.
The CFU was implemented using Amaranth HDL.

Software Optimizations and Specialization: We started
by creating a new CONV_2D kernel specialized for the 1x1
case, that is, when filter_width and filter_height
are both equal to 1. A check in the general kernel branches
to the specialized kernel when this is the case. Then in the
specialized kernel, filter_width and filter_height
can be assumed to be 1, and we can remove two levels of
looping as well as replace other uses of those parameters with
a constant 1. For example, a padding out-of-bounds check can
be also be removed. These specializations in addition to other
optimizations such as loop unrolling reduced the execution
time by 49%, providing an almost 2x speedup (SW in Fig.[5).

CFU Optimizations: Our first custom instruction accel-
erated the post-processing of each output element. Figure []
shows the CFU microarchitecture. Per-output channel values
for bias, multiplicand, and shift amount were stored in the
CFU. This saved approximately 55 cycles per output, bringing
the speedup to 2.3x (CFU).

Next, moving filter values into the CFU (using the
CFU as a small scratchpad memory) resulted in a small
speed improvement—approximately 2 cycles per multiply-
accumulate (MAC) (CFU hold filt). However, moving input
values into the CFU cost about 2 cycles per MAC. Since the
CFU stores values by word instead of byte, the CPU must
perform bit shifts and sign extensions to use values retrieved
from the CFU. This canceled the speed up from reduced
memory access and better data cache behavior (CFU hold inp).

However, the payoff came in the next step when we built a

4x4 multiply-accumulate (MAC4) instruction that operates on
the packed filter and inputs retrieved from the CFU buffers.
Even though the CPU is still involved in this data movement,
the cumulative speedup reached 9.8 x (CFU MAC4). We then
change the MAC4 instruction to pull input parameters directly
from the previously constructed buffers and move the whole
inner accumulation loop into the CFU. These changes got us
down to less than one cycle per MAC, a cumulative speedup
of 26 X (MAC4Runl). Finally, we connected the accumulation
result directly to post-processing in the CFU without CPU
intervention to reach 31.1x speedup (Incl postproc).
Profiling the optimized version at this point showed that
calculating and writing back 8-bit output channel values one
at a time was not making efficient use of memory bandwidth,
so we restructured the CFU to pack four of these outputs into
a single 32-bit word for the CPU to write back to memory
(Macc4Run4). Finally, we pipelined the CFU to calculate
while loading inputs to hide the input loading overhead
(Overlap). We refer to this complete, large CFU design in
later sections as CFUI.
Summary: Overall, the MNV2-specialized design achieved
a 55x speedup for 1x1 CONV_2D over the original imple-
mentationﬂ Throughout the iterative development process, we
were never close to running out of any FPGA resources (as
shown in Figure [5). Resource usage peaked midway when the
different processing steps were individually implemented on
the CFU. As the processing became more integrated on the
CFU, pathways for moving values back and forth to the CPU
were removed, resulting in overall resource usage reduction.
2) Keyword Spotting Acceleration on Fomu: Keyword
Spotting (KWS) is ubiquitous and an always-on TinyML use
case, making it a perfect candidate for acceleration. This exam-
ple specifically demonstrates resource allocation optimization
and trade-offs among the CPU, memory system, and CFU
on a resource-constrained TinyML device. We show how we
used CFU Playground’s deploy—profile—optimize loop to
accelerate the MLPerf Tiny KWS quantized (int8) model by
75 x with model-specific optimizations and a custom CFU.
Target Objective: We started with a baseline that was 75x
slower than CMSIS-NN hand optimized kernels for ARM
Cortex-M CPUs [[12]]. The goal was to make the cycle count
for our implementation comparable to such optimized kernels.
Deploy: We deployed the system to the tiny Fomu FPGA
board, which is roughly the size of a penny and fits inside a
USB slot. It combines an iCE40UP5k FPGA (with 5280 logic
cells and 128 kB of on-chip RAM) with a 2 MB flash memory.
Profile: The minimal VexRiscv configuration (without
caches, hardware multiplication, branch prediction, or bypass-
ing) did not fit on Fomu. To squeeze VexRiscv onto the
FPGA we needed to remove features from the LiteX SoC
(i.e., hardware timer and reset registers) and reallocate logic
cell usage in the VexRiscv core by removing hardware error
checking (e.g., for misaligned addresses). Iterative hardware

3For an overall speedup of this magnitude, we would also need to speed
up the other significant operator types by a similar amount, which we have
not yet implemented. Our overall speedup as a result for MNV2 was 3.

W DSP %

100
I I l 100

I wlo 3 Y s08
75 50
1535 167

50 7.8 8.3Q

308 B
25
woi
o—=i 8 ¥ 0§ | L 1
~ A . |
K
@
I

Block Mem % M Slice LUTs % @ Speedup

Resource utilization (%)
Speedup factor (log scale)

Fig. 7: Speedup and resource usage for the KWS use case.

multiplication was added for performance, but not division,
which was handled by software emulation. These modifica-
tions were feasible due to the open-source nature of VexRiscv
and LiteX. Detailed knowledge of the CPU was not required
as changes were performed by simple configuration options.

Furthermore, the CFU Playground compiled binary image
would not fit in 128kB, considering that much of this RAM
is needed by TFLite Micro for working data. We modified
the linker script to place the code (.text section) and read-
only data (.rodata section— mostly weights from the ML
models) into flash memory. The KWS application finally fit
but took 2.5 minutes to run, which we eventually optimized
to run in 2 seconds.

Memory System Optimizations: Profiling showed that
the flash ROM accesses were slower than they should be.
This pointed to some potential improvements in the SPI
flash interface. First, we upgraded the ROM interface from a
Serial Peripheral Interface (SPI) to a Quad SPI, substantially
improving the ROM read bandwidth, giving a 3.04x speedup
over the baseline (QuadSPI in Fig. M)

Next, we moved critical sections from the ROM to the
SRAM. Since SRAM capacity was severely limited (128 kB),
we selected the primary bottlenecks, which were deter-
mined via profiling. These included the code for CONV_2D,
Depthwise_CONV_2D, and model weights. This optimiza-
tion led to a total speedup of 7.84x (SRAM Ops and Model).

We then removed unnecessary control/status registers and
SoC features intended for debugging to make space for a larger
I-Cache that decreased the average instruction fetch time. This
led to a performance speedup of 8.3x (Larger I-Cache).

CFU Optimizations: Owing to the previous resource sav-
ings, we now had room to add single-cycle multiplication,
rather than use our iterative ~30 cycle multiplication in our
CPU. This used four of Fomu’s eight DSP tiles and increased
performance by 15.35x (Fast Mult). The savings also created
room to add a 4-way parallel MAC CFU to address the convo-
lution bottleneck (MAC Conv), which required the remaining
four DSP tiles. Depthwise convolution was the second runtime
contributor. It has a different memory access pattern and thus
could use the 4-way multiply-accumulate that we built for the
convolution. Ideally, we could build separate CFU gateware for
depthwise convolution, but there were no remaining resources

to extend the CFU this way. Instead, we utilized a single
lane of the 4-way multiply-accumulate CFU in the depthwise
convolution to achieve a cumulative speedup of 32.10x.
After implementing the SIMD MAC operation, there were
logic cells remaining (although no DSP tiles were left). With
these logic cells, we added extra functionality to the CFU to
perform accumulator post-processing (consisting of saturating
multiplication, rounding division, and output clamping) 14x
faster deep inside the convolution and depthwise convolution
operations. This change led to a 37.64x speedup (Post Proc).
Software Optimizations: On the software front, we special-
ized the operators. The convolution operators in TensorFlow
Lite are quite generalized. Therefore, we informed the com-
piler about constants and invariants (our filter_ width is
always 3, our depth_multiplier is always 1, etc.). This
lets the compiler generate more efficient assembly, decreasing
the number of branches (which are expensive as our MCU-
class CPU does not have room for a predictor here).
Summary: KWS performance improved by a factor of 75x
from the baseline. The time for one inference reduced from
2.5 minutes to under 2 seconds on the FPGA. An ASIC
implementation of the design would be an order of magnitude
faster, but that is outside the scope of this work. Only 3x
of the speedup was directly attributed to the small CFU. We
refer to this CFU design in the next section as CFU2. The other
25x was derived from optimizing the CPU, software, memory
accesses, and system interfaces & drivers. The final optimized
Fomu KWS results, if normalized for the differing clock rates,
are roughly comparable to the MLPerf Tiny results [2] for the
much more complex Cortex-M4 with hand-optimized CMSIS-
NN kernels utilizing the M4 SIMD instructions. We stopped
once we reached this state of the art solution but could have
kept making improvements using the tool. This illustrates the
usefulness of CFU Playground’s iterative design loop running
on a live system, facilitating hardware-software co-design.

C. Automated Design Space Exploration of CPU vs. CFU

After building the CFUs mentioned in the two use cases
in Section (i.e., CFUI and CFU2), we used the DSE
capabilities built into CFU Playground to explore the design
space of different CPU + CFU configurations for the MNV2
workload specifically. The design space included approxi-
mately 93, 000 different design points when considering all of
the soft CPU’s configurable architectural parameters combined
with the CFUs. Figure [§] shows the DSE performed by Vizier.

To scale the number of different design points Vizier could
test, we ran the experiments in the cloud using simulation.
There are three different Pareto curves in Figure [§] The
green curve is for the CPU alone, the blue is for the CPU
coupled with the large, complex CFU1, and the red is for the
CPU with the much smaller and simpler CFU2. The starred
points highlight the overall Pareto-optimal points. These re-
sults demonstrate how CFU designs can create a richer design
space, leading to more optimal configurations. For example,
on the plot we can see there exist design points on the red
curve (CPU + CFU2) that consume fewer resources but are

aii' s % CPU Alone
> o CPU + CFU2 (Small)
- ; CPU + CFU1 (Large)
* %l \ % Pareto-Optimal Design
:\Q) 1 @ Inefficient Design
N 3 i
1 N . i
- 1 N)
" N
] \‘ N \
K 'S N \
] A N
> . -
5 5 v tﬁ -
g 10° J e \\]
o s N Y
5 N

T T T T T T T T
15000 17500 20000 22500 25000 27500 30000 32500
FPGA Logic Cells

Fig. 8: Pareto curves formed by Vizier’s design space explo-
ration. X-axis represents resource consumption on the FPGA
board via logic cells (less is better). Y-axis represents workload
latency via cycle count (less is better). Overall Pareto-optimal
points in design space are starred.

more performant than some of the larger design points on the
green curve (CPU Alone).

V. PRIOR WORK

In recent years, FPGA-based ML accelerators have gained
momentum in the race to speed up ML tasks because of
their efficiency compared to GPUs, lighter investment than
ASICs, and overall flexibility provided by their ability to be
reconfigured [29]. As a result, many tools have been built
to support FPGA design for ML. However, doing a direct
head-to-head quantitative comparison against other tools is
challenging, though, as we believe there is no “one size fits
all” solution for designing custom ML hardware accelerators.
The best choice of workflow is task-dependent and up to the
developer. Therefore, we give a qualitative comparison of CFU
Playground against prior work along different dimensions.
CFU Playground adds a dimension of flexibility on top of
prior art, especially useful in resource-constrained embedded
systems where discrete accelerators are not always feasible.

There have been other tools and workflows for accelerating
ML with custom hardware. Table compares the features
supported by some of the existing frameworks compared to
CFU Playground. More comprehensive and extensive surveys
of existing flows for FPGAs can be found in the related
work [30]-[32]. Specialized ISAs have been explored for
accelerating DNNs using application-specific instruction-set
processors (ASIPs) [33[], [34]. These approaches developed
fixed, domain-specific ISAs for more diverse and generalized
DNN acceleration, in contrast to our extreme model-specific
customization, useful for embedded systems which are often
task-specific and less aimed for general-purpose computation.
Also, the tools used for ASIP accelerators are commercial [35]],
[36] and require costly ramp-up. These tools require a lot
more overhead for users to begin developing and deploying
in comparison to CFU Playground’s working, out-of-the-box
solution that includes a full ML inference stack and SoC

Open
Source

Tightly Coupled/
Specialized ISA

Full
Stack

Full
SoC

Fine-Grained
Accelerated ML Ops

Hardware & Engineer
In-The-Loop

TinyML
Focus

Stock
Compiler

Automated CPU<>Accelerator
Design Space Exploration

CFU Playground ‘ ‘ ‘ ‘

Chipyard [20]

Centrifuge [21

Embedded Scalable Platform [22]

Gemmini [23]

x| X[Xx|Xx

hls4ml [24] X

> [X | x| X

Deepburning [25

DNN-Weaver [26

DNN-Builder [27]

> | X

FINN (28 X X

X [XX [X] x| X

> | X | x| X

> X [x| x>

X XX [XXX [Xx]Xx
> | X [x| x

TABLE III: Comparison of CFU Playground with open-source toolchains supporting custom hardware design for ML workloads.
CFU Playground focuses on open-source development across the full system stack, while providing varying levels of flexibility

for hardware and software (co-)design.

already pieced together and running. CFU Playground is a full-
stack end-to-end framework with designs that can be readily
adopted and reproduced.

Furthermore, it is common to not tightly couple the accel-
erator with the CPU, and most workflows follow this design
pattern [22]-[25]], [27]], [28]. Due to this decoupling, many
flows design the accelerators in isolation before integrating
with the rest of the system and stack. This can cause a failure
post-design due to lack of accounting for effects that arise else-
where in the computing stack or at the system level, such as the
cost of offloading, scheduling, etc. Designing the accelerator
separate from the system does not allow for co-design with
the processor to explore trade-offs with customizing the CPU.
Centrifuge [21]], for example, does not include the CPU in the
exposed hardware design space as it is in CFU Playground.

Chipyard [20] does enable end-to-end integration of tightly
coupled accelerators but does not explore design space trade-
offs between CPU and accelerator or provide automatic param-
eter exploration as our solution does. Gemmini is one work
to briefly mention design trade-offs between accelerator and
CPU but uses an architectural template to generate systolic
array accelerators together with a software stack and integrated
SoC to capture system-level effects [23]].

However, similar to a majority of the accelerator workflows,
Gemmini’s template is designed to optimize and run general
matrix multiplication kernels. hls4ml [24] is a complete tool
for deploying different models to FPGAs, but the accelerators
are also designed to speed up large kernels or the entire model
rather than individually selected ML operations. CFUs provide
finer-granularity than these approaches and can be designed
to accelerate model-specific operations within ML kernels
incrementally as well as entire kernels, while also supporting
the rest of the system stack that would normally be de-
ployed on-device. Finally, most other design flows mentioned
in Table auto-generate hardware implementations of the
accelerators using fixed templates and specialized compilers.
These are limiting and less flexible than CFU Playground’s
largely engineer in-the-loop approach and use of RISC-V.
Moreover many flows are often not model-agnostic, but rather
limited to a specific class of ML models such as FINN [28]].

VI. CONCLUSION AND FUTURE WORK

TinyML requires bespoke architectures that rely on
hardware-software co-design. To that end, CFU Playground
provides users an open-source full-stack framework for ex-
perimental and novel model-specific acceleration. We expose
developers to a fast and iterative design and evaluation flow to
obtain significant speedups by exploring the design space be-
tween the CPU and a tightly-coupled CFU. This is specifically
helpful for heavily resource-constrained platforms that cannot
afford discrete accelerators for power and area constraints.

CFU Playground has been adopted and supported by the
industry and it will continue to stay relevant. We will continue
to evolve CFU Playground with an open-source ASIC flow,
additional model architecture support, direct memory access
for the tightly-coupled CFU engine, and more open-source
RISC-V CPUs (soft and hardened) with the CFU interface.
Investigation of high-level synthesis (HLS) pragmas for identi-
fying where execution hotspots exist to automatically generate
CFUs and insert calls to custom instructions could provide
further automation. Future work will also involve studying the
optimization space for power and energy efficiency.

REFERENCES

[1] T. Yang, Y.-H. Chen, J. Emer, and V. Sze, “A method to estimate the
energy consumption of deep neural networks,” in Asilomar conference
on signals, systems, and computers, 2017.

C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly,
P. Montino, D. Kanter, S. Ahmed, and D. Pau, “Mlperf tiny benchmark,”
NeurlPS Track on Datasets and Benchmarks, 2021.

C. Banbury, , V. J. Reddi, M. Lam, W. Fu, A. Fazel, J. Holleman,
X. Huang, R. Hurtado, D. Kanter, A. Lokhmotov et al., “Benchmarking
tinyml systems: Challenges and direction,” arXiv, 2020.

M. Buch, Z. Azad, A. Joshi, and V. J. Reddi, “Ai tax in mobile socs:
End-to-end performance analysis of machine learning in smartphones,”
in 2021 ISPASS, 2021.

D. Richins, D. Doshi, M. Blackmore, A. T. Nair, N. Pathapati, A. Patel,
B. Daguman, D. Dobrijalowski, R. Illikkal, and K. Long, “Ai tax: The
hidden cost of ai data center applications,” ACM TOCS, 2021.

T. Hanawa, Y. Kodama, T. Boku, and M. Sato, “Tightly coupled
accelerators architecture for minimizing communication latency among
accelerators,” in IPDPS, 2013.

J. Gray, “Introducing composable custom extensions and custom
function units for risc-v,” 2022. [Online]. Available: https:
//fpga.org/2022/04/01/composable-custom-extensions-and-custom- \
protect\ @normalcr \ relaxfunction-units-for-risc-v/

[2]

[3]

[4]

[5]

[6]

[7]

https://fpga.org/2022/04/01/composable-custom-extensions-and-custom- \protect \@normalcr \relax function-units-for-risc-v/
https://fpga.org/2022/04/01/composable-custom-extensions-and-custom- \protect \@normalcr \relax function-units-for-risc-v/
https://fpga.org/2022/04/01/composable-custom-extensions-and-custom- \protect \@normalcr \relax function-units-for-risc-v/

[8]

[9]
[10]

[11]
[12]
[13]

(14]
[15]
[16]

(17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

F. K., S. Bourdeauducq, J. L. Lann, and H. Badier, “Litex: an open-
source soc builder and library based on migen python DSL,” CoRR,
2020.

C. Pappon, “Vexriscv,” 2017. [Online]. Available: https://github.com/
SpinalHDL/VexRiscv

Im-tomu, “Fomu-hardware,” 2018. [Online]. Available: https://github.
com/im-tomu/fomu-hardware

SymbiFlow. [Online]. Available: https://symbiflow.github.io/

L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601, 2018.
R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, and S. Regev, “Tensorflow lite micro,” arXiv,
2020.

M-Labs, “nmigen,” 2018. [Online]. Available: https://github.com/
Antmicro, “Renode,” 2018. [Online]. Available: https://renode.io/

S. Hooker, “The hardware lottery,” CoRR, vol. abs/2009.06489, 2020.
[Online]. Available: https://arxiv.org/abs/2009.06489

X. Song, S. Perel, C. Lee, G. Kochanski, and D. Golovin, “Open source
vizier,” in AutoML-Conf Systems, 2022.

D. Shah, E. Hung, C. Wolf, S. Bazanski, D. E. Gisselquist, and
M. Milanovic, “Yosys+nextpnr: An open source framework from verilog
to bitstream for commercial fpgas,” IEEE 27th FCCM, 2019.

Verilator, 2003. [Online]. Available: https://github.com/verilator

A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10-21, 2020.

Q. Huang, C. Yarp, S. Karandikar, N. Pemberton, B. Brock, L. Ma,
G. Dai, R. Quitt, K. Asanovic, and J. Wawrzynek, “Centrifuge: Eval-
uating full-system hls-generated heterogenous-accelerator socs using
fpga-acceleration,” in 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 1EEE, 2019, pp. 1-8.

P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile soc
development with open esp,” in Proceedings of the 39th International
Conference on Computer-Aided Design, 2020, pp. 1-9.

H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, and H. a. Mao, “Gemmini: Enabling systematic
deep-learning architecture evaluation via full-stack integration,” in DAC,
2021.

F. Fahim, B. Hawks, C. Herwig, J. Hirschauer, S. Jindariani, N. Tran,
L. P. Carloni, G. D. Guglielmo, P. C. Harris, J. D. Krupa, D. S. Rankin,
M. B. Valentin, J. D. Hester, Y. Luo, J. Mamish, S. Orgrenci-Memik,
T. Aarrestad, H. Javed, V. Loncar, M. Pierini, A. A. Pol, S. Summers,
J. M. Duarte, S. Hauck, S. Hsu, J. Ngadiuba, M. Liu, D. Hoang,
E. Kreinar, and Z. Wu, “hls4ml: An open-source codesign workflow to
empower scientific low-power machine learning devices,” CoRR, 2021.
Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning: Automatic
generation of fpga-based learning accelerators for the neural network
family,” in DAC, 2016.

H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta, J. K.
Kim, A. Mishra, and H. Esmaeilzadeh, “Dnnweaver: From high-level
deep network models to fpga acceleration,” in Workshop on Cognitive
Architectures, 2016.

X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen,
“Dnnbuilder: an automated tool for building high-performance dnn
hardware accelerators for fpgas,” in ICCAD, 2018.

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in International Symposium on FPGA, 2017.

Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation
and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA *17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
45-54. [Online]. Available: https://doi.org/10.1145/3020078.3021736
A. Shawahna, S. M. Sait, and A. El-Maleh, “Fpga-based accelerators of
deep learning networks for learning and classification: A review,” IEEE
Access, 2018.

S. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
arXiv, 2018.

K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of fpga-based
neural network inference accelerators,” ACM TRETS, 2019.

[34]

[35]

(36]

E. Yang, T. Jia, D. Brooks, and G.-Y. Wei, “Flexacc: A programmable
accelerator with application-specific isa for flexible dnn inference,” in
IEEE 32nd ASAP, 2021.

S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,” in
2016 ISCA, 2016.

Synopsys, “Asip designer,” 2017. [Online]. Available: https://www.
synopsys.com/designware-1p/processor-solutions/asips- tools.html
Cadence, “Tensilica processor ip,” 1997. [Online]. Available: https:
/Iwww.cadence.com/en_US/home/tools/ip/tensilica-ip.html

https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://github.com/im-tomu/fomu-hardware
https://github.com/im-tomu/fomu-hardware
https://symbiflow.github.io/
https://github.com/
https://renode.io/
https://arxiv.org/abs/2009.06489
https://github.com/verilator
https://doi.org/10.1145/3020078.3021736
https://www.synopsys.com/designware-ip/ processor-solutions/asips-tools.html
https://www.synopsys.com/designware-ip/ processor-solutions/asips-tools.html
https://www.cadence.com/en_US/home/tools/ip/tensilica-ip.html
https://www.cadence.com/en_US/home/tools/ip/tensilica-ip.html

	I Introduction
	II Background & Motivation
	II-A Tiny Machine Learning (TinyML)
	II-B Need for Agile and Full-Stack Research Frameworks
	II-C Design Space Exploration on FPGAs

	III CFU Playground Overview
	III-A Custom Function Unit (CFU)
	III-B Gateware
	III-C Hardware
	III-D Software
	III-E Testing, Simulation, and Benchmarking
	III-F Design Space Exploration

	IV Evaluation
	IV-A Development Life Cycle
	IV-B Case Studies
	B Image Classification Acceleration on Arty
	B Keyword Spotting Acceleration on Fomu

	IV-C Automated Design Space Exploration of CPU vs. CFU

	V Prior Work
	VI Conclusion and Future Work
	References

