N
N

N

HAL

open science

Bitstreams Repository Hierarchy for FPGA Partially
Reconfigurable Systems

Pierre Bomel, Jean-Philippe Diguet, Guy Gogniat, Jeremie Crenne

» To cite this version:

Pierre Bomel, Jean-Philippe Diguet, Guy Gogniat, Jeremie Crenne. Bitstreams Repository Hierarchy
for FPGA Partially Reconfigurable Systems. 2008. hal-00369078

HAL Id: hal-00369078
https://hal.science/hal-00369078

Preprint submitted on 18 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00369078
https://hal.archives-ouvertes.fr

Bitstreams Repository Hierarchy for FPGA Partially Reconfigurable Systems

Pierre Bomel, Jean-Philippe Diguet, Guy Gogniat, Jeremie Crenne
LAB-STICC, Université Européenne de Bretagne, CNRS UMR 3192, Lorient, France
{pierre.bomel, jean-philippe.diguet, guy.gogniat, jeremie.crenne}@univ-ubs.fr

Abstract

In this paper we present a hierarchy of bitstreams
repositories for FPGA-based networked and partially
reconfigurable systems. These systems target
embedded systems with very scarce hardware
resources taking advantage of dynamic, specific and
optimized architectures. Based on FPGA integrated
circuits, they require a single FPGA with a network
controller and less external memories to store
reconfiguration software, bitstreams and buffer pools
used by today’s standard communication protocols.
Our measures, based on a real implementation, show
that our repository hierarchy is functional and can
download bitstreams with a reconfiguration speed ten
times faster than known solutions.

1. Introduction

FPGAs provide reconfigurable SoCs with a way to
build systems on demand. A single reconfigurable
FPGA for many applications is a right answer to
current critical issues in ASIC design: the exploding
design and production costs due to the continuous
semiconductor technology density increase and the
difficulty to upgrade and fix both hardware and
software firmwares. Also, FPGAs hard blocks like
processors, memories, DSPs and high speed
communication interfaces bring extreme flexibility at
hardware and software levels, as well as at fine and
coarse grains. Xilinx's Virtex FPGA reconfiguration
can be exploited in different ways, partially or globally,
externally (exo-reconfiguration) or internally (endo-
reconfiguration). In this context Virtex's dynamic and
partial reconfiguration (DPR) requires additional
resources to store the numerous partial configurations
bitstreams. Today, researchers exploit local FLASH
memories as bitstreams repositories and remote file
servers accessed through standard protocols like FTP
or NFS. Because memory is a scare resource in low-
cost, high-volume, embedded systems, Huebner et al.

reduce up to 50% of the bitstream memory footprint

with the help of a small hardware decompressor [1].

Then, we face the migration of silicon square mm from

FPGAs to memories. Although memories’s low cost is

in favor of this migration, there are some drawbacks:

e First, their reuse rate can be extremely low, since
these memories could be used just once at reset in
the worst case.

e Second, the balance in terms of global silicon
square mm, component number reduction, PCB
area, power consumption and MTBF, is negative.

e Third, for a single function to implement, the space
of possible bitstreams can be extremely large and
become bigger than the local memories. There are
three combinatorial explosion factors indeed:

o the FPGAs families with their numerous
devices, sizes, packages and speed grades
variations,

o the number of possible configurations,
unfortunately depending on spatial features like
shape and location of IP area on the 2D grid,

o and the natural commercial life of the IPs
producing regularly new versions and updates.

Regarding this, we are convinced a bitstreams
repository hierarchy becomes necessary and must
communicate through adapted physical channels and
network protocols with the partially reconfigurable
FPGAs. These repositories will deliver all versions of a
single IP to all the portfolio of targeted FPGAs. The
necessary hierarchy is a three levels one (Fig. 1):

e L1 aboard local bitstreams cache in memory,

e L2 an extremely rapid bitstreams server located in
a dedicated LAN using a data link level protocol,

e L3 a standard global “slower” bitstreams server
located anywhere else and accessed via TCP or
UDP based protocols.

While levels L1 and L3 have already been covered by

research works and standard software and protocols,

level L2 is actually totally “unexplored” for partial
reconfiguration of FPGAs.

Global
bitstreams
server
FPGA2
Local
FPGA1 bitstreams
server
FPGA3
FPGAn

Figure 1 — LAN/WAN Networking architecture

In this paper we propose a bitstreams repository
hierarchy and focus on the current trend of embedded
systems to be naturally connected to standard networks.
We present under which conditions and with which
performances this repository hierarchy allows us to
build a DPR lightweight system. The experimental
results obtained at L2 level prove that these systems
can reach reconfiguration speeds ten times faster than
today's ones at L3 level. Moreover the DPR software
memory footprint is small enough to be stored in FPGA
internal memory hard blocks. When the reconfiguration
delay is acceptable for a given application there is even
no more need for local RAM or FLASH memories (L1
cache level) to cache partial bitstreams. Targeted
applications range from adaptive embedded systems
like automotive embedded electronics or mobile
robotics to dynamic protocols downloading for multi-
standards software defined radio. We will conclude
that, with a good enough LAN, memory caches for
bitstreams can be reduced and systems can be
simplified.

In the following we review in Sect. 2 the previous
DPR related works via a standard LAN. In Sect. 3 we
present our contribution in terms of repository
hierarchy. In Sect. 4 we provide measures about the
partial reconfiguration speeds and memory footprints.
We make measures with the help of signal processing
IPs representative enough of the complexity expected
in such embedded systems. Finally, in Sect. 5, we
conclude and explain what extensions we intend to
focus on.

2. Related works

To our best knowledge up to now, no other LAN
than standard Ethernet has been used for DPR.
However, Wifi for nomadic computing and
communicating equipments as well as CAN for
automotive electronic systems seem pertinent
candidates to us.

The DPR community agrees on the fact that, in
applicative domains with strong real-time constraints,
DPR latency is one of the most critical aspects in its
implementation. If not brief enough, the DPR interest
to build efficient systems can be jeopardized and the
research field be interesting in theory but dead in
practice. Compton and Hauck [2] give an interesting
survey of the whole problematic. More recently,
Walder and Platzner [3] confirm this fact in the field of
the "wearable-computing". They conclude that the DPR
latency can be neglected in their model of on-line
scheduling if its effective latency is negligible when
compared to the applications computing time. To
conclude, extreme rapidity of DPR is a strong
assumption in application domains where FPGAs are
usually required for performances constraints.
Researchers investigate two strategies to reduce the
DPR latency. These are the systematic reduction of the
bitstreams size and the speedup of their downloading.
The first strategy relies on off-line tools and
methodologies for FPGA design: "Module Based" and
"Difference Based" [4] are two design flows from
Xilinx. The second strategy is an on-line approach
based on RTOS-like network services. In this paper we
address the second strategy with dynamic partial endo-
reconfiguration and consider the first one as necessary
and complementary.

Partial and dynamic reconfiguration of Xilinx's
FPGAs goes through the control of a configuration port
called ICAP [5] (Internal Configuration Access Port).
Virtex2 PRO, Virtex4 VFX and Virtex5 FXT all
contain this port and a set of one or two PPC405 hard
core processors. The ICAP port can be interfaced with
any pure hardware IP as well as the synthesizable soft
core processor Microblaze. In the PPC405 case, the
ICAP has been wrapped into the HWICAP component
which implements around it a standard OPB interface
for a cost of 150 slices and a single BRAM (Fig. 2).
Thus, it can be connected to the OPB bus and accessed
by the PPC405. The reconfiguration peak rate
announced by Xilinx is exactly of one byte per clock
cycle, it means 100 MB/s (100 MegaBytes) for systems
running at 100 MHz. Because systems work at different
frequencies, we'll express all measures in number of
bits transmitted per seconds and per MHz. The

reference ICAP bandwidth of 100 MB/s becomes a
performance of 8 Mb/s.MHz (8 Megabits).

oem [PPC405 DOCM
‘_: A
PLB bus
\ & r
PLB/GPB Ethernet ™, - bistream
bridge [
4
OPB bus
f iy
RS232 ICAP

h

y

Reconfigurable area

Figure 2 — A PPC405 based architecture to
download bitstreams though Ethernet and the ICAP

Claus et al. [6] consider that, for real-time video
applications like driver assistance, the average
bitstreams size is about 300 KB. The adaptive nature of
the image flow processing implies to dynamically
change algorithms without loosing a single image
(640x480 pixels, VGA, black and white). Under these
conditions, Claus accepts to loose one eighth of the
processing time for each image. With a rate of 25
images/s, the processing time is 40 ms, and a maximum
of 5 ms can be devoted to endo-reconfiguration.
Transmitting 300 KB in 5 ms fixes the speed constraint
at 60 MB/s. The experimental platform is a Virtex2
inside which a PPC405 executes the software (no
RTOS specified) managing the DPR. Claus's paper lets
us think that no functional system was ready at
publication time because the ICAP management is
presented as being part of a future work. Nevertheless
it illustrates the pertinence of DPR for real-time
systems.

Not strictly dedicated to DPR, the XAPP433 [7]
application note from Xilinx, describes a system built
around a Virtex4 FXI12 running at 100 MHz. It
contains a synthesized Microblaze processor executing
the code of an HTTP server. The HTTP server
downloads files via a 100 Mb/s Ethernet LAN. The
protocol stack is Dunkel's IwIP [8] and the operating
system is Xilinx' XMK. A 64 MB external memory is
necessary to store IwIP buffers. The announced
downloading rate is 500 KB/s, be 40 Kb/s.MHz
performances. This rate is 200 times lesser than the
ICAP's one.

Lagger et al. [9] propose the ROPES
(Reconfigurable Object for Pervasive Systems) system,
dedicated to the acceleration of cryptographic
functions. It is build with a Virtex2 1000 running at 27
MHz. The processor is a synthesized Microblaze
executing UClinux's code. It downloads bitstreams via
Ethernet with HTTP and FTP protocols on top of a
TCP/IP/Ethernet stack. For bitstreams of an average
size of 70 KB, DPR latencies are about 2380 ms with
HTTP, and about 1200 ms with FTP. The
reconfiguration speed is about 30 to 60 KB/s, be a
maximum of 17 Kb/s.MHz.

Williams and Bergmann [10] propose uClinux as a
universal RDP platform. They have developed a
character mode device driver on top of the I[CAP. This
driver enables to download the content of bitstreams
coming from any location because of the full separation
between the ICAP access and the file system. Junction
between a remote file system and the ICAP is done at
the user level by a shell command or a user program.
When a remote file system is mounted via
NFS/UDP/IP/Ethernet the bitstreams located there can
be naturally downloaded into the ICAP. The system is
built with a Virtex2 and the processor executing
pClinux is a synthesized Microblaze. The authors agree
that this ease of use has a cost in term of performances
and they accept it. No measures are provided. To have
an estimation of such performances we made some
measures in a similar context and got transfer speeds
ranging from 200 KB/s to 400 KB/s, representing a
maximum performance of about
32 Kb/s.MHz.

This state of the art establishes that "Microblaze +
Linux + TCP" dominates. Unfortunately, best
downloading speeds are far below the ICAP and
network maximum bandwidth. Moreover, memory
needs are in the range of megabytes, thus requiring
addition of external memories. Such a gap in speed and
such a memory footprint for a DPR service seem to us
really excessive. First, Linux and its TCP/IP stack can't
run without an external memory to store the kernel
code and the communication protocols buffers.
Secondly, the implementation, and probably the nature
(specified in the 80s for much slower and less reliable
data links) of the protocols, is such that only
hundredths of KB/s can be achieved on traditional
LANSs. Excessive memory foot-print and maladjusted
protocols are the bottlenecks we intended to reduce
with a “networked, lightweight and partially
reconfigurable platform” [11]. This L1/L2 levels
platform is able to download bitstreams at an average
sustained performance of 400 Kb/s.MHz, which is at
least one order of magnitude faster than all previous

works. Moreover, the executive software and protocol
buffers need a memory footprint under 100 Kbytes to
provide such a service. This system was build with a
Virtex2 VP30 and used one of the two PPC405 hard
cores clocked at 100 MHz. Average speed reached
over Ethernet was 40 Mb/s and allowed to download
partial bitstreams (50-100 KB) in about 10 ms. These
10 ms have to be compared with Lagger’s latencies of
about 1200 to 2380 ms.

3. Contribution

In this section we present our proposal of bitstreams
repository hierarchy and describe each level in terms of
hardware and software architectures and
communications protocols. We intend also to provide a
specification and an optimized implementation of a
minimal software layer abstracting the access to the
involved hardware resources and the use of a specific
data-link level protocol. This work has been patented
(FR 08 50641) and we can provide a practical proof of
our concept/proposal.

In comparison with the latest layer models of
software execution environments for reconfigurable
FPGAs proposed by Kettelhoit and Porrmann [12] and
Dittmann and Franck [13], our layer is respectively
located at the "Configuration layer" and "Execution
layer". It has a small size, is written in C language and
VHDL and is compiled/synthesized exclusively with
standard tools (GCC, ISE).

3.1. Bitstreams repository hierarchy

All FPGA systems designers want the same: the
best performances at the lowest cost to download
partial bitstreams into FPGAs. The performances
available today range from the ones provided by local
memories (L1, latency 1 ms) to the ones of a remote
file server (L3, latency 1s). We have also explained
that there is a “middle position”: a LAN server using a
data link level protocol (L2, latency 10 ms) [11]. Our
proposal of bitstreams repository hierarchy is based on
the correct use of all these levels together to organize a
memory caching hierarchy with an LRU updating
strategy at FPGA/L1 level (Fig. 3).

Level L1 is the “board level” where designers
“glue” together FPGAs and FLASH or RAM
memories. Bitstreams can be stored in huge memories
and it is very common to use 512 MB FLASH ones.
This is the most popular way to store bitstreams and
build prototypes because there are many evaluation
boards with FLASH readers at very low costs for
Universities and researchers. But remember, the less

memories there are, the cheaper the system is to
produce in high volume. L1 is geographically the
“closest” repository to the FPGA, and the one with the
smallest latency. Its latency depends, of course, on the
memories and bus types used. It will always be the
best, when compared with networking equipments. So,
instead of being the only bitstreams repository we
propose it to become a bitstreams cache for the
LAN/L2 and WAN/L3 repositories.

) Global

— | bitstreams L3
server

|

D Local
disk | |bitstreams L2
server

)

FPGA L1

RAM

v

Figure 3 — Bitstreams repositories hierarchy
levels L1, L2 and L3

Level L3 is the WAN level with today protocols
like FTP. Latencies can degrade quickly and links can
break. For real-time embedded systems, it seems
unrealistic to rely on such an infrastructure to provide a
vital service. Remember downloading of bitstreams is
analogous to software scheduling into a RTOS. This is
a critical service impacting the whole performances of
the system. L3 is geographically the most far away
repository from the FPGA with the biggest latency. Our
proposal is to consider the global bitstreams server has
an equipment dedicated only to refreshing the L2
bitstreams server during night or periodically with tools
like “cron”.

Level 2 is the LAN level with a specific data link
level protocol. It can provide a reconfiguration service
with an average latency of 10 ms. Because the LAN is
geographically smaller and is possessed by a single
institution it can be devoted to a single task. Ethernet,

in its simplest usage, is a medium sharing mechanism
on top of which many protocols have been added. But
it can also be “seen” as an excellent serial line. In term
of buying cost and ease of deployment it is an excellent
candidate to transfer Dbitstreams between close
equipments like our FPGAs and the LAN bitstreams
server. Now we justify why we consider Ethernet as a
good serial line.

3.2. Data link over Ethernet 100 Mb/s

Ethernet, created by Metcalfe and Boggs at the
Xerox Parc in the 70s, is now a rich set of
communication technologies to build cost effective
LANSs and to connect together computers. It is based on
the diffusion of packets on a shared medium with
collision detection (CSMA-CD). The insertion of
switches and hubs (multi-ports repeaters) to simplify
cabling and to improve speed and quality of services,
transforms the LAN into a set of point to point links
connected through "LAN-level routing" equipments.
With this topology, two equipments connected to the
same switch communicate through a quasi-private link
(excepted for the broadcast packets). To characterize in
speed this LAN topology, we have tested at what
maximum speed Ethernet packets could be sent from
our portable PC to the XUP board. We developed an
application which sends packets as fast as possible,
with no specific protocol, no flow control and no error
detection. We reused the IEEE 802.3 standard packets,
with the EtherType field holding the data payload size
in bytes instead of a protocol ID for an upper layer.
Direct access to the Ethernet controller MAC level can
be done thanks to the Linux "raw" sockets. This test
demonstrates that a speed limit of 60 Mb/s is reachable.
It depends only on our PC and switch performances.
The absence of transmission errors during weeks of
testing proves that, in such a context, the data link
quality is so high that there is probably no need to
implement a TCP-like and complex error detection and
restart strategy. In line with Xilinx’s strategy to reduce
bitstreams, we can also estimate the error rates for
these small files.

3.3. Bitstreams error rates

Partial bitstreams sizes are in the range of tenth of
Kbytes, say a maximum of 100 KB, be 800 Kbits. We
know that each transmitted bit has a probability p of
being erroneous. With today hubs these error rates are
very small, at least in the magnitude 10°. The
probability to send » bits without error is obtained with

the formulae (7-p)", and the error rate is /-(1-p)" which
gives the following values in Table 1.

n P (I-p) I-(1-p)"
10° 10° 0,9999 10"
10° | 107 0,99999 107°
10° | 10" 0,999999 10°
10° 10° 0,999 107
10° | 107 0,9999 10"
10° | 10" 0,99999 107

Table 1 — Estimated error rates for bitstreams
downloading through network

This shows error rates are very low for bitstreams.
They are in favor of a very simple error detection and
recovery strategy: a restart at bitstream level rather than
at packet level. This is why the data link level protocol
described in [11] is a good candidate for such data
transmissions. Moreover, when external perturbations
occur, they will be concentrated on several adjacent
packets. Their erroneous bits will have a higher
correlation. Because we are not in the field of RF
transmissions, we do not need to decorrelate error bits
with Reed-Solomon interleavers. This is the opposite,
the more concentrated the error bits will be, the better
the protocol will be because it will reject all the
bitstream file and then all the error bits. Thanks to the
L1 cache at FPGA level, the bistream transmission is
only required when it is not present in the local
memories and the bitstreams traffic is reduced.

3.4. Is IP necessary ?

The fact that two PCs alone on a network with
unloaded Pentiums running Linux or Windows at 2
GHz be only able to transmit a few hundreds of KB per
second through a private 100 Mb/s LAN illustrates that
today IP protocols implementation is not adapted to
low latency and high bandwidth data transfers. But, to
optimize an operating system and its protocols stack C
source codes is a too long and complex task to just
validate that a link-layer protocol is enough. So, we
have decided to develop a specific and very simple
protocol without interfering with kernel code. With
more engineering work, we think a full UDP/IP
optimized version would offer the same service but at a
much lower speed because of the IP layer processing.
This will be part of a future work with UDP and will be
compared with this data link level work when
functional.

Coming back to Ethernet, its evolution is such that
tenths, and even hundredths, of Mb/s are now available
at very low costs and with quasi-null error rates. With

our repository hierarchy the bitstream server is
connected to the same LAN than our lightweight
system, it does not need level 3 routing toward any
other LAN. Therefore we do not need IP routing and its
companion protocols such as ICMP, ARP, TCP and
UDP. The immediate drawback is that it does not allow
downloading of a bitstream from any machine over
Internet. But, we consider such a complexity is not
necessary in LAN-connected systems where
downloading speed is critical.

3.5. Software

The software in charge of dynamic reconfiguration
is located in the FPGA and executed by the PPC405. It
is adapted to both modes of the DPR protocol : master
mode and slave mode.

In master mode it checks if a given bitstream is
present in local memory before requiring the LAN
server to send the bitstream. The politics about memory
usage is LRU based, which means the less used
bitstreams will be replaced by the most used ones is
there is not enough memory space to store all
bitstreams. The difference between a regular memory
cache and L1 is that the “line size” is rather big with
L1. Xilinx’s product strategy has always been in favour
of the reduction of the partial bitstreams size. With
Virtex4 and Virtex5, a real 2D partial reconfiguration
can be applied and the “column constraint” of Virtex2s
is no more a bottleneck. Hence the average size of
partial bitstreams is smaller. Based on previous works,
we planned a “cache line length” of about 10 Kbytes.
This is a parameter that can be tuned. The smaller it is,
the less padding space will be lost when loading
bitstreams which sizes are not pure multiple of 10
Kbytes. Defragmentation of free space in L1 can be
done “off line” while there is no bitstream transfer
ongoing. Defragmentation has not been implemented
yet, because it has no impact on the downloading
latencies. It is part of future work.

In slave mode it reacts to the LAN server requests
to force and update of the local bitstreams cache if the
bitstream is present in the cache. This possibility is
necessary to maintain coherency between local
bitstreams and the latest versions available on the
servers.

4. Results

Our measures are based on the repetitive endo-
reconfiguration of cryptography IPs like DES and triple
DES producing bitstreams file sizes about 60 KB and
200 KB. Results obtained depend on the producer-

consumer packets buffer size (2P+1) allocated to the
DPR protocol and on the cache size and line size. In
order to have a worst case measurement we have
voluntarily tested with no cache (or cache “off”) to
provoke systematic downloading of bitstreams. The
two curves at the top (plain and dashed curves)
represent respectively measured speeds for 60 KB and
200 KB bitstreams.

One can establish that, in both cases, when the
packets burst has a size greater or equal to three
packets (P = 3), a maximum speed ranging from 375 to
400 Kb/s@MHz is reached and is stabilized. The size
of the circular buffer being 2P + 1, it needs room for
exactely seven packets, be 10.5 KB (7 * 1.5 KB) only.
Compared to usual buffer pools of hundredths of KB
for standard protocol stacks, this is a very small amount
of memory to provide a continuous DPR service.
Dotted curves at the bottom represent the average
speeds reached by Xilinx, Lagger and probably
Williams. Our DPR protocol exhibits a reconfiguration
speed around 40 Mb/s closer to our local 60 Mb/s
Ethernet LAN limit. The gap between the
reconfiguration speed and the ICAP speed is now about
one order of magnitude instead of three orders of
magnitude as previously. Finally, our DPR software fits
into 32 KB of data memory and 40 KB of executable
code memory.

4500
Ay

400,0 — //\-\:_;:-

3500 /'/

300,0

—8—EG0K
—— 200K

— - — “Wiliams
150,0 —--—-Lagger

Kbit/'siiMHz
(YR
=21
=l =
o o

100,0

50,0

0,0

Figure 4 — Cache “off”, worst case performances

When cache is on and big enough to store the
requestes bitstreams for a given period of time, the
downloading latencies are in the range of the ms and
bitstreams updates can occur at the speed of Fig. 4.

5. Conclusion and future extensions

Our bitstreams repository hierarchy shows there is
still opportunities to improve cache-level, LAN-level,
and probably IP-level, caching strategies and protocols
in order to provide an efficient and remote
reconfiguration service over a standard network. Our

implementation exhibits an order of magnitude gain in
speed when compared to related works.

From here, we target implementations and protocol
optimizations for future low-latency, high-bandwidth
and network-reconfigurable sets of partially
reconfigurable embedded systems. Would another
FPGA maker provide a new configuration port, the
protocol presented here could be reused "as is". The
use of a DMA to transfer data between the buffer and
the ICAP port in order to get closer to the 100 Mb/s
Ethernet LAN is a rather natural optimization.
Integration of the DPR into the IWIP stack will be a
way to promote its usage as well as the customization
of UDP/IP stack inside embedded versions of Linux.
With Virtex5 FPGAs, Microblaze software versions
and full hardware implementation of the DPR protocol
might be welcome when targeting systems without
PPC405 hard cores. At last, DPR derivatives will be
necessary when lightweight systems will be connected
to other LANs like Wifi or CAN.

6. References

[1] M. Hubner, M. Ullmann, F. Weissel, J. Becker, “Real-
time Configuration Code Decompression for Dynamic FPGA
Self-Reconfiguration”, Proceedings of the 18th International
Parallel and Distributed Processing Symposium (IPDPS’04),
Santa Fe, New Mexico, USA, April 2004.

[2] K. Compton, S. Hauck, “Reconfigurable Computing: A
Survey of Systems and Software”,

ACM Computing Surveys, Vol. 34, NO. 2, June 2002, pp.
171-210.

[3] Herbert Walder, Marco Platzner, “Online Scheduling for
Block-partitioned Reconfigurable Devices”, Proceedings of
the Design And Test in Europe International Conference
(DATE’03), Munich, Germany, March 2003.

[4] Xilinx XAPP290, “Two Flows for Partial
Reconfiguration: Module Based or Difference Based”,
September 2004.

[5] B. Blodget, S. McMillan, P. Lysaght, “A lightweight
approach for embedded reconfiguration of fpgas”,
Proceedings of the Design And Test in Europe International
Conference (DATE’03), Munich, Germany, March 2003.

[6] Christopher Claus, Johannes Zeppenfeld, Florian Muller,
Walter Stechele, “Using Partial-Run-Time Reconfigurable
Hardware to accelerate Video Processing in Driver
Assistance System”, Proceedings of the Design And Test in
Europe International Conference (DATE 2007), Nice,
France, April 2007.

[7] Xilinx, XAPP433, “Web Server design using MicroBlaze
Soft Processor”, October 2006.

[8] Adam Dunkels, “IwIP”, Computer and Networks
Architectures (CNA), Swedish Institute of Computer
Science, http://www.sics.se/~adam/Iwip/.

[9] A. Lagger, A. Upegui, E. Sanchez, “Self-Reconfigurable
Pervasive Platform For Cryptographic Application”,
Proceedings of International Conference on Field
Programmable Logic and Application (FPL'06), Madrid,
Spain, August 2006.

[10] J. Williams, N. Bergmann, “Embedded Linux as a
platform for dynamically self-reconfiguring systems-on-
chip”, Proceedings of the 2004 International Conference on
Engineering of Reconfigurable Systems and Algorithms
(ERSA'04), Las Vegas, Nevada, USA, June 2004, ISBN 1-
932415-42-4.

[11] P. Bomel, G. Gogniat, J.-P. Diguet, “A Networked,
Lightweight and Partially Reconfigurable Platform”, in
Proceeding of the International Workshop on Applied
reconfigurable Computing (ARC’08), London, United
Kinddom, March 2008. Patent FR 08 50641 - N/R BFF
08P0055.

[12] B. Kettelhoit, M. Porrmann, “A Layer Model for
Systematically Designing Dynamically Reconfigurable
Systems”, Proceedings of International Conference on Field
Programmable Logic and Application (FPL'06), Madrid,
Spain, August 2006.

[13] F. Dittmann, S. Frank, “Hard Real-Time
Reconfiguration Port Scheduling”, Proceedings of the Design
And Test in Europe International Conference (DATE 2007),
Nice, France, April 2007.

[14] M. Huebner, T. Becker, J. Becker, “Real-Time LUT-
based Network Topologies for Dynamic and Partial FPGA
Self-Reconfiguration”, in 17th Symposium on Integrated
Circuits and Systems Design (SBCCI'04), Pernambuco,
Brazil, September 2004.

[15] C. Bobda, M. Majer, A. Ahmadinia, T. Haller, A.
Linarth, J. Teich, “The Erlangen Slot Machine: Increasing
Flexibility in FPGA-Based Reconfigurable Platforms”,
Journal of VLSI Signal Processing Systems, Volume 47,
Issue 1 (April 2007), Pages: 15-31, ISSN:0922-5773.

