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Abstract—Super-scalar, out-of-order processors that can
have tens of read and write requests in the execution window
place significant demands on Memory Level Parallelism (MLP).
Multi- and many-cores with shared parallel caches further in-
crease MLP demand. Current cache hierarchies however have
been unable to keep up with this trend, with modern designs
allowing only 4-16 concurrent cache misses. This disconnect is
exacerbated by recent highly parallel architectures (e.g. GPUs)
where power and area per-core budget favor lighter cores with
less resources.

Support for hardware and software prefetch increase MLP
pressure since these techniques overlap multiple memory re-
quests with existing computation. In this paper, we propose
and evaluate a novel Resource-Aware Prefetching (RAP) com-
piler algorithm that is aware of the number of simultaneous
prefetches supported, and optimized for the same. We show
that in situations where not enough resources are available to
issue prefetch instructions for all references in a loop, it is
more beneficial to decrease the prefetch distance and prefetch
for as many references as possible, rather than use a fixed
prefetched distance and skip prefetching for some references,
as in current approaches.

We implemented our algorithm in a GCC-derived compiler
and evaluated its performance using an emerging fine-grained
many-core architecture. Our results show that the RAP algo-
rithm outperforms a well-known loop prefetching algorithm
by up to 40.15% and the state-of-the art GCC implementation
by up to 34.79%. Moreover, we compare the RAP algorithm
with a simple hardware prefetching mechanism, and show
improvements of up to 24.61%.

Keywords-parallel architectures; optimizing compilers

I. INTRODUCTION

serviced in the background. Fig. 1 depicts a cache system
and its attached Miss Handling Architectures (MHA). This
consists of severdMiss Information/Status Holding Register
(MSHR) Files, and is responsible for keeping track of
the outstanding concurrent misses. To meet the demand
for high bandwidth and low latency, each MSHR has its
own comparator, and the MSHR file can be described as
a smallfully associative cacheThe maximum number of
outstanding cache misses the system supports is limited by
the number of MSHRs.
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Figure 1. Miss Handling Architecture (MHA) for a banked cadystem
and the Miss Information/Status Holding Register (MSHR) file

Fully associative caches (and hence MHAS) are very
costly in terms of chip area, but most importantly power
usage: when a new request is received, all the comparators
must be activated in parallel in order to retrieve the cor-
responding entry in one clock cycle. This severely limits
the size of the MSHR file that can be included, even for
today’s large transistor budgets. For example, the L1 cache
of an Intel Pentium 4 processor supports only 8 outstanding

Memory systems have been under a lot of pressure tmisses. For more recent AMD Opteron and Intel Core i7

keep up with the increasing demand for parallelism comingarchitectures, an empirical study showed that single threa
from every new generation of microprocessors. Super-scalaperformance does not improve past 7 concurrent memory
out-of-order processors can have a large number of memomgquests, proving the same limitation holds [2].
operations in flight in the execution window at one time Currently, the two predominant paradigms of how single-
(up to 48 load and 32 store operations for a Intel Pentiunthip processors are built are: (i) Limited-scale multie=or
4 processor, several of which can be cache misses). In sihat replicate the single-processor model on one die and
multaneous multi-threading (SMT) architectures, muléso strive to maintain backwards compatibility. They gener-
and manycores, the demand on Memory-Level Parallelisnally target applications with low degrees of parallelism,
(MLP) has further increased. This has put additional presprogrammed to take advantage of local caches and limit
sure for memory systems to support numerous concurrer@xpensive inter-core communication. Presently such syste
memory requests. have 2-12 cores, each supporting coarse grained threads
Current cache hierarchy designs however have been umnd they are not expected to exceed a few tens of cores
able to support this high level of demand for parallelism.in the foreseeable future. And (ii) Many-cores that are not
Existing architectures employ lock-up free caches (e.f. [1 typically confined to traditional architectures and progra
to avoid stalling the CPU and allow the cache miss to beming models, and use tens to hundreds of lightweight cores



in order to provide stronger speedups. The best knowis no support for software prefetching in these platforms.
representatives of this class are GPU architectures froriMloreover, the vendors do not disclose architecture or com-
NVIDIA and AMD, which are now increasingly used for piler details, making it difficult to implement and evaluate

general-purpose computation. Other examples include thkeardware or software improvements.

Sun Niagara 2 and Intel Larabee. Research machines such

as UT Austin’s TRIPS, MIT’s RAW and UMD’s XMT are Il. EXISTING SOFTWARE PREFETCHINGMETHODS

also examples of single-chip many-cores. Mowry et. al [7] introduced a compiler algorithm to insert
Many-cores are motivated by a variety of factors such agrefetch instructions into scientific applications thaege
high scalability to a large number of lightweight cores in on dense matrices. Consider the code in Fig. 2 as our running
a single chip, very low inter-core communication latencies example. Fig. 2(a) shows the original program code. In
high on-chip communication bandwidth, overcoming wire-the figure, assume that the matrices A, B and C contain
length restrictions at high clock speeds, and fast hardwarejouble precision floating point elements (64 bits) and our
assisted inter-core synchronization. Many have demdestra hypothetical system has a cache line of 16 bytes; thus two
great results, far exceeding the performance of traditionadoubles fit per cache line. Also, assume that a cache miss
multi-cores for the same silicon area. Such designs are aatency isMissLatency= 50 clock cycles. Note that this
exciting new frontier in computer architecture, with a tig  simplified model, assuming only one level of cache and
future as evidenced by commercial and research interest. 5 fixed cache miss latency, is widely used in prefetching
Regardless of the type or motivation, in all many-coresliterature; accurately modeling the cache memory hiesarch
each lightweight core has much smaller area than a tradin the compiler is often too complex to be viable. The
tional core. In terms of prefetching resources, this has twalgorithm proceeds as follows:
repercussions: (i) the size (number of entries) of MSHRAIgorithm 1 Mowry’s Loop Prefetching
files is much more constrained in a many-core due to |, For each static affine array reference, use locality anal-
area constraints; and (i) the total energy consumption of ysis to determine which dynamic accesses are likely to
all MSHRs across cores in a processor is much higher suffer cache misses and therefore should be prefetched.
than in a traditional processor given the larger number For the code in Fig. 2(a), one cache line can hold two
of cores, which further limits the size of MSHRs. As a array elements, and thus every second dynamic access
consequence it becomes a crucial to carefully manage the for the Al i ],B[i] and(i] references will be a cache
use of scarce MSHR resources for these architectures. We miss and requires a prefetch instruction.
present a new prefetching method called Resource-Aware, |
Prefetching (RAP) to manage MSHR resources carefully. It
is mainly beneficial in many-cores because of their limited

nuTI"nbgr of .MSHF;' !t (I:an apply t% traditional multi-cpres as tional statements for prefetching to the loop bodies. This
well, but given their larger number of MSHR entries an yields the code in Fig. 2(b), where the loop has been

thlelr mUCh Iarger areﬁ and ppwer t?Ud%et folerE:er IaFEnlcy unrolled two-fold and the last 6 iterations have been
tolerating tecniques, the run-time gains from are Yike pulled out in a separate loop.

to be very small, so we do not discuss those further. _ )
To evaluate the RAP algorithm, we are using XMT a Hi. Schedulg prefetches _the_ proper amount of time in
general-purpose manycore architecture [3]. A recent study advance using SO“WaTe pipelining (by using the com!outed
showed that when configured to use the same chip area, necessary pfefetc.h d|§tance), where _the computation of
XMT can outperform both an Intel Core 2 (speedups up to one or more lterations Is overlgpped W.'th prefetches for a
future iteration. The prefetch distance is computed so that

13.83x [4]), AMD Opteron (speedups up to 8.56x [5]) and ! .
also an[l\]I{/IDIA GTF;(ZSO G(PpU (spgedupps of up t([) ]g.lox all latency can be hidden completely, using the formula:
MissLatency" )

[6]). The XMT hardware design is simple and scalable, PrefDistance= { _
which allowed us to easily understand and tune architec- lterationTime
tural parameters. An open-source, highly configurableeeycl IterationTime is the estimated running time of the short-
accurate simulator and compiler are available, allowing us €St path through the loop when software prefetching is
to implement and evaluate our optimizations on different €nabled. Assume for example that IterationTime20
hardware configurations. An overview of the XMT platform  clock cycles (after unrolling), and thus PrefDistanee

is presented in Section IV. An alternate evaluation platfor ~ [50/20] = 3 iterations. The code in Fig. 2(c) contains the
would have been GPUs from NVIDIA or AMD; however transformed code, where prefetches for the references to
they are not used because in the current generation therethe g\ B and C arrays have been inserted three iterations

in advance.

1This refers to the XMT architecture developed at Universitilaryland Mowry’s algorithm as prese_nted S'_JcceSSfu"y T'Ite_r_s out
and not the Cray XMT system. most unnecessary prefetch instructions and significantly

Isolate the predicted dynamic miss instances using
loop-splitting techniques such as peeling, unrolling, and
strip-mining. This avoids the overhead of adding condi-



@ fo;x[i(;:g; 13[<i1]00$? lq+|+% the prefetch request, stalling the issuing CPU until one
for (i=0.1<994:1 += 2 ) { /= Unrolled =/ MSHR becomes available. Stalling the CPU was exactly
Alil =8i] +dil; what prefetching was aiming to avoid, and thus the benefits
AT +1] = Bli+1] + (i+1]; of prefetching are again lost, leaving only the overheads.
/+ Last three iterations peeled */ GCC (GNU Compiler Collection), a state-of-the art open
for (i=994;i<1000; i ++) source compiler which supports a wide range of architesture
®) | Al 1 =8Bli] +dil. and programming languages, includes an implementation of
fO,r K Iprzgf 'efga‘“s' e gt |) OES 1 advance Mowry’s algorithm for loop prefetching. The GCC algorithm
prefetch(Ali +6]); extends if further by introducing the notion of a platform-
prefetch(B[i+6]); specific number ofrefetchSlotsThis is used to limit the
g[rle{ eicgﬁ' IG]q) i number of prefetches that can be in flight at the same time.
Ali+1] = B[i+1] + Ci+1]; As far as we know, GCC’s method is the only software
} . . . prefetching algorithm that attempts to limit the number of
©) f°;\[i(i=29gt;]< 120&:; ;+) in-flight prefetches based on hardware limitations. After
for (i=0;i<994;i += 2 ) { performing the same steps 1-2 as above, the GCC algorithm
prefetch(Ali +6]); starts scheduling prefetches for all the references inrpamg
/"ie;zghgg{' ;?]eg Lieh G af order. One prefetch instruction issuetefDistancdterations
Ai] =8li] + di] : in advance of the reference causes the number of available
Ali+1] = B[i+1] + (i+1]; prefetch slots to be decremented BgefDistance Once not
%or (1 2094: | <1000; | ++) enoughPrefetchSlotsre left, it stops issuing prefetches for
(d) Alil = B[i] + di]; the remaining references.
for (i=0;i<996;i +=2) { For our running example, Fig. 2(d) shows the outcome of
:):efrefiﬁt Z[hi f4i;?rat' ons in advance +/ the GCC algorithm. Since the prefetch instructions for the
prefetch(B[i+4]): Ali] andB[i] references use up all 6 available prefetch
prefetch(Cli+4]); slots, no prefetch is issued for thg i] reference. At
ﬁ[[ ! ]+1]: Bl :3][ i :1]‘3[ '] g runtime, this means a cache miss penalty will be encountered
' every iteration of the unrolled loop, significantly affexdiits
/+ Last two iterations peeled */ running time.
for (i=996;i<1000; i ++)
() | Ai] =8l] *dil;

Figure 2. (a) Original code before loop prefetching (b) Lagpolling . NEw RAP FREFETCHINGMETHOD

and peeling to isolate likely cache misses (c) Code after Mswpre-
fetching algorithm PrefDistance= 3) (d) Code after applying GCC loop
prefetching algorithm (prefetch slots=6) (e) Outcome off@#d> algorithm:
PrefDistancelowered to 2.

Intuition. Our main contribution is a new compiler pre-
fetching algorithm — Resource-Aware Prefetching (RAP) —
which improves upon Mowry’s standard loop prefetching
algorithm as well as the GCC implementation by using the
. . , very limited MHA resources more efficiently. Our algorithm
reduces the instruction overheads. However, it does n bustly adapts to constrained resources and uses them to

take into consideration the number of in-flight Memory pive as much latency as possible. More concretely, we
requests supported by th_e hardware._The maximum numb how that in situations where not enough prefetch slots are
of prefetch requests active at any time can be compute

_ vailable to issue prefetch instructions for all referemce
using: it is more beneficial to decrease the prefetch distance and
MaxRequests- NumRefs< PrefDistance (2)  prefetch for as many references as possible. By contrast,
where NumRefsrepresents the number of static referenceghe GCC implementation uses a fixed prefetch distance and
that require prefetching. Going back to the code in Fig.,2(c)may prefetch fewer references.
we have MaxRequests= 3 x 3 = 9. Suppose that our Fig. 2(e) shows the outcome of the RAP algorithm applied
architecture has 6 registers in the MSHR file. After theto our example code. The prefetch distance has been lowered
first six prefetch requests have been issued, when the netd two iterations, which allowed prefetches to be issued for
request arrives at the MHA unit, one of the following can all three references. With this transformation, there \wél
happen, depending on the hardware implementa{ipithe  only one cache miss per three iteratiormce a cache miss
additional request is silently dropped, and nothing is $ent is encountered, it gives enough time for all previously éssu
the lower levels of the memory hierarchy. This causes therefetch requests to complete, including current and mext t
program to slow down, since it incurs all the instruction iterations. By contrast, the GCC implementation encosnter
overheads of prefetching, but none of the benefits — th®ne miss per each iteration, which translates to three times
cache miss was not avoide(ii) The MHA does not accept more time spent in memory stalls.



Implementation. To formulate an algorithm for RAP, it All}X X x 0000000 x-CacheMiss
. R , B[ijl x x x 0 0 00000 o - Cache Hit
is useful to understand the limitations of GCC'’s prefetcher Chll x x x x x x x x x x
There is a subtle inconsistency in the way GCC schedules 0246 81012141618 i
prefetching instructions: on one hand, the prefetch digtan o Al[x o xoxoxoxo
is computed assuming all memory latencies can be hidden™ 2| 020 000000
through prefetching; on the other hand, under certain eondi 0 2 408102141618 1
tions, prefetch instructions for some references are ner ev Al x x 0 0 x 00 xo0o0
issued, causing some references to be cache misses. Thi® Bjij|x x 0 0o 0 0 0000
affects the iteration time, and therefore the prefetchadist Clljx x©0000000909
0246 81012141618 |

should be adjusted accordingly: if each iteration takegdon

then prefetches can be issued fewer iterations in advante affigure 3f~ . hDynamtiﬁpcafCE?et trace fog thed C&?GFJXPF@IUFE_;- (@ ,tECC
. . 00p pretetcning wi rerbistance = an algorithm wi

St"_l be able to hide .the Iatelncy' However, G_CC dO(?S no'LrefDistanc& 1 (c) RAP algorithm withPrefDistance= 2.

adjust the prefetch distance in these casffectively using

a flawed model for scheduling prefetches.

Figure 2(d) shows an example of the suboptimal schedulFor any prefetch distanc&Drsp < PD powry and
ing algorithm described above. To help understand the run- PDrap x NumRefs< PrefetchSlots (3)
time behavior, we show the resulting dynamic cache trace ine can issue prefetch instructionDy4p iterations in
Figure 3(a). The first three iterations are not prefetched fo advance for all references without exceeding the available
hence all references are cache misses. At each iteration froPrefetchSIots (number of MSHR entries), and this will resul

‘ ~ 6 on\_/vard, the read from_:[ 1] is going o be a cache in exactly one cache miss p&tDr4p + 1 iterations in the
miss, which on our hypothetical architecture takes 50 c:IockSteady state

cycles. This is 49 cycles more than in the original estimate
and thuslterTime= 20 + 49 = 69. Using Equation (1), we
only needPrefDistance= [50/69] = 1 iteration in advance.
However, GCC schedules prefetches udtngfDistance= 3
iterations in advance, according to the original calcalati

' The claim can be easily verified: once a cache miss has

been encountered, it allows enough time for all the prefetch

requests already issued for the néXDg4p iterations to

complete, ensuring they are all hits. However, sifd@r 4 p

iterations with all hits do not provide enough time to hide
Let us examine an alternative scheduling algorithm inthe miss latency, iteratio®Dz4p + 1 encounters a cache

which a smallerPrefetchDistancas used. The RAP algo- miss for the first read. The cycle then repeats.

rithm discussed in the rest of this paper is based on this Using Claim 1, we can compute the average loop iteration

scheme. If we us@refDistance= 1 iteration instead of 3, time in the steady state WheDrap < PDpowry:

we can now issue prefetches for all three references, using a . . lterMiss— lterHit

total of MaxRequests- 3 x 1 = 3 prefetch slots. The cache AvglterTime= IterHit + PDrap 1 (4)

trace for this case is shown in Figure 3(b). Wher- 0, \herelterHit is the iteration time when all references are
we issue prefetch requests fé{ 2], B[ 2] and (2], it (20 cycles in our example) antérMissis the iteration
then we encounter three cache missesAod] , B[ 0] and  {jme with one cache miss (69 for our example).

(0] . Fori = 2, we start by issuing prefetches for iteration  The average iteration time (4) is a strictly decreasing
i +2 = 4, then all references are cache hits, because thginction of the prefetch distancBD .4 p. To minimize the

overlapped with the previous misses and have had time to PrefetchSIotT

complete (see Figure . FOE= 4, we have a cache miss RAP =
: PD NumRefs °
for Al 4] , but that gives enough time for the prefetches for _. P
given by (3). In the example in Figure 2(e), we have
B[ 4] and( 4] to complete, and thus they become cache .
! . . PDrap = |6/3] = 2. We can now present our improved
hits. The cache miss fol] 4] also gave enough time for . N
. o . compiler algorithm:
all prefetches for iteration = 6 to complete, meaning we Algorithm 2 Resource-Aware Prefetchin
have three cache hits in that iteration. The execution snter ' 2 9

. . . ) I-11. ldentical to Steps-Il in Algorithm 1.
a steady statat this point, with one cache miss every other MissL atenc
iteration, until the end of the loop. 1. ComputeP Ditowry = | fer 2| and NumRef the

IterationTim:

PrefetchSlot
Similarly, we can also usPrefDistance= 2, which yields number of references. L&D rap = | “Rymrers |-
the code in Fig. 2(e) and the trace in Fig. 3(c). Following 1.1 If PDpowry x NumRefs< PrefetchSlots, sched-
a similar reasoning, we observe that in the steady state we ule prefetch instructions for all NumRef references
encounter one miss every 3 iterations, leading to: PDroury iterations in advance.
Claim 1 Let PDpjgury = [m%g the prefetch 1.2 If PDpowr, x NumRefs > PrefetchSlots and

distance computed by Mowry’s algorithm (and also GCC). PDgrap > 1, schedule prefetch instructions for all



NumRef referenceB D p iterations in advance. ey
1.3 If PD NumRefs > PrefetchSlots and Fe— [ S| [ Cloer TCO TCU
: Mouwry * NUMRETIS > Fretelchslots an - [remr e
— i 1 Buffer Buffer
EDR Ap = 0, schedule prefetch instructions for the Jou e |- e
first PrefetchSlots references in program order exactly File File
one iteration in advance. | T
. . Prefetch Prefetch
Case lll.1 corresponds to the non-resource restricted situ I I 1 I |Buf/MSHR Iauf/MSHR
. . . Shared|, |Shared| . |Shared|  [Shared
ation, where we fall back on the same scheduling algorithm Cache | | Cache | " | Cache || cache
as Mowry’s (and GCC) algorithm. Case IIl.2 occurs in situa-

==
H Unit Unit
tions when there are not enouBhefetchSlotdso completely DRAM - [DRAM 7 T

hide all cache misses; the algorithm issues one prefetch for
each reference using a smaller prefetch distance, regittin Figure 4. XMT architecture overview.
one cache miss everly Drapy 1 iterations. Case 111.3 occurs

in severely resource-constrained cases, where we have morgns AN, B[ N] , base=0;
static references thaRrefetchSlots The algorithm issues  spawn(0, N-1) {

prefetch instructions one iteration ahead to as many refer- 't inc=1;
) . if (A[$]!=0) {
ences as possible, without exceedigfetchSlots ps(i nc, base):
Thread Clustering. Loop prefetching does not naturally Bli nC](;’%[ $1;

apply to all types of workloads and data structures. Howeverl:i}gule 5. () XMTC program example: Array é%)mpaction_ (b) Btem
given the nature of fine-grained parallel code — short trsead of a sequence aipawn andj oi n.

high degree of parallelism — prefetching can be enabled for

some benchmarks by inserting several short thread bodies

in a loop within a coarser thread. This compiler technique
called thread clustering[3] effectively enabled the use of

prefetching for all of our benchmarks.

DRAM memory channels. The TCU Load-Store unit ap-
plies a hashing function on each address to avoid memory
hotspots. Cache modules handle concurrent requests and
provide buffering and request reordering to achieve better
DRAM bandwidth utilization. Within a cluster, a compiler-

In Section | we argue that the constraint on the amount ofnanaged Read-Only Cache (ROC) is used to store constant
Memory-Level Parallelism is a major limitation for many- values across all threads. TCUs include lightweight ALUs,
core architectures. For evaluation purposes, we chose tHait the more expensive units are shared by all TCUs in a
XMT architecture as a representative lightweight-core-pla cluster.
form. Recent benchmarking efforts have shown that XMT The underlying programming model of the XMT frame-
can achieve consistent performance improvements whework is an arbitrary CRCW (concurrent read/write) SPMD
compared to modern architectures [4], [5], [6], while using(single program, multiple data) with serial and parallel ex
a straightforward scalable design and an easy-to-programscution modes. Thepawnandjoin instructions specify the
interface. beginning and the end of a parallel section that contains an

The primary goal of the eXplicit Multi-Threading (XMT) arbitrary number of virtual threads sharing the same cagle, a
on-chip general-purpose computer architecture (e.g. [3]shown in Fig. 5. An algorithm designed in the XMT model
is improving single-task performance through parallelism usually permits each thread to progress at its own speed
XMT was designed from the ground up to capitalize onfrom its initiating spawn to the terminating join, without
the huge on-chip resources becoming available. It is meargver having to busy-wait for other threads, methodology
to leverage the vast body of knowledge, known as Paralletalled “independence of order semantics (I0S).” XMT also
Random Access Model (PRAM) algorithmics, and the latentjncludes a hardware implementation of a powerful prefix-
though not widespread, familiarity with it. A 64-core FPGA sum primitive similar in function to the NYU Ultracomputer
prototype was reported and evaluated in [5]. Fetch-and-Add; it provides constant, low overhead inter-

The XMT architecture, depicted in Fig. 4, includes anthread coordination, a key requirement for implementing ef
array of lightweight cores, Thread Control Units (TCUSs) ficient intra-task parallelism. Fig. 5(a) illustrates th&1XC
and a serial core with its own cache (Master TCU). Theprogramming language, a simple SPMD extension of C.
processor includes several clusters of TCUs connected by BEhe example shows how it can be used to assign a unique
high-throughput mesh-of-trees (MOT) interconnection- netindex in arrayB when compacting an arrag. The non-
work [8]; an instruction and data broadcast mechanismzero elements of array A are copied into an array B. The
a global register file (GRF); a prefix-sum unit (PS). Theorder is not necessarily preserved. After the executiomef t
first level of cache is shared and partitioned into mutually-prefix-sum statements(i nc, base), the base variable
exclusive cache modules sharing several off-chip DDRZs increased by nc and thei nc variable gets the original

IV. THE XMT FRAMEWORK



Table |

value ofbase, as anatomic operation. BENCHMARKS USED.
XMT allows concurrent instantiation of as many threads
as the number of available processors. Threads are efficient _'\'amb‘? ZDSSSBFI’;'O”I — 1024'”19624 MRIZ
. . . l'_jaCO I solver Kerne X
started and distributed thanks to the use of prefix-sum for; LU factorization 56056 | 12
fast dynamic allocation of work and a dedicated instruction conv Image convolution 128x128 12
broadcast bus. The high-bandwidth interconnection nétwor_separ | Separable image filtering 512x256 8
and the low-overhead creation of many threads facilitate d25¢an | SQL Non-indexed Select query| 2M records| 6
. . . . matmult | Dense matrix multiplication 256x256 12
effective support of fline-gralned parallelism. N SpMV Sparse matrix - vector mult. ZM values 9
Ease-of-programming is a necessary condition for the ~treeadd | Summation of binary tree nodes 1M values 6

success of a many-core platform, and it is one of the main

objectives of XMT. Indications that XMT is an easy-to- @Maximum number of simultaneous prefetch requests requiredhwhe
.. . . s . using loop prefetching

program efficient parallel architecture, include: (i) XMJ i

based on a rich algorithmic theorPRAM) that provides

. - . . a) RAP vs. MOWRY MSHRs E1 @2 He O W10 &
a solid framework for designing and analyzing algorithm @ s EtEe e 0B

equivalent to the serial model; (ii) thease of teaching of %2822 N

XMT programming as an adoption benchmanks been =400, 1 _ R =N
established in repeated instances, from middle-school ¢ %30%77? = £ - g ;ﬁf
up, and by independent education experts [9], and sho gigf,‘ 7Y éﬁ N N 1
to be superior to alternative parallel approaches such g oA 2 N E & = Ol AT B
MP', OpenMP and CUDA, (lll) XMT prOVideS @rogram_ SEPAR CONV dbscan jacobi lu matmult SPMV treeadd Average
mer’s workflowfor deriving efficient programs from PRAM _ (b)) RAP vs. GCC MSHRSS1 @2 N4 6 Os W10 H12
algorithms, and reasoning about their execution time [1 £ e0% <

and correctness, and (iv) in a semester-long study sugpol “2 jg; - iy
through the DARPA HPCS program, tlidevelopment time 2 5, | N N
of XMT was, not surprisingly, shown to be about half the $ 207 A} £ N /

of MPI under circumstances favoring MPI [11]. c%: 1222@ %_F ﬂ e i@ im%

Prefetch support. In the XMT design in Fig. 4, the pre- SEPAR CONV dbscan jacobi  Iu
fetch buffer unit represents the Miss Handling Architeetur
(MHA) at the TCU level, consisting of one MSHR file pei (QRAP vs Hardware prefetch MSHRsE1 £2 §4 Eo fo Mo &1
TCU. Each MSHR file contains a number of MSHR entrie & so%
The RAP algorithm is applied at the XMT thread level. % 40%
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V. EXPERIMENTAL EVALUATION

Simulated configuration. We are using XMTSim, a
configurable, event driven cycle-accurate simulator of tl 0%~
XMT architecture. XMTS_Im timing IS_ accurat_ely modeled Figure 6. Performance improvement of RAP compared to (a) Mowajy, (
after the 64-core FPGA implementation, but it can be cusecc and (c) OBL hardware prefetching
tomized to realistically simulate any configuration, begon
the resource limitations of the FPGA prototype. At this time
off-chip buses and DRAM modules are modeled as fixedbenchmarks are written in XMTC and were chosen from
latency components in the simulator. The XMT compilera variety of domains to reflect various access patterns and
and simulation environment are publicly available [12]. application types. Our goal in collecting the benchmarks wa

The simulated configuration consists of 64 cores (TCUs}o sample as many application domains as possible, and as a
grouped in 8 clusters, with 256KB of shared on-chip cacheesult we have both integer and floating point kernels from
and 4 DDR2 DRAM channels. The TCU MSHR file size scientific computing, image processing, databases anarline
varies between 1 and 12 entries. algebra.

Compiler Infrastructure. We used the GNU C compiler Evaluation of Compiler Algorithm. To determine the
(GCC) 4.0.2 as the base compiler for our infrastructure. Weeffectiveness of the RAP algorithm we set out to execute
adapted and improved upon the loop prefetching optimizaeur benchmarks on a series of configurations. For each
tion pass targeted at the code executed by TCUs while ibbenchmark, we computed the performance improvement of
parallel mode. The loop prefetching algorithm operatesgisi the RAP algorithm versus both Mowry’s original algorithm
the Tree-SSA framework of GCC 4.0+. and the GCC implementation when using configurations

Benchmarks. Table | describes the benchmarks usedwith 1, 2, 4, 6, 8, 10 and 12 MSHR file capacity.
for evaluating the compiler algorithm performance. The The improvements of RAP over Mowry’s algorithm and

% Improvem:




the GCC implementation are shown in Figs. 6(a) and 6(b). VI. RELATED WORK
As we see from the two _f|gures, Fhe average run-time im Prefetchingis a widely studied technique used to hide
provement from our compiler algorithm ranges from 25.63% ; . . . .
) : the increasingly high latencies (in terms of clock cycles)
to 40.15% when compared to Mowry’s algorithm, and from . ;
of memory accesses in modern architectures. Software pre-
13.18% to 34.79% when compared to GCC. ; . .
) . .. fetching [7], [14], [15] relies on the existence of non-
Fig. 6(b) shows the comparison of the RAP algorithm : . . :
. . . . blocking prefetch instructions and is usually enabled &y th
with the GCC implementation of loop prefetching. For eaChcom iler. In hardware prefetching (e.g. [13], [16], [17]) a
configuration, we provide GCC with the exact size of the prier. P g (€g. ' '

MSHR fle 3 h rumber et iotsinen ot sroug 501220, Ivare Ut iers prefetcing opporet
PrefetchSlotsare available to hide all latencies, the GCC y g : 9

algorithm does not issue prefetch instructions for some Oﬁarallel architectures in both software [14], [18], [19]dan

the references. By contrast, the RAP algorithm decreases tr% ar_dwa_re (eg. [2.0]) b‘%"d upon unl-processor pref_etcﬂuylg
. . . . _taking into consideration issues caused by sharing of data
prefetch distance, and issues as many prefetch instrsction

£ e SHR has Copacy. T slows 10 Nl e o 0oy g o oo e s o e
the memory latencies, and to outperform GCC.

Note that on XMT, we are prefetching from the shared Llarchitect_ural parz_ameters Wi.t h the performg nce of software
cache to the TCUs. The latency for an L1 access:ig4 prefetching algorlthms. In his comprehensive work on soft-
cycle in the current configuration. Given this latency, the V&€ datg prefetchm_g, Mowry [21] explores the gffect on ex-
prefetch distance is usually small (1-3 iterations), angsth ecution time of varying the number of outstanding prefetch

the MaxRequesvalue for the benchmarks ranges between 6request:s that can be handled simultaneously by the hardware

and 12 for our benchmarks, as shown in Table I. ThereforeIn follow-up work, Mowry [19], as well as Mclntosh [14],

for MSHR files with 12 entries or larger, we are not in aéettle f?rt?] fixed-size ?rzfe:ﬁh |s;u9:[ buffferr] of .16 I;)hcatépns
resource-constrained regime, and there are no advantag gveral other papers study the efiects of changing the 5iz€ o

for using the RAP algorithm over the alternative algorithms L eﬁgrr:fe:;h:Zfé':gt'ontéeggﬁ r ;:?ech&or g;d'g?tigrpdm;i
However, for the class of highly parallel architectures e a u ) Y Wi W [15], [22] W

targeting, even a per-core MSHR of 12 entries represents %s;eetz;'ig%n[lss]éhg%vgvg’e u?gfkécﬂu;l acf)rri)trhoriciz’ulrl:a\?vlgrzfof
significant amount of area. Future manycore architecture%} ot h% d f.p i gd d t adant it
will probably devote even fewer resources for the MHA € pretetch hardware configuration, and does not adapt Its

making the RAP algorithm highly relevant. behavior.

Comparison with Hardware Prefetching. We compare GCC is the only attempt to consider the amount (.)f
the RAP software prefetching algorithm with an imple- prefetch resources available as part of the loop prefagchin

mentation of XMT that includes a hardware prefetching"’.llgpmhm' As described in Section |, the GCC algorithm
mechanism. Traditional single- and multi-core processoré'm'ts the number of memory references prefetched to meet

include sophisticated hardware prefetching units, capabl E f'xfd uhppertE_ound. Hot\)/vevedr, no _tg_wdarlcel IS gl\;]er; t?]n
monitoring and distinguishing multiple independent stnea ow 1o chose this upper bound, as 1t 1S not clear what the
of requests and identifying large access strides. Howeher, underlying hardware limitation is accounted for. Yang et.

hardware complexities of such units make them prohibiivel f”‘l [23] _emp'f'ca”y ds;e)t th: mé\()g(r:num nu.rl‘nbefr of PE) reflitgz
expensive per-core for a many-core architecture. Only pstructions issued Dby the compiler for the

simple hardware prefetcher, that requires minimal hardwarplatform to 12. However, their study does not address the un-

additions, could be considered. A well known such techniqun%jerlying limitations of the GCC algorithm discussed above.

is One-Block-Lookahead (OBL, e.g. [13]), which prefetches n our ap_proach, we identify the hardware resource digatin
the next cache lineonce a particular line is first read. the maximum number of prefetch requests allowed (the

We implemented this scheme in the XMT Simulator. MSHR file), and provide an original scheduling algorithm

Since TCUs have no regular caches (to avoid coherence co%‘%"wh limits the prefetch distance mste{:\d of the number
and area constraints), we prefetch at the granularity of or:ﬁ/l refe,rences prefe,tc_hed, and Sh.OW that it outperforms both
word, instead of one cache line: once a read request f owry's and GCC’s implementations.

addressr is issued, a prefetch request for address 4 is
automatically generated. The results in Fig.6(c) show that
the software RAP prefetching algorithm outperforms the We presented RAP — an improved compiler loop pre-
OBL hardware scheme by 7.64% to 24.61% on averagefetching algorithm targeted at many-core architectures, a
This strengthens the case that given the severe per-coslowed that under resource constrained scenarios it eutper
limitations present in many-cores, least resource-imtens forms Mowry’s well known loop prefetching algorithm by
latency hiding techniques such as software prefetchirgy off up to 40.15%, the GCC improved implementation by up to
the best performance. 34.79% and a simple hardware prefetching scheme by up to

VIl. CONCLUSION



24.61%. The RAP algorithm is robust, providing consider-[11] L. Hochstein, V. R. Basili, U. Vishkin, and J. Gilbert, “A
able improvements and never falling behind significantly on
any of the hardware configurations tested, making it a timely

and necessary addition to any compiler targeting many-core
architectures.
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