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Algorithm for Mapping Multilayer BP Networks onto
the SpiNNaker Neuromorphic Hardware

X. Jin, M. Luján, M.M. Khan, L.A. Plana, A.D. Rast, S.R.Welbourne and S.B. Furber

The University of Manchester
Manchester, UK e-mail: jinxa@cs.man.ac.uk

Abstract—This paper demonstrates the feasibility and eval-
uates the performance of using the SpiNNaker neuromorphic
hardware to simulate traditional non-spiking multi-layer per-
ceptron networks with the backpropagation learning rule. In
addition to investigating the mapping of checker-boarding par-
titioning scheme onto SpiNNaker, we propose a new algorithm
called pipelined checker-boarding partitioning which intro-
duces a pipelined mode and captures the parallelism within
each partition of the weight matrix, allowing the overlapping
of communication and computation. Not only does the proposed
algorithm localize communication, but it can also hide a part of
or even all the communication. The performance is evaluated
with SpiNNaker configurations up to 1000 nodes (20000 cores).

Keywords-parallel; perceptron; backpropagation; SpiN-
Naker; mapping

I. INTRODUCTION

As with other parallel applications, the challenge in the

parallel simulation of multi-layer perceptron (MLP) net-

works with the backpropagation (BP) learning is to under-

stand how to partition and distribute the computational tasks

while minimizing communication requirements. A number

of partitioning schemes have been developed to solve this

problem and have been mapped onto a variety of parallel

hardware with different topologies such as the hypercube

machine, mesh connected multiprocessors, transputers, net-

works of workstations, and also dedicated neural hardware

[1], [2], [3].

SpiNNaker machine was originally designed to simulate

large-scale spiking neural network in real-time [4], [5], [6],

[7]. Each SpiNNaker node is a bespoke multi-core chip

with an on-chip router, and these nodes are interconnected

through a two dimensional torus mesh and communicated

using multi-cast mechanism [8], [9]. This paper demon-

strates how SpiNNaker should operate when dealing with

the traditional non-spiking multi-layer perceptron (MLP)

networks with backpropagation (BP) learning rule, using the

multi-cast communication system. We firstly investigate how

to map the checker-boarding (or block-block) partitioning

(CBP) scheme onto SpiNNaker. Based on such a study,

a new algorithm called pipelined CBP (PCBP) is then

proposed for partitioning and mapping MLP networks onto

SpiNNaker. The performance evaluation of such mappings

is also an important object of this paper.

The PCBP algorithm distributes the weight matrix using

the checker-boarding (or block-block) partitioning (CBP)

scheme. The CBP scheme cuts the whole weight matrix

into small sub-matrices enabling the communication to be

localized and reducing the number of communication pack-

ets. In the context of neural networks, the CBP scheme

was used in [10], [11] and others, but none of them has

addressed the parallelism within each individual submatrix.

Based on the CBP scheme, we have developed the PCBP

scheme. In the PCBP scheme, in addition to the traditional

group of cores which do the vector-matrix computation, an

extra two groups of cores are employed to compute the

partial sums and outputs. The three groups of cores are

able to work in parallel and produce a six-stage pipeline,

allowing the overlap of computation and communication.

Previous work has considered pipelined implementations,

but it was either based on pipelining the work in each neural

network layer [12] or based on pipelining between patterns

[13]. They can not be applied to recurrent neural networks

(RNNs), since all layers in RNNs are updated concurrently.

Our algorithm, on the other hand, overcomes this barrier

by considering pipelining within each partition. Although

the pipelined checker-boarding partitioning (PCBP) scheme

we proposed works for both feed-forward and recurrent

networks, we focused mostly on recurrent networks in this

paper, based on three reasons. 1. More and more neural

models are built based on RNNs to simulate more complex

situation. 2. RNNs are much more computationally demand-

ing to train than FFNNs. 3. Less research work of parallel

implementation has been taken on RNNs than on FFNNs.

The performance of PCBP on SpiNNaker is evaluated

in a semi-experimental and semi-analytical way, and it is

compared with the performance based on CBP scheme.

The performance curves we produced show that with the

PCBP scheme, we can achieve better speedup than with the

traditional non-pipelined CBP scheme on SpiNNaker. The

work shows that SpiNNaker not only can support spiking

neural networks (as shown in previous papers), but is also

able to deal with non-spiking MLP networks.

The rest of the paper is organized as follows: Section

II describes the computations required by MLP networks

learning using BP. Section III presents the traditional CBP

partitioning that will be used as the base line for comparison.
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The new pipelined algorithm proposed is described and

analyzed in Section IV. Sections V and VI present the

analytical and simulation results, respectively. Section VII

presents the discussion. Section VIII summarizes the paper.

II. NEURAL NETWORK MODELS

A. Feedforward and recurrent neural networks
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(b) Weight matrix.

Figure 1. Neural network models and the weight matrix

A feedforward network (FFNN), as a standard form of

multi-layer perceptron, consists of a number of simple

neuron or units, organized in layers. Neurons in one layer

are connected only to neurons in the next layer. There is

no self-connection or connection within the same layer. In

such networks, groups are updated in the order in which they

appear in the network’s group array (sequential updates).

Only one layer need to be computed at a time.

Recurrent Neural Networks (RNNs), as shown in Figure

1(a), not only have feedforward connections but also have

feedback connections. A neuron in RNN may connect to any

other neurons including itself. Further more, RNNs use con-

current updates and propagate error derivatives backwards

through time. That is, in each time tick, all layers first update

their inputs and then all layers update their outputs. Back-

propagation will not start until the forward phase running for

a given number of time ticks. Backpropagation then loops

for the same number of ticks. In this case, all layer need to be

computed at each time. The way neurons are connected and

the way they are updated make RNNs more computationally

intensive than FFNNs.

The weights can be seen as a matrix shown in Figure

1(b). Depending on the connectivity, the weight matrix may

be dense or sparse. In FFNNs, elements are spread only in

several areas indicated by dot-filled blocks in Figure 1(b),

while in RNNs, weights are spread over the whole matrix.

In this paper, we will discuss the partitioning scheme based

on the weight matrix.

B. BP learning rule

The BP algorithm was introduced in 1986 [14] and is

the most common learning algorithm for training multi-layer

perceptron (MLP) networks. At the core of the BP algorithm

is a delta rule which computes weight changes in proportion

to the difference between the actual output vector achieved

and the target output vector provided by the training pattern

[15]. We denote neurons in the input layer, hidden layer and

output layer as ni, nj , nk respectively; wji and wkj are the

weight of connection from neuron ni to nj and nj to nk

respectively.
Forward Phase — During the forward phase, information

propagates from the input layer to the output layer (Fig-

ure 2(a)).
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Figure 2. Computational phases of a MLP network with BP learning

In each step of propagation, neuron nj receives an output

vector o0, . . . ,oi from the previous layer and produces a net

input netj according to

netj =

N∑

i=1

oiwji. (1)

The generated netj is then passed to a continuous non-

linear activation function fj to generate the output oj
according to

oj = fj(netj). (2)

The output oj will be passed to neurons in the next layer

until the propagation reaches the output layer.
Backward Phase — the BP algorithm requires a back-

ward phase in the neural network layers to propagate back

a delta error δ that is used to generate weight changes. In

the backward phase, firstly, the output ok produced in the

output layer is compared with the target tk to generate an

error ek which is ek = tk − ok. This error ek is then used

to produce the delta error δk given by

δk = ekf
′
(netk) = (tk − ok)f

′
(netk). (3)

The delta error δk can be used to produced weight updates of

wkj denoted by Δwkj according to Δwkj = ηδkoj , where

η is the learning rate. Then, δk is propagated back to the

previous layer and is used to compute the error ej according

to

ej =
N∑

k=1

δkwkj , (4)

as indicated in Figure 2(b). The delta error of this layer δj
is given by

δj = ejf
′
(netj) =

N∑

k=1

δkwkjf
′
(netj). (5)
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Weight changes Δwji for connections from ni to nj are

given by

Δwji = ηδjoi. (6)

III. NON-PIPELINED MODEL

A. Review of partitioning schemes

Depending on the level of parallelism, MLP networks with

BP learning can be parallelized either by training on multiple

patterns simulaneously or by parallelizing the computations

of updating the weights within neural networks, or by

a hybrid of these two [16]. Since most of the learning

algorithms compute weight changes on a per-pattern basis,

pattern parallelism can be easily applied on top of most

network parallelism. As a result, in this paper, we focus

on parallelism within neural networks.

The multiplication-accumulation operations in a propaga-

tion tick (equations 1 and 4) can be parallelized. The weight

matrix can be partitioned by element, row, column, or sub-

matrix, corresponding to complete weight partitioning [17],

inset grouping [18], outset grouping and checkerboarding
partitioning schemes (CBP) [10], [11] respectively. Com-

plete weight partitioning allocates one processor per weight

to maximize the concurrency but it incurs too much commu-

nications. Inset or outset groupings are efficient in either the

forward or the backward phase. Some schemes allocate both

inset weights and outset weights to the same processor by

duplicating weights [16], but this causes inefficiency during

weight updating. The CBP scheme partitions the weight

matrix into square sub-matrices and therefore optimizes both

forward and backward phases.

B. CBP scheme and non-pipelined model

We use the CBP partitioning scheme to split the weight

matrix as the starting point of our algorithm. The first step,

for simplicity, is to analyse the mapping of RNNs onto a

2D torus topology with one processor per node. Figure 3(a)

shows an example of a 6x6 weight matrix mapped onto 9

nodes (or processors) interconnected by a 2D torus. Each

processor keeps a 2x2 sub-matrix of weights in its local

memory. We assign processors 1−9 to GroupA responsible

for the vector-matrix multiplication. Among those 9 proces-

sors in GroupA, we select 3 processors in the main diagonal

and name them m1 −m3. Then we also assign processors

m1 − m3 to GroupB which is responsible for the partial

result accumulation and output computation.

C. Communication pattern analysis

For a more general discussion, we consider now an n-

neuron network and a torus with p processors (nodes), al-

though still maintaining the one processor per node relation.

In fully connected networks, the size of the weight matrix

is n by n and each processor stores and updates a n√
p

by n√
p sub-matrix. Assuming the transmission of a packet

along a link takes α time units, while sending or receiving

� �
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Figure 3. CBP partitioning

a packet takes β time units, in each forward tick we can

divide the operations into two discrete steps following the

communication pattern illustrated in Figure 3(b).

In step1, for each column, the GroupB processors compute

their outputs according to Equation 2 and send them to

GroupA for a specific row. The communication is localized

within each row of processors. For this communication, the√
p processors in one row of the 2D torus can be seen as

connected in a ring topology (see Figure 4(b)). The row-wise

communication requires a broadcast1 in the ring topology

with
√
p processors. The diameter2 of the ring is

√
p

2 . So

the packets traveling time is α
√
p

2 . There are also two other

operations, one send and one receive, which take 2β time

units. There are n√
p columns of weights in each processor,

so the communication time for step1 of a forward tick Tc1

(for any 1 < p < n2) is

Tc1 = (α

√
p

2
+ 2β)

n√
p
. (7)

In step2, for each column, GroupA processors in one

column do the vector-matrix multiplication according to

equation 1. Note that each processor in the column only

produces a partial result. Partial results are sent to the

1Sending the same packet from a single processor to every other
processor [19].

2The maximum distance of the network, where the distance is the
minimum number of links between any pair of processor [19].

11



GroupB processors in the same column. The communication

is localized within each column of processors. The
√
p

processors in one column of the torus can again be seen

as connected in a ring topology. The column-wise commu-

nication requires the accumulation in a single processor3 in a

ring with
√
p processors. For each single node accumulation,

the diameter of the ring is
√
p

2 . It takes α
√
p

2 time units

for the packet transmission. However, in step2, the first

packet will arrive very soon since there is only one link

to travel. In most practical situations, β is larger than α. So

a new packet usually arrives before the previous packet was

processed. As a result, the communication time for packets,

α
√
p

2 , is hidden. We only consider the time of one send,

one link transfer and
√
p receive operations, which take

β(
√
p+1)+α time units. There are n√

p columns of weights

in each processor, so the communication time for step2 of

a forward tick Tc2 (for any 1 < p < n2) is

Tc2 = [β(
√
p+ 1) + α)]

n√
p
. (8)

When
√
p is large, β(

√
p + 1) + α ≈ β

√
p. When 1 <

p < n2, we obtain

Tc1 =
α

2
n+ 2β

n√
p
, Tc2 = βn. (9)

In RNNs, BP starts when the forward phase has looped

for a certain number of ticks. As you can find in Figure 3(b),

the communication pattern and time in the backward phase

are exactly the same as in the forward phase.

In this model, only the operation within the vector-

matrix multiplication is parallelized. The operations between

vector-matrix multiplication, output computation and com-

munications cannot be parallelized and neither can they

work in a pipelined mode, since the GroupB processors

are selected from the processors in GroupA. This is also

a common limitation we found in some other published

implementations [10], [11]. Hereafter we refer to this model

as the non-pipelined model.

D. SpiNNaker

(a) Torus-connected CMPs (b) Ring

Figure 4. Topologies

What if each node in Figure 3(a) is replaced by a chip

multiprocessor (CMP), as shown in Figure 4(a)? We use

SpiNNaker as a paradigm for such an analysis. SpiNNaker

3Sending a packet to a given processor from every other processor[19].

is a system based on the torus-connected CMPs topology.

It is a massively-parallel architecture originally designed for

simulating large-scale spiking neural networks in real-time

[8], [20]. It comprises multiple identical SpiNNaker chips

connected in a 2D torus mesh topology (i.e., it also contains

diagonal connections). Each SpiNNaker chip is a multi-

core system containing 20 ARM968 processors and a router.

Each processor has a 64KB local private memory called a

data tightly-coupled memory (DTCM) storing performance

essential data. All processors on one chip share an on-

chip system RAM and an off-chip SDRAM for information

exchange and extended data storage. In this paper, the

diagonal connections are not required, therefore the system

can be seen as a standard 2D torus topology (one SpiNNaker

chip, or 20 cores, per node) as shown in Figure 4(a). The

on-chip router supports multicast packets and handles both

on-chip and off-chip traffic.

E. Mapping onto SpiNNaker without pipeline

If the CBP is mapped onto SpiNNaker directly (without

pipeline), all processors in a chip can be used for processing.

Since there are 20 processors (in a 4x5 rectangle) in each

chip, the diameter of the ring is reduced from
√
p

2 to
√
p

8 ,

about 1/4 of the original value. The time required on

SpiNNaker without pipeline becomes:

Tc1 =
α

8
n+ 2β

n√
p
, Tc2 = βn. (10)

IV. PIPELINED MODEL

A. Mapping onto SpiNNaker with the pipelined model

To map MLP networks on SpiNNaker or hardware

with similar topology more efficiently, we propose a new

pipelined model called PCBP. The mapping on SpiNNaker

using PCBP scheme is illustrated in Figure 5(a). Each

rectangle (with rounded corners) represents one SpiNNaker

chip. Each circle in a rectangle denotes a processing core.

We use 19 processors out of 20 in each chip. Among them

16 (4 by 4) processors are allocated to GroupA, 1 (a/b/c/d)

processor is allocated to GroupB and the other 2 (x and

y) are allocated to GroupC. In step1, GroupB processors

produce outputs and send to GroupC processors. GroupC

processors get single node broadcast packets from GroupB

processors, and then forward to GroupA processors. In step2,

GroupA processors do the vector matrix computation and

send reults to GroupC processors with same color. Each

GroupC processor receives packets from GroupA processors

in two columns (2 by 4 processors) in turn and accumulate

partial results, then forward the results to GroupB proces-

sors. Notice that what ever the number of chips are there

in one column, we only require four GroupB processors

in total, each responsible for one column, since there are

only four columns of GroupA processors in total. GroupC

processors need to send packets to two GroupB processors

in the same color in turn (for example processor x sends to

12



(a) Mapping on SpiNNaker using pipelined model (PCBP).

(b) The six-stage pipeline.

Figure 5. Mapping and the pipeline

processor a and c). The backward phase works exactly the

same as the forward phase, but swaps the order of columns

and rows. In each chip, the three groups of processors are

working in parallel and produce a six-stage pipeline shown

in Figure 5(b). Hereafter we refer to this mapping algorithm

as the pipelined model (PCBP).

B. Communication analysis

Compared to the CBP model shown in Figure III-C, in the

PCBP model the on-chip communication between GroupA

and GroupC processors is localized and in small-scale (4

packets per column); the accumulation operation performed

by GroupC processors requires only four processor cycles

per column. Both of them are fast enough to be hidden by

the off-chip communication or other computation.

The off-chip row-wise/column-wise communication can

be seen as communication in a ring topology with a diameter

of
√
p

8 ; and with the help of the GroupC processors, the

number of packets that go to a GroupB processor is reduced

to 1/4 of the original amount. We get the communication

time in step1 Tpc1 and in step2 Tpc2 when 1 < p < n2 as

Tpc1 =
α

8
n+ 2β

n√
p
, Tpc2 =

β

4
n. (11)

V. ANALYTICAL COMPARISON

With the basic analytical model of the mapping algorithms

in hand, we can use these models to compare them. For that,

we need to fix certain parameters. We assume: 1. there are a

p

Operations Forward Backward

step1 step2 step1 step2

Comms. pipelined α
8
n+ 2β n√

p
β
4
n α

8
n+ 2β n√

p
β
4
n

Comms. non-pipelined α
8
n+ 2β n√

p
βn α

8
n+ 2β n√

p
βn

Comp. GroupA θf
n2

p
θb

n2

p

Comp. GroupB of
n√
p

ob
n√
p

Figure 6. Computation and communication cost

number p of GroupA processors (p = 20 per chip in the non-

pipelined model, p = 16 per chip in the pipelined model);

2. a multiply-accumulate operation of GroupA processors

in a forward tick takes time θf (including the average time

of memory access), while the same operation takes θb in

a backward tick (θf �= θb due to the data presentation); 3.

the output computation of GroupB processors in the forward

phase takes of , and the output computation in the backward

phase takes ob. Thus, computing a sub-matrix in a forward

and backward tick takes θf
n2

p and θb
n2

p respectively; com-

puting the outputs in a forward and backward tick takes

of
n√
p and ob

n√
p respectively. These can be summarized in

Figure 6.

A. On a single processor

Let p = 1, then no communication is required. We get

the time required Tseri for processing one forward tick plus

one backward tick on a single processor

Tseri = (θf + θb)n
2 + (of + ob)n. (12)

B. The non-pipelined model

In the non-pipelined mode, communication and compu-

tation are carried out sequentially. The time required in the

non-pipelined model for one forward tick plus one backward

tick Tnp
para is:

Tnp
para = (θf+θb)

n2

p
+(of+ob)

n√
p
+(

α

4
+2β+

4β√
p
)n. (13)

C. The pipelined model

The pipelined model allows the overlap of communi-

cation and computation. In most practical problems, the

link transmission time α is small compared to the packet

send/receive time β, and the communication of step1 can

be hidden behind the communication of step2 due to the

pipeline (Figure 5(b)). θb is obviously larger than θf when

using column order storage (CS) of the weight matrix. The

computation times of GroupB processors are smaller than

either the communication time or the computation time of

GroupA processors (shown later), therefore computation of

the GroupB processors is hidden behind either the com-

munication or the computation time of GroupA processors.

The time required in the pipelined model for one forward

tick plus one backward tick T p
para relies on the relationship

13



between the computation and the communication because of

the overlapping:

Situation1 Communication takes more time than either

forward or backward computation when p ≥ 4θb
n
β . In this

situation, computation is fully hidden behind communica-

tion.

T p
para =

β

2
n (14)

Situation2 Communication takes more time than forward

computation, but takes less time than backward computation,

when 4θf
n
β ≤ p < 4θb

n
β . In this situation, communication

is hidden partially.

T p
para = θb

n2

p
+

β

4
n (15)

Situation3 Communication takes less time than forward or

backward computation when p < 4θf
n
β . In this situation,

the communication is hidden behind the computation.

T p
para = (θf + θb)

n2

p
(16)

D. Speedup and efficiency

We define the speedup S and efficiency of an algorithm

E:

S =
Tseri

Tpara
, E =

S

ptotal
(17)

Where ptotal is the total number of processors in the system,

including GroupA, GroupB and GroupC processors (For the

sake of fairness, we use ptotal = 20 per chip in both non-

pipelined model and pipelined model when calculating the

efficiency E. This highlights the improvement provided by

the new method).

VI. SIMULATION-BASED COMPARISON

The performance of the system is evaluated analytically,

since the real SpiNNaker chip is not available yet, and there

is still quite a lot of software programming work remaining

to be done to make the system fully functional. However, the

analytical model presented helps us to determine the system

scale and to predict the system performance.

We have run a medium size configuration up to 1000 chips

to get first performance results on the SpiNNaker simulator

built on the cycle accurate system level model [21]. By using

16-bit fixed-point arithmetic we have (in nanoseconds)4:

θf = 26, θb = 42, α = 10, β = 140, of = 880, ob = 1400
(18)

The first evaluation we carried out is based on a scheme

that runs a variety of scales of RNNs on a 500-chip

4According to Figure 6, when p ≥ 1600, β
4
n ≥ ob

n√
p

; when p < 1600

and n > 1360, θf
n2

p
> of

n√
p

and θb
n2

p
> ob

n√
p

. So on any network

with a population of 1360 neurons and above, the computation time of
GroupB processors is either hidden by the communication or hidden by
the computation time of the GroupA processors.
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0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Efficiency on 500 chips

Number of neurons

E
ffi

ci
en

cy

Pipelined,Situation1
Pipelined,Situation2
Pipelined,Situation3
Non-pipelined

(b) Efficiency comparison.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4 x 10-3 Performance of fully connected 5000 neurons

Number of SpiNNaker chips

Ti
m

e 
fo

r o
ne

 fo
rw

ar
d 

an
d 

ba
ck

w
ar

d 
(s

) Pipelined,Situation1
Pipelined,Situation2
Pipelined,Situation3
Non-pipelined

(c) Performance comparison.
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SpiNNaker configuration. We show a performance compar-

ison between the non-pipelined (CBP) and the pipelined

(PCBP) model in Figure 7(a). Initially the performance of

the pipelined model is dominated by the communication,

shown in red color. When the scale of the network in-

creases, the computation starts dominating the performance

partially at the point of about 7,000 neurons, shown in green

color. When the number of neurons are more than about

11,000, the computation is fully dominating, shown in blue.

The efficiency comparison between the pipelined and non-

pipelined model on a 500-chip SpiNNaker, modeling up to

15,000 fully-connected neurons, is shown in Figure 7(b).

The pipelined model is more efficient than the non-pipelined

model in most of the cases and its efficiency can reach as

high as 0.8 when computation dominates. The efficiency of

the non-pipelined model increases when the ratio of neurons

to processors increases, getting close to 1 when the ratio is

large. However, in that case, the system behavior is closer

to serial computing than to parallel computing.

In the second simulation we considered the effect of

running a fixed number (5000) of neurons on SpiNNaker,

but changing the number of chips. As shown in Figure

7(c), it is very effective to use more chips initially, as the

processing time drops dramatically. However, the gain in

the performance becomes small at about 210 chips and

above, where the communication becomes the bottleneck.

The efficiency comparison is shown in Figure 7(d).

VII. DISCUSSION

Partially-connected network. We have restricted our dis-

cussion to fully-connected neuronal networks. The proposed

pipelined model works also for partially-connected RNNs.

Connection weights in a partially-connected network form a

sparse matrix. The efficiency of computation is effected by

the distribution of elements in the matrix. If the elements

are evenly distributed, each processor carries out a similar

amount of computation and the backpropagation algorithm

can be parallelized well. Otherwise, the workloads in the

processors are not balanced, in which case, some of the

processors may be busy while others are idle. A partially-

connected RNN is less computationally intensive due to the

sparsity. However, the gain in the communication time by the

PCBP partitioning is very little, as the communication can

only be avoided when all of the elements in a column/row

of the sub-matrix are non-zero (NZ) elements, which is a

case very rare in a partial problem.

Generalization. There is no doubt that mapping schemes

are mostly topology or architecture dependant. In this paper,

we do analysis based on SpiNNaker (as a example of the

torus-connected CMPs topology). The CBP mapping relies

on a torus-like topology to partition the network into squares

to achieve good balance between the forward and backward

phases of computation. The main contribution of this paper

is the new pipelined model which increases the efficiency

of the original CBP mapping. The pipeline model may be

applicable to other mapping schemes on other topologies.

Workload balance. There are three groups of processors.

In each column/row of processing, the workloads of Groups

B and C are fixed, while the workload of Group A is

variable, depending on the scale of the neural network. We

have shown in the paper that for any network with more than

1360 neurons on a system with less than 1600 processors,

the processing time of Group A dominates. On a system

with more than 1600 processors, the communication time

dominates. As a result, the time cost of Groups B and C

is always hidden in the pipeline when the system scale is

large.

VIII. CONCLUSION

This paper shows how to efficient implement MLP net-

works with the BP rule on SpiNNaker. An efficient pipelined

mapping scheme is proposed over the traditional non-

pipelined scheme. Compared to the traditional non-pipelined

mode, our scheme is more efficient in most of the practical

case. We also present a detailed performance analysis of

such an implementation. The performance curves we have

shown is significant and can be help to determine the

ideal number of processors for a given scale of problems,

providing a path to the further development of parallel

solutions for the simulation of large-scale neural networks.
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