
Managing Information and Time Flow in an Agent-based E-commerce System

Maciej Gawinecki, Maria Ganzha, Paweł
Kobzdej, Marcin Paprzycki
Systems Research Institute
Polish Academy of Science

Warsaw, Poland
maciej.gawinecki@ibspan.waw.pl

Costin Badica, Mihnea Scafes,
Gabriel-George Popa

Department of Software Engineering
University of Craiova

Craiova, Romania
badica_costin@software.ucv.ro

Abstract
Recently, we have proposed a comprehensive agent-based
e-commerce system. While UML formalized, it lacked
details how basic functions – e.g. user request to purchase
a given product – are to be implemented. Furthermore, the
“airline ticket reservation model” used in the system
involves time management issues that have not been
addressed. The aim of the paper is to discuss the way in
which the information flow and data transformations
involved in it are to be implemented; assuming that
information about products is to be ontologically
represented. Furthermore, a simple way in which time
information can be successfully managed to support the
proposed product reservation approach will be discussed.

1. Introduction

In our recent work we have proposed a model agent-based
e-commerce system [5, 6, 7, 14]. While there exist a very
large number of papers dealing with agents in e-commerce
and agent negotiations in particular, our work differs in the
following ways: (1) Typically, only a single price
negotiation of an item or a collection of items is
contemplated. We are interested in a more realistic
scenario when a number of products of a given type are
placed for sale one after another – resulting in a series of
price negotiations. (2) Since multiple items are sold, our
price negotiations are organized differently. In the
literature it is usually assumed that agents join an ongoing
negotiation as soon as “they are ready” (note that this is
the only price negotiation available to them). In our
system, we treat price negotiations as a “discrete process.”
Thus, buyer agents are “collected” and released in a group
to participate in a given price negotiation. While the
negotiation takes place buyer agents communicate only
with the seller agent. Meanwhile, a next group of buyer
agents is collected (as they arrive) and will participate in
the next negotiation. (3) Since multiple subsequent
auctions (involving items of the same product) take place,

price negotiation mechanism can change. For instance,
first 243 items may be sold using Dutch Auction, while
the next 37 items using fixed price with a deep discount.
(4) Furthermore, we model a complete e-commerce
system, and thus we conceptualize all actions that take
place before and after negotiation is completed and may
(or may not) result in an actual purchase. (5) While agent
mobility is often considered important for e-commerce,
conflict between agent mobility and intelligence is rarely
recognized. In our work we address this problem by
designing modular agents and clearly delineating which
modules have to be send, when, by whom and where. (6)
Finally, the complete system is being implemented using
JADE; an actual agent environment.

It is the latter point that particularly concerns this paper.
Thus far our work concentrated mainly on three aspects of
the system: (a) agent modularity and mobility [5, 8, 9], (b)
rule-based mechanisms in negotiations [1, 2, 7], and (c)
UML-based formalization of agents and their interactions
[5, 6]. Recently we have moved towards unification of
existing parts of the project and towards its complete
reimplementation. Additionally, we have decided to utilize
OWL [19] demarcated data to semantically describe
products traded in our system. As a result we had to re-
think information flow that occurs in the system, e.g. when
a user-request is to be serviced.

Results of this process are summarized here. In the next
section we briefly describe the proposed system, agents
appearing in it, as well as their functionalities and
interactions. We follow with a description of the
information flow in the system. We complete the paper
with a brief discussion of the proposed solution to the time
management problem that arises when the price
negotiation ends successfully and a given product is
reserved for a specific time.

2. System Architecture

The proposed system is an attempt to build a
comprehensive model of an e-marketplace where shop

Figure 1. Agent-based e-commerce system – use case diagram

agents, representing User_Sellers attempt at selling
products to buyer agents representing User_Clients. The
complete use case diagram of the system is presented in
Figure 1.

We can distinguish three major parts of the system: (1)
the Information center where white-page and yellow-page
type data is stored – this is our current solution of the
matchmaking problem, (2) the Purchasing side where
agents and activities representing User_Client take place,
and (3) the Seller side where the same is depicted for the
User_Seller. Let us now briefly describe all agents
represented in Figure 1. For an extensive discussion of
their functionalities, see [5, 6, 14].

The CIC agent is responsible for providing information
which e-store in the system sells which products.
Information about products and stores is semantically
represented – using OWL Lite demarcation (a subset of
OWL that is sufficient for our purposes [19]) and persisted
in a Jena [17] environment (see next section). The CIC
agent utilizes a pool of CIC DB agents (not depicted here)
to handle individual queries. Here, we exploit results
reported in [10], where we have experimentally
established that such an approach can improve throughput
of the querying system.

Within the Purchasing side we have the Client agent
(CA) that represents its User_Client in autonomously

making all necessary decisions related to the purchasing
process and multiple Buyer agents (BA) which actually
take part in price negotiations.

The Seller side consists of a number of agents that
facilitate product sales. The crucial agent is the Shop agent
(SA) which is the central manager of the e-store and
autonomously makes all decisions pertinent to selling all
products offered by the store. The SA is helped by (1) the
Gatekeeper agent (GA) that is responsible for admitting
(or not) BAs to the host (here it acts as a representative of
the SA by utilizing SA prepared trust-evaluation of each
incoming BA), management of the process of preparing
negotiation which includes, among others registration of
participants and supplying them with negotiation template
and protocol, and releasing BAs to price negotiations; (2)
the Warehouse agent (WA) that is responsible for
inventory and product reservations management; and, (3)
multiple Seller agents (SeA) that are directly involved in
price negotiations with BAs.

A typical usage scenario (one that we are particularly
interested in this paper) is as follows (for a detailed
description see [5, 6, 14]). Let us assume that system is
already initialized and all information about all products
sold by all e-stores has been registered with the CIC.
User_Client formulates a request – what product she
would like to purchase. The CA queries the CIC about

which stores sell thought after product and then “delivers”
(see below) a BA to each one of them. BAs participate in
price negotiations and report results to the CA. Based on
obtained results, the CA makes decision to attempt
purchase at one of the stores, to try negotiate a better price
or to abandon purchase altogether. Let us now focus our
attention on the flow of information that is necessary to
facilitate such a scenario.

3. Information flow in the system

3.1 Ontologies in the system
As specified above, we have decided that products sold in
the system are to be semantically represented. In this way
we represent our belief that the Semantic Web [11] holds
the key to the future of the Internet and e-commerce in
particular. Since it is not our goal to develop (or utilize)
intricate product ontologies, but to show how an
ontologically demarcated data can be used in our system,
we have decided (for the time being) to use very simple
ontologies. What follows is a snipped of OWL Lite
ontology of shoes which are described through following
properties: with laces or not, athletic or not, price, brand,
color and size.

:Product
 a owl:Class .
:Clothing
 rdfs:subClassOf :Product .
:Shoes
 rdfs:subClassOf :Clothing .
:ShoesWithLaces
 rdfs:subClassOf :Shoes .
:AthleticShoes
 rdfs:subClassOf :Shoes .

:hasPrice
 a owl:ObjectProperty ;
 rdfs:domain :Product ;
 rdfs:range :Price .
:hasBrand
 a owl:DatatypeProperty ;
 rdfs:domain :Product ;
 rdfs:range xsd:string .
:hasColor
 a owl:ObjectProperty ;
 rdfs:domain :Product ;
 rdfs:range :Color .
:hasSize
 a owl:ObjectProperty ;
 rdfs:domain :Product ;
 rdfs:range :Size .
:hasSalingInfo
 a owl:ObjectProperty ;
 rdfs:domain :Product ;
 rdfs:range :SalingInfo .

:SalingInfo
 a owl:Class.
:isBuyerCreatedByGateway
 a owl:DatatypeProperty ;
 rdfs:domain :SalingInfo ;
 rdfs:range xsd:boolean .
:isBuyerCreatedByClient
 a owl:DatatypeProperty ;
 rdfs:domain :SalingInfo ;
 rdfs:range xsd:boolean .

It is the role of the SA to register all products it is selling
with the CIC agent. Therefore, the CIC will represent
information as extensions of ontologies of products. The
extension involves information about SA that sells a given
product (specifically, the GA of this SA – which plays the
role of the contact point for the shop). What follows is a
snipped of OWL Lite that specifies that the GA named
ga509@ibspan.waw.pl sells a certain product
(Product4094094049) for an e-shop identified as 767:

:GA-1 a :gatewayAgent;
 :name ga509@ibspan.waw.pl ;
 :addresses
 http://www.ibspan.waw.pl:9999 ;
 :shop 767 ;
 :sells :Product4094094049.

When registering its products with the CIC, the SA
sends an ACL request message containing serialized
information describing information about sold products
(such a message can contain information about one or
more products). For instance, for a store (represented by
the GA known as ga509@ibspan.waw.pl) that sells
black Athletic shoes with laces manufactured by Nike, that
are of size 41 and are sold at a base-cost of 33 Euro, the
SA would send the following message to the CIC:

((
 action
 (agent-identifier
 :name cic@ibspan.waw.pl
 :addresses (sequence
 http://www.ibspan.waw.pl:9999)
)

 Add-Product-Seller
 set
 (Entry
 :product
 (ProductDescription
 :owl "
 :Product4094094049
 a :ShoesWithLaces , :AthleticShoes ;
 :hasBrand "Nike";
 :hasColor :BlackColor ;
 :hasPrice

 [a :Price ; :ofCurrency :EUR ;
 :value "33.0"];
 :hasSize
 [a :EuropeanShoeSize ;
 :value "41.0"];
 :hasSalingInfo
 [
 :isBuyerCreatedByGateway true;
 :isBuyerCreatedByClient true
] .
 "
)
 :shop (Side-ID :id 767)
 :gateway
 (agent-identifier
 :name ga509@ibspan.waw.pl
 :addresses (sequence
 http://www.ibspan.waw.pl:9999)
)
)
))

Let us make a few comments. First, in our approach we
utilize, in a very natural way, two different ontology
languages: FIPA SL language [12] for demarcating actions
that the CIC is requested to perform (e.g. Add-Product-
Seller) and OWL Lite to formalize product description
(marked in bold). Second, for purpose of simplicity (and
sacrificing somewhat brevity and prudence in resource
utilization) we have decided to represent different
“variants” of a given product as separate products. This
being the case, if certain shoes, are available in sizes: 39,
40, 41, and 42, they will be represented in the CIC
database as four different products. We will evaluate
performance of this approach and, in the future, may opt
for a more compact product representation (which is likely
to result in a more complicated code to service it). Finally,
all agents processing information about products existing
in the system are expected to know their ontology.
Currently, question what happens when a completely new
type of products appears in the system for the first time
remains open. However, this problem is outside of scope
of this paper and will be addressed in the future.

3.2 Processing user request
Let us now discuss what happens in the system (where
data is demarcated and stored in the above described way)
when user request is processed. While the problem of
interactions between an agent system and an “external”
user turns out to be rather difficult to be solved in general,
we have found an answer (for a complete discussion of the
problem and the proposed solution see [13, 18]). Here we
only assume that an HTML-based user interface is
developed that allows her to specify the product she would
like to purchase. Using methods similar to these described

in [14, 18], a querystring describing the thought-after
product, packed in an ACL inform message reaches the
CA. Such a querystring could have the following form (if
the user wanted to buy black athletic shoes size 36 or 37,
with a price in a range 25 to 50 Euros):

?productClass=AthleticShoes
 &hasColor=BlackColor
 &prize:ofCurrency=EUR
 &prize:value:leftBound=25
 &prize:value:rightBound=50
 &size:value1=36
 &size:value1=37

Using product ontology, the CA translates the

querystring into an SPARQL query [23]. Note that in the
past [13] we have used RDQL as the query language.
Currently we have changed our approach slightly and
decided to utilize SPARQL instead. The main reasons for
this change are (1) SPARQL is more expressive than
RDQL; (2) SPARQL is about to obtain standardization (it
is a product of a W3C working group and the specification
is very close to completion), while in the case of RDQL
there exist different implementations and there is no all-
agreed test suite; (3) SPARQL query engine is better
tested; and (4) what is very important for developers:
JENA already includes working SPARQL module.

For the querystring represented above, the resulting
SPARQL query has the following form:

PREFIX my:
 <http://jacs.ibspan.waw.pl/ontology#>
SELECT ?product, ?gateway
 { ?gateway :sells ?product; }
 { ?product, rdfs:subClassOf
 my:AthleticShoe ;
 my:hasColor my:BlackColor ;
 my:hasPrize ?prize ;
 my:hasSize ?size }
 { ?prize, my:ofCurrency my:EUR ;
 my:value ?prizeValue }
 { ?size my:value ?sizeValue },
FILTER (
 ((?sizeValue = “36.0”
 || ?sizeValue = “37.0”)
 &&
 (?prizeValue >= “25.0”
 && ?prizeValue <= “50.0”))

The CA sends an ACL message of type query-ref with
the field :contents consisting of (FIPA SL language):

 ((
 all (sequence ?x ?y)
 (
 (and

 (Sells ?x ?y)
 (Matches-query
 ?y
 "<SPARQL-QUERY>"
)
)
)
))

where <SPARQL-QUERY> denotes the query depicted
above. The CIC receives the message and forwards it to be
executed by one of CIC DB agents. The CIC DB agent
queries the central database and obtains a set of stores that
sell a given product. For instance, if the e-store recognized
by the GA ga509@ibspan.waw.pl sells shoes that
were the subject of the above presented query, its id (name
and address) will be packed (together with other stores
that sell shoes satisfying the query – the complete
response-set) into the following ACL inform message:

((=
 (all (sequence ?x ?y)
 (and
 (Sells ?x ?y)
 (Matches-query
 ?y
 "<SPARQL-QUERY>"
)
)
)
 (set
 (sequence
 (agent-identifier
 :name ga509@ibspan.waw.pl
 :addresses (sequence
 http://www.ibspan.waw.pl:9999)
)
 (ProductDescription
 :owl “
 :Product596568431
 a :ShoeWithLaces ,
 :AthleticShoe ;
 :hasBrand "Nike";
 :hasColor :BlackColor ;
 :hasPrize
 [a :Prize ; :ofCurrency
 :EUR ; :value "33.0”].
 :hasSize
 [a :EuropeanShoeSize ;
 :value "37.0"].”
 :hasSalingInfo
 [
 :isBuyerCreatedByGateway true;
 :isBuyerCreatedByClient false
].

)

)
)
))

The CA will now process the obtained list according to its
own criteria. For instance, it will eliminate e-shops that it
dealt with in the past and that were found untrustworthy.
While it is very interesting by itself (for more details see
[15]), the question of selection of a group of shops out of
the response-set obtained from the CA is out of scope of
this paper. As a result, a list of shops that are to be
contacted (actually their GAs) in an attempt to make a
purchase will be created. Let us note that each product on
the list will be serviced by a separate BA. This means that
if, for some reasons, the CA wants to negotiate a pair of 36
size shoes and a pair of 37 size shoes (of exactly the same
type) in the same shop, they will be serviced by two
separate BAs. This matches our above mentioned
assumption, that two products that differ even in a single
characteristic are treated as separate products.

The response-set contains information which GAs
accept incoming BAs, which create BAs and which service
both possibilities. Depending on the offered possibilities
and its own preferences, the CA either sends BAs or asks
GAs to create BAs. Similarly to the described above
process of CAs eliminating certain shops for not being
trustworthy, the GA may not admit a BA representing a
certain CA (or refuse to create a BA on its request) if it is
deemed to be a spoiler (for instance it won multiple price
negotiations but never finalized a purchase), see also [15].

Let us now assume that the BA has been admitted to the
host. It informs the GA which product it is interested in
purchasing (by sending an ACL request message
containing product ID, e.g. 4094094049) and the GA
pre-registers it as being interested in that product. At this
stage there are two possible situations. If there is already a
queue of BAs that are to negotiate this product then the GA
provides the new BA with negotiation protocol and
template. When the incoming BA is interested in a “new”
product (no agent interested in it has been pre-registered
or registered) the GA has to communicate with the WA as
the information about the “form of price negotiation” to be
used for a given product is stored in the Shop Database
that is serviced by the WA. The Shop Database is used to
manage inventory of products. Among others, it stores
information about number of products that are available
for sale, number of products that are currently reserved (as
a result of earlier successful price negotiations),
information about expiration time of each such
reservation, and the current price negotiation mechanism
(described in the negotiation template [1, 2]). Sample
information about the current situation of black Nike

athletic shoes with laces in size 37 and price 33 euro is
depicted below:

:Product596568431

 :hasSalingInfo [
 :isBuyerCreatedByGateway true;
 :isBuyerCreatedByClient true;

 :usesTemplate
 :Product596568431Template;

 :totalQuantity: 10;
 :totalReservationsQuantity: 5;
 :hasReservation :Reservation5858;
 :hasReservation :Reservation2349
].

:Reservation5858
 :reservationQuantity: 3 .
:Reservation2349
 :reservationQuantity: 2 .

:Product596568431Template
 a :EnglishAuctionTemplate ;
 :maxBuyers "20” ;
 :startPrize
 [a :Price ;
 :hasCurrency :EURO ;
 :hasValue "25.0"
] ;
 :TimesTerminationWindow “4:30”.

:EnglishAuctionTemplate
 a owl:Class ;
 rdfs:subClassOf :Template ;
 rdfs:subClassOf
 [a owl:Restriction ;
 owl:hasValue
 :EnglishAuction ;
 owl:onProperty
 :hasProtocol
] .

In the case of new product to be sold, the GA forwards

the product ID to the WA. The WA queries the Shop
Database and confirms that the requested product is still
available (it is possible that all products have been
reserved and currently there is none available for sale) and
returns to the GA the current negotiation template. The BA
is being thus served the generic negotiation protocol and
the current negotiation template and requests the strategy
from its CA. Upon reception of the strategy, the BA is
ready to participate in price negotiations and notifies its
GA accordingly (thus becoming registered as: awaiting for
price negotiation to start). The GA acts also as negotiation
manager. In this capacity it manages a pool of Seller
agents. We have changed our original design and instead
of creating a single SeA for each product sold, we have
decided to proceed with product-agnostic SeAs that can

service any price negotiation. When the time comes, the
GA sends a list of BAs that have registered to negotiate
given product to a free SeA (here we omit questions
related to: which forms of negotiations require how many
BAs? how long to wait before starting negotiations? how
to handle template change? as they are outside the scope
of this paper and have been addressed in [5, 6]. In addition
it includes in the message the negotiation template (see [1,
2]) so that the SeA knows what negotiation form it is to
manage and configures its rule-base according to it [3, 4,
7]. Furthermore, in the case when the SeA is actively
involved in negotiations (e.g. in the case of Dutch
Auction) it will also obtain its strategy. Strategy for the
SeA is generated by the SA when it makes a decision that a
given product will be negotiated using a mechanism that
requires such strategy and stored in the Shop DB. The SeA,
when ready, sends invitation to negotiations to all BAs and
from this moment on, negotiations follow the scenario
described in [1, 2].

Let us assume that negotiations were successful. Upon
their completion, the SeA informs the winner BA about this
fact and sends information to the SA. The SA makes a
determination as to how long a reservation should last
(e.g. for the first time buyer, reservation time may be
“medium” to check her out; for a client with a spoiler-type
reputation short time may be applied – to not to freeze
uselessly an available product, while for a client in good
standing an extended time reservation may be issued).
This information is send by the SA to the winner BA as an
ACL inform message.

The remaining parts of the scenario have been described
in detail in [5, 6, 14] and they do not involve further
extensive data manipulations. Let us now focus on the
time management that has to take place in the system.

4. Time management in the system

Let us now look at the same processes as described above,
but from the point of view of time management. The main
problem that a system like ours has to address originates
from the fact that it spans multiple computers and no
assumption can be made about their local time. While one
computer can be running with 13 seconds before the
universal (GMT-based) time, a different computer can be
running with 23 seconds behind the universal time.
Currently, this is even more severe than in the past, since
JADE 3.4 allows agents to travel between platforms (not
only between multiple containers of the same platform that
spans multiple computers). Thus, any mechanisms existing
within distributed Java runtime, which could have been
used in the past, cannot be utilized. Interestingly, this fact
does not have much effect on the system as its proposed
operation is completely asynchronous. However, there are

two situations that are truly time sensitive. The first is the
process of price negotiations. There exist a number of
price negotiation mechanisms that use time explicitly (e.g.
time to issue next bid – in English Auction, or time to
deliver the bid – in most forms of closed bid actions).
Fortunately, price negotiations take place locally, within a
host. Due to the proposed model, no “long-distance”
bidding takes place; BAs are either created within the host,
or move and are admitted into it. This means, that it can be
assumed that each price negotiation takes place on a single
computer (while different price negotiations may take
place on different machines within a single host) and all
agents participating in price negotiations have access to
the same time source. More specifically, all agents can
issue a System.currentTimeMillis() call and as a result
obtain local host time. Since this approach results in all
agents obtaining “the same time,” the negotiation process
can utilize this mechanism in all cases which require time
referencing.

The second time sensitive situation involves product
reservations. This situation is more complicated as it
involves multiple platforms and multiple computers –
while price negotiations take place on one computer the
CA is located on another. For example, if the CA sent out
13 BAs to 13 different computers, then we are dealing with
14 different clocks providing agents with 14 different local
times. Let us now assume that some of these agents have
succeeded in price negotiations and have received ACL
messages informing them when their reservations expire.
They forward this information to the CA that has to know
precisely how much time does it have to decide whether to
make a purchase before each of these reservations expires
(thus making purchase impossible and, in addition,
damaging CA’s reputation). One of possible solutions
would be to specify length of reservation (e.g. “your
reservation is valid for the next 115 seconds”), but this
time references local clock and only the BA would be able
to establish when the reservation actually expires (this
would be unknown to the CA). The only solution that we
were able to find is to reference the universal time. Here
we use the SNTP protocol (Simple Network Time
Protocol [20, 21, 22]) to establish the universal time and
offset between that time and the local clock. Let us
observe that since negotiations take place using the local
time of the host, the only situation when the reference to
universal time is required is when the CA has to establish
when the reservation will actually expire. The first step to
solve this problem will be to establish exact time of the
host and each computer running a CA. Therefore, when
each shop is initialized and local GA is created, it issues a
call to the time server using SNTP protocol. Agent uses
SNTP protocol to calculate TimeOffset on the basis of 4
different times: times of sending request by the client and

receiving it by the server and times of sending response by
the server and receiving it by the client. TimeOffset
expresses the time difference between the local time and
the universal time in milliseconds. We assume here that
local time is only slowly deviating from the universal time
and thus the procedure of checking the time difference has
to be repeated infrequently; note however that it is also
possible that the GA can check time before every price
negotiation. We refer to the price negotiation as the
moment when time will be checked and the time
difference is passed to the BAs as an extension to the
negotiation template. Therefore the negotiation template
of an English Auction presented above, when passed to
BAs that are to participate in it, will include also (offset is
in milliseconds, as returned by the SNTP protocol):

:Product5965684319Template
 :gatewayTimeOffset “-4983982”.

This time difference is then sent by the BA that succeeded
in price negotiations together with the information when
will the reservation expire (e.g. that the reservation expires
at 12:37:45), to its CA. At the same time, similarly with
how GA finds its TimeOffset, each CA establishes its
TimeOffset upon its creation (and updates it as often as
necessary). Obviously, upon reception of a message from
one of its BAs, the CA can use both TimeOffsets to
establish exactly when will the reservation expire within
the host (e.g. if the host is “10 seconds behind” the
universal time and the CA’s system is “5 seconds ahead”,
then the total CA’s offset to the host is 15 seconds ahead).
This information is then used to establish when purchasing
decisions have to be made to avoid expiration of
reservations.

Obviously, we recognize that network lag will play a
significant role in dealing with reservations that are about
to expire (in case of slow network additional time has to
be allocated to assure that the ACL message carrying the
decision reaches a specific BA in time). It is the CA
responsibility to estimate this lag and take it into account
accordingly when deciding to finalize the purchase. While
the CA may want to buy as much time a possible to make
the optimal decision (e.g. to wait for all BAs to report), if
such a decision is reached too late, then it will not be
optimal after all.

5. Concluding remarks

In this paper we have presented solutions to information
flow and time management in a model agent-based
e-commerce system that is currently under development
within our team. We considered a typical usage scenario
and described the data requirements and associated flow of

information needed to support it. In particular, discussion
was focused on how ontologies – OWL, semantic query
languages – SPARQL, agent communication messages –
FIPA ACL and agent message content languages – FIPA
SL can be successfully combined to achieve desired
functionality for supporting typical user requests.
Moreover, we have identified two time-sensitive situations
that can occur in the system: process of price negotiations
and precise length of product reservations. While for the
first situation the proposed solution was quite
straightforward and rather simple (based on using local
host time), the second case was found to be significantly
more complicated because it involves remote interactions
between agents. Our proposed solution is based on
referencing universal time via SNTP protocol to estimate
time offsets and including an additional field in the
negotiation template that represents e-shop time offset
from universal time.

References

[1] Bartolini, C., Preist, C., Jennings, N. R.: A Software
Framework for Automated Negotiation. In: Proceedings of
SELMAS’2004, LNCS 3390, Springer Verlag, 2005, 213-
235

[2] Bartolini, C., Preist, C., Jennings, N.R.: Architecting for
Reuse: A Software Framework for Automated Negotiation.
In: Proceedings of AOSE’2002: International Workshop on
Agent-Oriented Software Engineering, Bologna, Italy.
LNCS 2585, Springer Verlag, 2002, 88–100

[3] Badica, C., Badita, A., Ganzha, M., Iordache, A.,
Paprzycki, M:: Implementing rule-based mechanisms for
agent-based price negotiations. In: Proceedings of the 21st
Annual ACM Symposium on Applied Computing,
SAC’2006. Dijon, France. ACM Press, ACM Press, New
York, NY, 96-100, 2006

[4] Badica, C., Ganzha, M., Paprzycki, M.: Rule-Based
Automated Price Negotiation: an Overview and an
Experiment. In: Proccedings of International Conference
on Artificial Intelligence and Soft Computing,
ICAISC’2006, Zakopane, Poland. Lecture Notes in
Artificial Intelligence, Springer-Verlag, 2006 (in print)

[5] Badica, C., Ganzha, M., Paprzycki, M. Mobile Agents
in a Multi-Agent E-Commerce System. In: D. Zaharie et.
al. (ed.) Proceedings of the SYNASC 2005 Conference.
IEEE Press, Los Alamitos, CA, 2005, 207-214

[6] Badica, C., Ganzha, M., Paprzycki, M.: UML Models of
Agents in a Multi-Agent E-Commerce System. In:
Proceedings of the ICEBE 2005 Conference, IEEE Press,
Los Alamitos, CA, 2005, 56-61

[7] Badica, C., Badita, A., Ganzha, M., Iordache, A.,
Paprzycki, M.: Rule-Based Framework for Automated
Negotiation: Initial Implementation. In: Adi, A.

Stoutenburg, S., Tabet, S.(eds.): Proceedings of the Rules
and Rule Markup Languages for the Semantic Web, First
International Conference, RuleML 2005, Galway, Ireland,
2005. LNCS 3791, Springer Verlag, 2005, 193-198

[8] Badica, C., Ganzha, M., Paprzycki, M.: Two
Approaches to Code Mobility in an Agent-based E-
commerce System. In: C. Ardil (ed.), Enformatika, Volume
7, 2005, 101-107

[9] Badica, C., Ganzha, M., Paprzycki, M., Pirvanescu, A.:
Combining Rule-Based and Plug-in Components in Agents
for Flexible Dynamic Negotiations. In: Proceedings of
CEEMAS’2005, Budapest, Hungary. LNAI 3690, Springer
Verlag, 2005, 555-558

[10] Chmiel K., Tomiak D., Gawinecki M., Kaczmarek P.,
Paprzycki M., Szymczak M.: Testing the Efficiency of
JADE Agent Platform. In: Proceedings of the International
Symposium on Parallel and Distributed Computing, ISPDC
2004 Conference, Cork, Ireland. IEEE Press, Los Alamitos,
CA, 2004, 49-57

[11] Fensel, D.: Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce. Springer-Verlag,
Berlin, 2001

[12] FIPA SL Content Language Specification, 2002,
http://www.fipa.org/specs/fipa00008/SC00008I.html.

[13] Gawinecki, M., Gordon, M., Kaczmarek, P.,
Paprzycki, M.: The Problem of Agent-Client
Communication on the Internet. Scalable Computing:
Practice and Experience, 6(1), 2003, 111-123

[14] Ghanza, M., Paprzycki M., Pirvanescu, A., Badica, C.,
Abraham, A.: JADE-Based Multi-Agent E-Commerce
Environment; Initial Implementation. Annals of West
University Seria Matematica-Informatica, Vol.XLII, 2004,
79–100

[15] M. Ganzha, M. Gawinecki, P. Kobzdej, M. Paprzycki,
C. Badica, Towards trust management in an agent-based e-
commerce system – initial considerations (submitted for
publication)

[16] http://jade.tilab.com/

[17] Jena 2 - A Semantic Web Framework, Hewlett
Packard, http://www.hpl.hp.com/semweb/jena2.htm

[18] Kaczmarek, P.: Multimodal Communication Between
Users and Software Agents. Masters Thesis, AMU, 2005

[19] OWL - Web Ontology Language Overview,
http://www.w3.org/TR/owl-features/

[20] http://www.ietf.org/rfc/rfc1361.txt

[21] http://www.ietf.org/rfc/rfc1769.txt

[22] http://www.ietf.org/rfc/rfc2030.txt

[23] SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-query/

