
Design and Implementation of a Service-integrated Session Layer
for Efficient Message Passing in Grid Computing Environments

Carsten Clauss, Stefan Lankes, Thomas Bemmerl
Chair for Operating Systems, RWTH Aachen University

Kopernikusstr. 16, 52056 Aachen, Germany
{clauss, lankes, bemmerl}@lfbs.rwth-aachen.de

Abstract

When running large parallel applications with demands
for resources that exceed the capacity the local computing
site offers, the deployment in a distributed Grid environ-
ment may help to satisfy these demands. However, since
such an environment is a heterogeneous system by nature,
there are some drawbacks that, if not taken into account,
are limiting its applicability. First of all, one has to apply a
meta-computing or Grid-enabled message-passing library
in order to have the ability to route messages to remote sites
as well as still being able to exploit fast site-local network
facilities. Then, because the inter-site communication usu-
ally constitutes the system’s bottleneck, appropriate quality
of service parameters should be provided and policed for
those connections during the application’s execution. And
finally, the parallel runtime environment of the distributed
application should offer service interfaces in order to en-
able its interaction with Grid middleware. In this paper,
we present a new library called ISI whose functionalities
meet those requirements in terms of a session layer to be
integrated into Grid-enabled message-passing implementa-
tions.

1. Introduction and Motivation

The solution of critical numerical problems often ex-
ceeds the computing and memory capacity a local comput-
ing site offers. Therefore, by combining distributed com-
puting resources, as for example provided by computational
Grid environments [9], can help to satisfy the resource de-
mands such large applications desire. Advances in wide-
area networking technology have fostered this trend towards
geographically distributed high-performance parallel com-
puting in the recent years. However, as Grid resources
are usually heterogeneous by nature, this is also true for
the communication characteristics. Especially the inter-site

communication often constitutes a bottleneck in terms of
higher latencies and lower bandwidths than compared to the
site-internal case. The reason for this is that the inter-site
communication is typically handled via wide-area trans-
port protocols and respective networks, whereas the internal
communication is conducted via fast local-area networks
or even via dedicated high-performance interconnections.
That in turn means that an efficient utilization of such a hier-
archical and heterogeneous infrastructure demands a com-
munication middleware that provides support for all these
different kinds of networks and transport protocols.

Grid-enabled MPI Since MPI [18] is the most important
API for implementing parallel programs for large-scale en-
vironments, also some MPI libraries have already been ex-
tended in order to meet these demands of distributed and
heterogeneous computing. Those libraries are often called
Grid-enabledbecause they do not only use plain TCP/IP
(which is obviously the lowest common denominator) for
all inter-process communication, but are also capable of
exploiting fast but local networks and interconnect facili-
ties in order to accommodate the Grid’s hierarchy. Hence,
for being able to provide support for the various high-
performance cluster networks and their specific commu-
nication protocols, most of those libraries in turn rely on
other high-level communication libraries (like site-native
MPI libraries), rather than implementing this support inher-
ently. Therefore, such a Grid-enabled MPI library can be
understood as a kind of ameta-layerthat bridges the dis-
tributed computing sites, and for that reason their applica-
tion area is also referred to as a so-calledmeta-computing
environment. The most common meta-computing and Grid-
enabled MPI libraries are MPICH-G2 [15], PACX-MPI [1],
GridMPI [16], StaMPI [25] and MetaMPICH [21], which
are all proven to run large-scale applications in distributed
environments. Although these meta-MPI implementations
usually use native MPI support for site-internal communi-
cation, as for example provided by a site-local vendor MPI,

they must also be based on at least a transport layer be-
ing capable of wide-area communication for bridging and
forwarding messages also to the remote sites. However,
since regular transport protocols like TCP/IP are commonly
point-to-point-oriented, it is a key task of such a bridging
layer to setup all the required inter-site connections and thus
to act like asession layerfor the wide-area communication.

Grid-specific Transport Protocols Obviously, TCP/IP is
the standard transport protocol used in the Internet, and
due to its general design, it is also often employed in
Grid environments. However, it has been proven that TCP
has some performance drawbacks especially when being
used in high-speed wide area networks with high-bandwidth
but high-latency characteristics [8]. Hence, Grid environ-
ments, which are commonly based on such dedicated high-
performance wide area networks, often require customized
transport protocols that take the Grid-specific properties
into account. [31, 28]

Since a significant loss of performance arises from
TCP’s window-based congestion control mechanism, sev-
eral alternative communication protocols like FOBS [6],
SABUL [10], UDT [11] or PSockets [23] try to circum-
vent this drawback by applying their own transport policies
and tactics at application level. That means that they are
implemented in form of user-space libraries which in turn
have to rely on standard kernel-level protocols like TCP or
UDP, again. An advantage of this approach is that there is
no need to modify the network stack of the operating sys-
tems being used within the Grid. The disadvantage is, of
course, the overhead of an additional transport layer on top
of an already existing network stack. Nevertheless, a fur-
ther advantage of such user-space communication libraries
is the fact that they can offer a much more comprehensive
and customized interface to the Grid applications than the
general purpose OS socket API does.

However, in the recent years, a third kernel-level trans-
port protocol has become common and available (at least
within the Linux kernel): the Stream Control Transmission
Protocol (SCTP) [24, 30] which provides, similar to TCP,
a reliable and in-sequence transport service. Additionally,
SCTP offers several features not present in TCP, as for ex-
ample themultihomingsupport. This means that an end-
point of a SCTP association (SCTP uses the term “associ-
ation” to refer to a connection) can be bound to more than
one IP address at the same time. Thus, a transparent fail-
over between redundant network paths becomes possible.
Furthermore, it can be shown that SCTPmayalso perform
much better than TCP especially in heterogeneous wide-
area networks due to a faster congestion control recovery
mechanism [22, 19]. For that reasons, employing SCTP
also in Grid environments may be beneficial compared to
common TCP. [14, 4]

When looking at this diversity of alternative transport
protocols, the question arise which one should be used by
the bridging session layer of a message-passing library in
meta-computing environments? The answer is that this de-
pends on the properties of the actual environment. In fact,
due to the Grid’s heterogeneous nature, the best solution
may differ even within the Grid. Moreover, since Grid re-
sources can be volatile, e.g. an initially assigned bandwidth
does not necessarily be granted during a whole session, the
optimal protocol to be used may also vary in the course of
time. For that reason, an efficient session layer for message-
passing-based Grid computing should be capable of sup-
porting more than one transport facility at the same time.
Nevertheless, such a session layer should also be aware of
the inter-site communication overhead by being and acting
as resource-friendly as possible in this respect.

Demand for Integrated Services In order to exploit a
Grid environment at its full potential, the underlying net-
work must be a managed resource, just like computing and
storage resources usually are. As such, it should be manages
by an intelligent and autonomic Grid middleware. [28, 13]
Such a middleware, like a Grid scheduler, needs to retrieve
runtime information about the current capacity and quality
of the communication infrastructure, as well as information
about the communication patterns and characteristics of the
running Grid applications. For that purpose, the possibility
of a dynamic interaction between such a scheduling mid-
dleware and the respective application would be very desir-
able. Therefore, a favored session layer would also provide
Grid service interfacesin order to make such information
inquirable at runtime. Moreover, a dedicated interface that
also allows to access and even to reconfigure the session
settings at runtime would help to exploit the Grid’s hetero-
geneous network capabilities at their best. Consequently,a
session layer for an actual efficient meta-computing-related
message-passing should provide such integrated services to
the Grid environment.

Remainder of the Paper The remainder of the paper is
organized as follows: In Section 2, we detail the design
and the implementation of such a session layer that meets
all these issues and requirements described above. We will
show how the actual session establishment is performed
and how payload transfers are handled via the established
connections. The design of an integrated service interface
for providing dynamic interaction with other Grid middle-
ware is presented in Section 3. Finally, the description of
an already successfully conducted application example and
an outlook on possible future enhancements and planned
follow-up projects conclude the paper in Section 5.

2. Implementation of the Session Layer

In this section, we want to detail the implementation of
the service-integrated session layer calledISI1. In its ca-
pacity as a session layer, ISI is located according to the
OSI model [5] between the upper presentation layer and the
lower transport layer, as it is illustrated in Figure 1. How-
ever, its actual implementation is realized in the form of a
library that has recently been developed at our institute.

Since ISI has been especially designed as a session layer
for message passing in meta-computing and Grid environ-
ments, the upper presentation layer is principally repre-
sented by the higher-level MPI functionalities. Whereas,
on the other hand, the interfaces to the lower transport layer
are traditionally abstracted by the concept ofnetwork sock-
ets. Thus, one key task of this session layer is to estab-
lish the required connections between the distributed pro-
cesses of a heterogeneous MPI environment by mapping
this connection establishment onto socket-related client-
server-semantics.

. . .

USI
native

Socket APIs

. . .

. . .
4

5

6
ISI

MPI

TCP SCTP UDT

Presentation Layer (MPI)

Session Layer (ISI)

O
S

I−
La

ye
rs

Different Protocols within the Transport Layer

USI−Modules for encapsulating the native Socket APIs

USI:TCP USI:SCTP USI:UDT

Figure 1. Classification According to OSI

However, in order to support a more generalized and
flexible interface design for the ISI layer, we have decided
not to base the layer directly upon the native socket inter-
faces provided by the respective transport protocols, but
rather to introduce a further abstraction layer calledUSI.2

The purpose of this small layer is to unify the access to the
lower layers within the ISI implementation, while still be-
ing able to utilize the different features each of the transport
protocols may offer. This goal is achieved by encapsulat-
ing the calls to the respective socket interfaces in so-called
USI-Modulesand hence providing one module instance per
each supported transport protocol, as it is also denoted in
Figure 1.

1Although ISI is rather a name than an actual abbreviation, one may
interpret the letters as a multi-layered acronym forService-Integrated Ses-
sion layer Implementation on a Socket Interface.

2Here,USI is an abbreviation forUniform Socket Interface

2.1. The Domain Configuration

Within the ISI terminology, an established (logical) com-
munication session between the participating processes is
represented by a so-calledISI-Domain. Such a domain is
characterized by the affiliation and the number of covered
processes. Whereas, in turn, each contained process is char-
acterized by a unique rank within the domain, just in anal-
ogy to an MPI world. However, the correlation between
a respective process and its rank is identified via a special
domain configurationin case of an ISI session.

In this context, such a domain configuration is an XML-
coded [27] dataset that has to be passed to each participating
process in a manner to be determined during the domain ini-
tialization. Therefore, a certain access method needs to be
specified in order to enable the actual access for the pro-
cesses to the needed configuration dataset. Here, possible
access methods may be the readout of a local configuration
file or a query on a central configuration server.

After its retrieval, the configuration dataset gets parsed
so that the required information likedomain size, the re-
spectivedomain rankand the necessaryaddress informa-
tion (see next Section) become available at all participating
processes.

At this point it should be emphasized that all actual con-
nections between the processes within a session are just
established on demand. The reason for this is that in a
large Grid environment withmanyprocesses an establish-
ment of all imaginable N-to-N connections during the do-
main initialization would constitute an inappropriate over-
head. However, a once-established connection will usually
be retained until the termination of the processes.

<domain identifier="my_domain">
<size> 2 </size>
<process identifier="host-01">

<rank> 0 </rank>
</process>
<process identifier="host-02">

<rank> 1 </rank>
</process>
. . .

</domain>

Figure 2. Excerpt of a Domain Configuration

Figure 2 shows a simple example of an ISI configura-
tion dataset describing a session with just two participat-
ing processes. As one can see, during parsing this config-
uration, the processes can recognize their domain affilia-
tion and their respective domain rank by means of so-called
domain and process identifiers. For that purpose, match-
ing identifiers need to be passed to the domain initialization
function in terms of string parameter. Here, for instance,
theusername, thename of the applicationand/or thehost-
namescan serve as such identifiers being detectable by each
process on its own.

2.2. Handling of Payload Transfers

Although it is not a key task of a session layer to process
the actual transfer of payload, it still needs to provide the
possibility to associate a communication request with an es-
tablished connection. For that purpose, the ISI layer offers
send and receive functionsthat serve as such entry points
for communication requests posted by the upper layer.

Those functions are designed in a quite straightforward-
manner, what means that on the one hand, they are referring
to the semantics of the common non-blocking MPI send
and receive functions. On the other hand, those functions
should just act as a gateway that maps domain and rank
related communication requests onto the underlying estab-
lished socket connections between the processes. In this
context it should be mentioned that the ISI layer itself works
strictly header-less. That means that the ISI layer does not
add any additional management data to the payload, but just
gathers and passes the posted references of message buffers
to the lower transport layer.

10

Domain

domain size = 2

local rank = 0

remote rank = 1

Gateway

next

TCP−Socket

USI−Module

USI−Socket

Conveyor

Mediator−List Recv Request Queue

to the recipient

ISI_Send()

Send Request Queue

Gateway−Array:

Figure 3. Processing of Payload Requests

For that purpose, each domain instance holds an array of
so-calledGatewayobjects (with one object per remote do-
main rank) that features appropriateFIFO queuesfor han-
dling the posted requests, as it is denoted in Figure 3. In this
example, the process with rank 0 posts a send request for a
message to be received by process 1. As one can see, the re-
quest is directed across the Gateway-Array and the respec-
tive send queue to an established transport layer connection,
here constituted by a TCP socket.

As already mentioned, the actual interfaces to the respec-
tive transport protocols are encapsulated in the so-called
USI-Modules. Since those modules are in turn embedded

into instanceable objects, different transport protocolscan
be used within one ISI session. In fact, it is possible that for
example some processes want communicate via TCP while
others may find SCTP as the best choice, and all within one
ISI-Domain. For that purpose, the domain configuration
must contain correspondingmodule and address informa-
tion in order to establish the required connections based on
the desired transport protocols.

<addresses rank="1">
<connector module="TCP">

123.123.123.123:12345
</connector>
<connector module="SCTP">

123.123.123.123:45678|
231.231.231.231:56789

</connector>
</addresses>

Figure 4. Excerpt of an Address Information

Figure 4 shows an exemplary excerpt of such a multi-
protocol domain configuration. In this snippet, the informa-
tion is coded how to establish a connection with the process
holding rank 1. As one can see, this rank provides two USI-
Modules and thus will listen on the two stated network ad-
dresses. While the first one of these address entries refers to
a TCP connection, the second entry here represents a mul-
tihomed endpoint of a SCTP association.

Currently, the ISI implementation provides USI-Mod-
ules for TCP, SCTP and UDT. Others, like aPSockets[23]
based module or a module being customized especially for
the extendedWinSock-API [17] may follow.

However, when looking again at Figure 3, one may con-
sider a yet not explained object calledConveyor. This object
is derived from an abstract superclass calledMediator and
represents in ISI terminology an actual established payload
connection. Each ISI-Gateway posses alist containing such
Mediator-derived objects like Conveyors, and consequently
there can exist more than one payload connection between
two processes at the same time.

At this point the question arises, which of these possibly
multiple connections should be used for the actual payload
transfer. Until now, a (logical) connection is characterized
by a certain pair of processes, a chosen transport protocol
represented by an USI-Module and the respective address
information. However, for the purpose ofjudginga connec-
tion’s quality, also additional attributes like latency or band-
width can be associated with the Conveyor objects within
an ISI-Domain. In fact, it is the task of additional integrated
services within the ISI layer to obtain such information and
to ensure their consideration during session establishment
and management. Those services and their interfaces will
be explained in the next section.

Conveyor

0 1

Domain

domain size = 2

Gateway

remote rank = 1

local rank = 1

Gateway

remote rank = 0

Executor

Acceptor

0 1

Domain

domain size = 2

local rank = 0

Gateway

remote rank = 1

Governor
(SwitchComm)

6. RPC: Fork Executor

Gateway

remote rank = 0

Acceptor

Executor

Conveyor

Mediator−ListMediator−ListMediator−ListMediator−List

Gateway−Array:Gateway−Array:

3. RPC: AddNewGovernor

5. Connect

External
Entity

(SwitchCommunicators)

1. Connect

4. Create and Add

7. Perform programmed
"SwitchCommunicator" procedure

2. RPC: Fork Executor

Figure 5. An Example for Deploying Governor Objects Committ ed by an External Entity

3. The Integrated Services

All services offered by the ISI layer can be accessed by
the Grid environment viaremote procedure calls(RPC).
Although there exist several approaches for implementing
RPC facilities in Grid environments [20, 26, 12], we have
decided to base our implementation on the raw XML-RPC
[29] specification. Therefore, all RPC queries have to be
handled via XML-coded remote method invocations of so-
calledISI-Service-Objects.

In turn, such service objects are instances ofMediator-
derived classes, such as the above mentioned Conveyor ob-
jects. And since the offered services are typically rank-
related, the service objects are stored in the Mediator-List
of the respective ISI-Gateways, just like the Conveyor ob-
jects, too. All these objects can be understood as finite state
automata that are triggered by outgoing or incoming mes-
sages. Thus, in case of a Conveyor, such messages are just
the payload requests, while in case of service objects, those
messages are usually constituted by the XML-coded remote
method calls and responses. Consequently, service inquiries
on an established ISI-Domain are also handled via socket
connections provided by the USI-Modules. That means that
also the RPC-related communication can utilize the differ-
ent supported transport protocols. Although the state tran-
sitions of each service object are triggered by events like
message arrivals, the respective event handling is scheduled
within the ISI layer in anintelligent way. Thus, for exam-
ple, payload requests are handled with a higher priority than
service inquiries. On the other hand, an intelligent schedul-
ing policy also protects service inquiries from starvation.

3.1. Reporting Services

Simple services just provide the caller with status infor-
mation about the current session, as for instance whether a
certain connection has already been established, which pro-
tocol is (or should be) in use, or how many bytes of payload
have already been transfered on this connection. These in-
formation can then be evaluated by an external entity like
a Grid monitoring daemon in order to detect bottlenecks
or deadlocks in communication. For the purpose of being
accessible for such external entities, each process within
an ISI session provides so-calledAcceptorobjects which
are listening on announced addresses for such incoming in-
quiries.

However, those addresses may be just the same as for
accepting connections from other processes within an ISI-
Domain. For that reason, each connecting process must ini-
tially tell the Acceptor whether it is a process that exhibits
a domain rank, or if it is about an external monitoring in-
stance. Thus, since the remote rank of a connecting process
(that is an incoming connection) is not predictablea-priori,
Acceptors are stored within the Mediator-List of that Gate-
way object being indexed by thelocal rank.

3.2. Intervening Services

Besides such query-related services, each ISI process
also offers RPC interfaces that allow external entities ac-
tually to governthe behavior and the session-related state
of that process. That way, a monitoring or scheduling in-
stance is given the ability to reconfigure an already estab-
lished session even at runtime. For this purpose, a respec-

tive master entity has to send RPC-related commands to the
ISI processes which will then be carried out by so-called
ISI-Executorobjects within the processes. Upon receiving
of such a command, an Executor may change, for exam-
ple, the active Conveyor of a Gateway object and thus the
transport protocol being used for payload transfers.

However, as one can imagine, the change of the actual
payload connection is rather a process-pair-related com-
mand, than a command to be executed on a single process.
Due to this reason, a further Mediator-derived object is the
so-calledGovernor. Actually, such a Governor is a kind of a
programwhich is based on ISI-Executor-related commands
and responses. That means that a Governor can be deployed
to let one ISI process control the behavior of another. Since
there a various useful courses of action within such a pro-
grammed remote control thinkable, “Governor” is actually
the name of a superclass of derived objects implemented for
performing different tasks.

For example, such a task may be the synchronized
switching of a payload connection to another transport pro-
tocol. Processing this task, the Governor must initially en-
sure that all further enqueueing of payload requests gets
temporarily stopped on both sites. Then the master has to
determine whether the number of bytes of the local and the
remote pending requests are identical (or zero). This is be-
cause only in this case a proper mapping of payload data
being still in transit onto the posted receive requests can be
assured afterwards. In case this condition is not met, the
Governor can try to obtain such a match by regulating the
request enqueueing rate on both sites. Eventually, the Gov-
ernor can safely enable the new payload connection, while
possibly pending older requests may still be satisfied by in-
coming data from the former connection.

If an external entity wants to invoke such a connec-
tion switching procedure between two ISI processes, it just
needs to connect to one of them and to send the rank-related
Executor command “AddNewGovernor” with “ SwitchCon-
veyors” as argument, whereupon the process will create
such a new Governor object to be stored in the Mediator-
List of the respective Gateway object. This Governor will
then connect to an Acceptor at the remote rank that forks
an Executor which in turn will carry out the required mea-
sures, guided by the Governor, to perform a proper switch-
ing of the connections. Figure 5 shows an example for such
a procedure where an external entity commits a Governor
in order to perform such a pair-related task likeSwitchCon-
veyors.

3.3. Monitoring Services

However, besides such connection-related control mech-
anisms based on Governors, also self-referring monitoring
services are supported by the ISI layer to the participating

domain processes themself. These services are represented
in ISI terms by means of so-calledSupervisorobjects. Such
objects, though also derived from the Mediator superclass,
are not associated with a connection to a remote rank. For
that reason, they are usually stored in the Mediator-List of
the Gateway object being located at the index of the own
rank inside the domain’s Gateway-Array, just like Accep-
tors.

Although they do not refer to a distinct remote rank, the
Supervisor services can, in turn, initiate connection-related
actions by means of creating and deploying appropriate
Governor objects. Such actions may be triggered, for ex-
ample, by the detection of a timeout, a bottleneck or the re-
quirement of a cleanup. At this point it should be mentioned
that also external entities have the ability to control, addor
just delete such self-monitoring Supervisors for a certain
rank at runtime. By this means, a Supervisor can act as a
sort of a remote daemon deployed by an external entity that
monitors the respective process and that can trigger the cor-
responding actionson-site, this means without any further
external interaction or intervention. For that purpose, the
external entity has just to act in almost the same manner as
already described for the case of deploying Governor ob-
jects, though with the difference that “AddNewSupervisor”
is the RPC command to be used.

An example of an actual Supervisor object is theLazyAu-
toConnectservice that realizes anon-demandconnection
establishment. For this purpose, such an object frequently
checks the queues of unconnected Gateways for posted
payload requests and then triggers the respective con-
nect/accept procedure if necessary.

3.4. Benchmarking Services

Finally, the question remains how quality-of-service
metrics like latency and bandwidth of a connection can
be obtained within an ISI session. For that purpose, the
ISI layer offers specialSurveyor-Service-Objects which are
quite similar to Conveyor objects, with the difference that
they are not intended for an actual payload transfer but for
measuring the connection characteristics by means of data
transfer being performed especially for benchmarking pur-
pose. Although the data being sent and received within such
a benchmarking procedurecanbe constituted by actual pay-
load being posted in terms of requests from a higher layer,
the Surveyor objects can also generatefaked datafor that
purpose. That in turn means that such a benchmarking pro-
cedure can interfere with regular payload traffic within an
ISI session and hence should be kept as short as possible.
Nevertheless, the gained information about a connection’s
quality (and resulting activities like protocol switching) can
still contribute to a better overall performance of an ISI ses-
sion.

ExecutorGovernor
{abstract}

{abstract}

Connector

Mediator
{abstract}

Supervisor
{abstract}

Acceptor

Surveyor
{abstract}

Conveyor

Figure 6. Overview of the ISI-Service-Objects

3.5. Further Services

Concluding, Figure 6 shows the derivation tree display-
ing the hierarchy of the described ISI-Service-Objects. As
one can see, the connection-related objects like Governors,
Executors, Conveyors and Surveyors inherit from a Connec-
tor and/or the Acceptor class, whereas a Supervisor is di-
rectly derived from the Mediator superclass. Here it should
be emphasized that Governor, Supervisor and Surveyor are
still abstractclasses, while further subclasses (not displayed
in Figure 6) implement the actual behavior of the respective
services, as for example “SwitchConveyors” is a particular
service instance of a Governor.

Those further subclasses are all implemented in terms of
dynamically loaded objects located in shared libraries. That
means that when creating such a service instance, for exam-
ple by emitting an “AddNewGovernor” RPC command, the
name of the requested Governor instance, given as a RPC
parameter, serves as a handle for loading the respective ob-
ject. That way, the handling of such objects is kept as gen-
eral as possible within the ISI layer for the benefit of flexi-
bility.

4. Integration into MetaMPICH

As already pointed out in the motivation section, the
ISI session layer has not been developed with the inten-
tion of being a stand-alone communication library, but
has been especially designed to be integrated into meta-
computing and Grid-enabled MPI libraries. Therefore, our
overall desired goal would be a comprehensive integration
of ISI into several meta-computing-related projects. How-
ever, as a first feasibility study, we have already success-
fully integrated ISI’s functionalities into a project called
MetaMPICH, which is about the implementation and en-
hancement of a Grid-enabled MPI library and which has
also been conducted at our institute. [21]

In order to meet the demands of heterogeneous Grid en-
vironments, this MPI library provides even two different

methods for linking the remote sites: arouter-basedmethod
and a so-calledmulti-devicemethod [3]. In particular the
multi-device method of MetaMPICH has significantly ben-
efited from an ISI managed session establishment. This is
because the former version of this method was based on
pure TCP connections that had all been established stati-
cally during initialization. By now, MetaMPICH can also
provide the different transport protocols supported by the
USI-Modules of the ISI library, whereas the (actual) con-
nection establishment is doneon-demandin a dynamic and
resource-saving manner.

Besides this feature of supporting multiple transport pro-
tocols in a very flexible manner, further key features of ISI
are its integrated services. Although MetaMPICH does not
enforce the usage of a specific Grid middleware (in fact, it
can be used without such a middleware at all), its runtime
system has already been extended by the ability to inter-
act with a so-calledmeta-schedulingservice in UNICORE-
based Grid environments [7, 2]. We believe that in future
the interaction between MetaMPICH (or its successor) and
other Grid middleware such as UNICORE can particularly
benefit from ISI’s service-related interfaces.

5. Conclusions and Outlook

In this paper, we have presented the design of the ISI ses-
sion layer library. We have pointed out the demand for its
capability of supporting Grid-specific transport protocols,
as well as the demand for its integrated service interfaces in
order to provide a dynamic interaction with the outer Grid-
environment. After detailing ISI’s implementation in terms
of the ISI-Domain abstraction concept and the multiplic-
ity of ISI-Service-Objects, we have presented a successfully
conducted application example.

In order to keep this paper focused, we are not able to
cover all aspects of interest within the broad scope of an ef-
ficient, reliable and secure session layer. In particular, secu-
rity aspects like authentication and authorization are major
topics, but not discussed here. Furthermore, we have to con-
clude the paper, due to lack of space, without presenting any
performance results. In fact, we have spent a lot of efforts in
optimizing the performance by shortening the critical paths.
In addition, a comparison of the presented architecture with
other approaches for Grid-enabled MPI solutions would be
desirable, too. Therefore, we aim to cover all these aspects
in future work and publications.

Finally, we want to emphasize that ISI is a free library
and thus may in future also be utilized by other meta-
computing projects than those being conducted at our in-
stitute. Actually, we think that an integration even into ex-
ternal projects should also prove to be quite easy, because
of ISI’s modular and service-oriented design.

References

[1] T. Beisel, E. Gabriel, M. Resch, and R. Keller. Distributed
Computing in a Heterogeneous Computing Environment. In
Proceedings of the 5th European PVM/MPI Users’ Group
Meeting (EuroPVM/MPI), UK, September 1998. Springer.

[2] B. Bierbaum, C. Clauss, T. Eickermann, L. Kirtchakova,
A. Krechel, S. Springstubbe, O. Ẅaldrich, and W. Ziegler.
Orchestration of distributed MPI-Applications in a
UNICORE-based Grid with MetaMPICH and MetaSchedul-
ing. In Proceedings of the European PVM/MPI Users’
Group Meeting (EuroPVM/MPI), Germany, September
2006. Springer.

[3] B. Bierbaum, C. Clauss, M. P̈oppe, S. Lankes, and T. Be-
mmerl. The new Multidevice Architecture of MetaMPICH
in the Context of other Approaches to Grid-enabled MPI. In
Proceedings of the European PVM/MPI Users’ Group Meet-
ing (EuroPVM/MPI), Germany, September 2006. Springer.

[4] O. Buyanjargal, J. T. Kim, S. Y. Lee, and Y. Kwon. Perfor-
mance Improvement of Grid Web Services based on Multi
Homing Transport Layer. InComputer and Information
Technology (CIT). IEEE Computer Society, 2006.

[5] D. Day and H. Zimmerman. The OSI Reference Model.
Proceedings of the IEEE, Vol. 71(12):1334–1340, 1983.

[6] P. M. Dickens. FOBS: A Lightweight Communication Pro-
tocol for Grid Computing. InProcessing of the 9th Interna-
tional Euro-Par Conference (Euro-Par’03), Austria, August
2003.

[7] D. W. Erwin and D. F. Snelling. UNICORE: A Grid Com-
puting Environment. Lecture Notes in Computer Science,
2150:825ff, 2001.

[8] W. Feng and P. Tinnakornsrisuphap. The Failure of TCP in
High-Performance Computational Grids. InProceedings of
Supercomputing’2000 (CD-ROM), Dallas, November 2000.
IEEE and ACM SIGARCH.

[9] I. Foster and C. Kesselman, editors.The Grid: Blueprint
for a Future Computing Infrastructure. Morgan Kaufmann,
1999.

[10] Y. Gu and R. L. Grossman. SABUL: A Transport Protocol
for Grid Computing.Journal of Grid Computing, 1(4):377–
386, 2003.

[11] Y. Gu and R. L. Grossman. UDT: UDP-based data trans-
fer for high-speed wide area networks.Computer Networks,
51(7):1777–1799, 2007.

[12] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and
H. F. Nielsen. SOAP version 1.2. W3C recommendation,
W3C, June 2003.

[13] S. Hessler and M. Welzl. Seamless Transport Service Se-
lection by Deploying a Middleware.Computer Communi-
cations, 30(3):630–637, 2007.

[14] H. Kamal, B. Penoff, and A. Wagner. SCTP-based Middle-
ware for MPI in Wide-Area Networks. InCommunication
Networks and Services Research Conference (CNSR). IEEE
Computer Society, 2005.

[15] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-
enabled Implementation of the Message Passing Interface.
Journal of Parallel and Distributed Computing, 63(5):551 –
563, 2003.

[16] M. Matsuda, Y. Ishikawa, Y. Kaneo, and M. Edamoto.
Overview of the GridMPI Version 1.0. InProceedings of
the SWoPP05, Japan, 2005.

[17] Microsoft.Windows Sockets 2 Application Programming In-
terface, An Interface for Transparent Network Programming
Under Microsoft Windows. Manual.

[18] MPI Forum. MPI: A Message-Passing Interface Stan-
dard. International Journal of Supercomputing Applica-
tions, 1994.

[19] D. Nagamalai, S.-H. Lee, W. G. Lee, and J.-K. Lee. SCTP
over High Speed Wide Area Networks. InProceedings of the
4th International Conference on Networking (ICN), France,
April 2005. Springer.

[20] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee,
and H. Casanova. GridRPC: A Remote Procedure Call API
for Grid Computing. InProceedings of the 3rd Interna-
tional Workshop on Grid Computing (GRID), USA, Novem-
ber 2002. Springer.

[21] M. Pöppe, S. Schuch, and T. Bemmerl. A Message Pass-
ing Interface Library for Inhomogeneous Coupled Clusters.
In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), France, April 2003.

[22] R. Rajamani, S. Kumar, and N. Gupta. SCTP versus TCP:
Comparing the Performance of Transport Protocols for Web
Traffic. Free Whitepaper from University of Wisconsin, July
2002.

[23] H. Sivakumar, S. Bailey, and R. L. Grossman. PSockets: The
Case for Application-level Network Striping for Data Inten-
sive Applications using High Speed Wide Area Networks.
In Proceedings of Supercomputing 2000, Dallas, November
2000. IEEE and ACM SIGARCH.

[24] R. Stewart and Q. Xie. Stream Control Transmission Protocl
(SCTP) - A Reference Guide, 2001.

[25] H. K. Toshiyuki Imamura, Yuichi Tsujita and H. Takemiya.
An Architecture of StaMPI: MPI Library on a Cluster of Par-
allel Computers. InProceedings of the European PVM/MPI
Users’ Group Meeting (EuroPVM/MPI), Hungary, 2000.
Springer.

[26] S. Verma, M. Parashar, J. Gawor, and G. von Laszewski. De-
sign and Implementation of a CORBA Commodity Grid Kit.
In Proceedings of the Second International Workshop on
Grid Computing (GRID), USA, November 2001. Springer.

[27] W3C. Extensible Markup Language (XML) 1.0 (Fourth Edi-
tion), September 2006.

[28] M. Welzl and M. M. Yousaf. Grid-Specific Network En-
hancements: A Research Gap? InInternational Work-
shop on Autonomic Grid Networking and Management
(AGNM’05), Spain, October 2005. IEEE.

[29] D. Winer. XML-RPC Specification. UserLand, Inc., June
1999.

[30] L. M. Yarroll and K. Knutson. Linux Kernel SCTP: The
Third Transport. Whitepaper.

[31] Y. Zhu, A. Bassi, P. Massonet, and D. Talia. Mechanisms
for High Volume Data Transfer in Grids. Technical report,
Institute on Knowledge and Data Management, CoreGRID
– Network of Excellence, December 2007.

