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Abstract—Super-scalar, out-of-order processors that can
have tens of read and write requests in the execution window
place significant demands on Memory Level Parallelism (MLP).
Multi- and many-cores with shared parallel caches further in-
crease MLP demand. Current cache hierarchies however have
been unable to keep up with this trend, with modern designs
allowing only 4-16 concurrent cache misses. This disconnect is
exacerbated by recent highly parallel architectures (e.g. GPUs)
where power and area per-core budget favor lighter cores with
less resources.

Support for hardware and software prefetch increase MLP
pressure since these techniques overlap multiple memory re-
quests with existing computation. In this paper, we propose
and evaluate a novel Resource-Aware Prefetching (RAP) com-
piler algorithm that is aware of the number of simultaneous
prefetches supported, and optimized for the same. We show
that in situations where not enough resources are available to
issue prefetch instructions for all references in a loop, it is
more beneficial to decrease the prefetch distance and prefetch
for as many references as possible, rather than use a fixed
prefetched distance and skip prefetching for some references,
as in current approaches.

We implemented our algorithm in a GCC-derived compiler
and evaluated its performance using an emerging fine-grained
many-core architecture. Our results show that the RAP algo-
rithm outperforms a well-known loop prefetching algorithm
by up to 40.15% and the state-of-the art GCC implementation
by up to 34.79%. Moreover, we compare the RAP algorithm
with a simple hardware prefetching mechanism, and show
improvements of up to 24.61%.

Keywords-parallel architectures; optimizing compilers

I. I NTRODUCTION

Memory systems have been under a lot of pressure to
keep up with the increasing demand for parallelism coming
from every new generation of microprocessors. Super-scalar,
out-of-order processors can have a large number of memory
operations in flight in the execution window at one time
(up to 48 load and 32 store operations for a Intel Pentium
4 processor, several of which can be cache misses). In si-
multaneous multi-threading (SMT) architectures, multicores
and manycores, the demand on Memory-Level Parallelism
(MLP) has further increased. This has put additional pres-
sure for memory systems to support numerous concurrent
memory requests.

Current cache hierarchy designs however have been un-
able to support this high level of demand for parallelism.
Existing architectures employ lock-up free caches (e.g. [1])
to avoid stalling the CPU and allow the cache miss to be

serviced in the background. Fig. 1 depicts a cache system
and its attached Miss Handling Architectures (MHA). This
consists of severalMiss Information/Status Holding Register
(MSHR) Files, and is responsible for keeping track of
the outstanding concurrent misses. To meet the demand
for high bandwidth and low latency, each MSHR has its
own comparator, and the MSHR file can be described as
a small fully associative cache.The maximum number of
outstanding cache misses the system supports is limited by
the number of MSHRs.
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Figure 1. Miss Handling Architecture (MHA) for a banked cache system
and the Miss Information/Status Holding Register (MSHR) file

Fully associative caches (and hence MHAs) are very
costly in terms of chip area, but most importantly power
usage: when a new request is received, all the comparators
must be activated in parallel in order to retrieve the cor-
responding entry in one clock cycle. This severely limits
the size of the MSHR file that can be included, even for
today’s large transistor budgets. For example, the L1 cache
of an Intel Pentium 4 processor supports only 8 outstanding
misses. For more recent AMD Opteron and Intel Core i7
architectures, an empirical study showed that single thread
performance does not improve past 7 concurrent memory
requests, proving the same limitation holds [2].

Currently, the two predominant paradigms of how single-
chip processors are built are: (i) Limited-scale multi-cores
that replicate the single-processor model on one die and
strive to maintain backwards compatibility. They gener-
ally target applications with low degrees of parallelism,
programmed to take advantage of local caches and limit
expensive inter-core communication. Presently such systems
have 2-12 cores, each supporting coarse grained threads
and they are not expected to exceed a few tens of cores
in the foreseeable future. And (ii) Many-cores that are not
typically confined to traditional architectures and program-
ming models, and use tens to hundreds of lightweight cores



in order to provide stronger speedups. The best known
representatives of this class are GPU architectures from
NVIDIA and AMD, which are now increasingly used for
general-purpose computation. Other examples include the
Sun Niagara 2 and Intel Larabee. Research machines such
as UT Austin’s TRIPS, MIT’s RAW and UMD’s XMT are
also examples of single-chip many-cores.

Many-cores are motivated by a variety of factors such as
high scalability to a large number of lightweight cores in
a single chip, very low inter-core communication latencies,
high on-chip communication bandwidth, overcoming wire-
length restrictions at high clock speeds, and fast hardware-
assisted inter-core synchronization. Many have demonstrated
great results, far exceeding the performance of traditional
multi-cores for the same silicon area. Such designs are an
exciting new frontier in computer architecture, with a bright
future as evidenced by commercial and research interest.

Regardless of the type or motivation, in all many-cores
each lightweight core has much smaller area than a tradi-
tional core. In terms of prefetching resources, this has two
repercussions: (i) the size (number of entries) of MSHR
files is much more constrained in a many-core due to
area constraints; and (ii) the total energy consumption of
all MSHRs across cores in a processor is much higher
than in a traditional processor given the larger number
of cores, which further limits the size of MSHRs. As a
consequence it becomes a crucial to carefully manage the
use of scarce MSHR resources for these architectures. We
present a new prefetching method called Resource-Aware
Prefetching (RAP) to manage MSHR resources carefully. It
is mainly beneficial in many-cores because of their limited
number of MSHR. It can apply to traditional multi-cores as
well, but given their larger number of MSHR entries and
their much larger area and power budget for other latency
tolerating tecniques, the run-time gains from RAP are likely
to be very small, so we do not discuss those further.

To evaluate the RAP algorithm, we are using XMT1 – a
general-purpose manycore architecture [3]. A recent study
showed that when configured to use the same chip area,
XMT can outperform both an Intel Core 2 (speedups up to
13.83x [4]), AMD Opteron (speedups up to 8.56x [5]) and
also an NVIDIA GTX280 GPU (speedups of up to 8.10x
[6]). The XMT hardware design is simple and scalable,
which allowed us to easily understand and tune architec-
tural parameters. An open-source, highly configurable cycle-
accurate simulator and compiler are available, allowing us
to implement and evaluate our optimizations on different
hardware configurations. An overview of the XMT platform
is presented in Section IV. An alternate evaluation platform
would have been GPUs from NVIDIA or AMD; however
they are not used because in the current generation there

1This refers to the XMT architecture developed at Universityof Maryland
and not the Cray XMT system.

is no support for software prefetching in these platforms.
Moreover, the vendors do not disclose architecture or com-
piler details, making it difficult to implement and evaluate
hardware or software improvements.

II. EXISTING SOFTWARE PREFETCHINGMETHODS

Mowry et. al [7] introduced a compiler algorithm to insert
prefetch instructions into scientific applications that operate
on dense matrices. Consider the code in Fig. 2 as our running
example. Fig. 2(a) shows the original program code. In
the figure, assume that the matrices A, B and C contain
double precision floating point elements (64 bits) and our
hypothetical system has a cache line of 16 bytes; thus two
doubles fit per cache line. Also, assume that a cache miss
latency isMissLatency= 50 clock cycles. Note that this
simplified model, assuming only one level of cache and
a fixed cache miss latency, is widely used in prefetching
literature; accurately modeling the cache memory hierarchy
in the compiler is often too complex to be viable. The
algorithm proceeds as follows:
Algorithm 1 Mowry’s Loop Prefetching
I. For each static affine array reference, use locality anal-
ysis to determine which dynamic accesses are likely to
suffer cache misses and therefore should be prefetched.
For the code in Fig. 2(a), one cache line can hold two
array elements, and thus every second dynamic access
for theA[i], B[i] andC[i] references will be a cache
miss and requires a prefetch instruction.

II. Isolate the predicted dynamic miss instances using
loop-splitting techniques such as peeling, unrolling, and
strip-mining. This avoids the overhead of adding condi-
tional statements for prefetching to the loop bodies. This
yields the code in Fig. 2(b), where the loop has been
unrolled two-fold and the last 6 iterations have been
pulled out in a separate loop.

III. Schedule prefetches the proper amount of time in
advance using software pipelining (by using the computed
necessary prefetch distance), where the computation of
one or more iterations is overlapped with prefetches for a
future iteration. The prefetch distance is computed so that
all latency can be hidden completely, using the formula:

PrefDistance=

⌈

MissLatency
IterationTime

⌉

(1)

IterationTime is the estimated running time of the short-
est path through the loop when software prefetching is
enabled. Assume for example that IterationTime= 20

clock cycles (after unrolling), and thus PrefDistance=

⌈50/20⌉ = 3 iterations. The code in Fig. 2(c) contains the
transformed code, where prefetches for the references to
the A, B and C arrays have been inserted three iterations
in advance.
Mowry’s algorithm as presented successfully filters out

most unnecessary prefetch instructions and significantly



(a)
for (i=0;i<1000;i++)
A[i] = B[i] + C[i];

(b)

for (i=0;i<994;i += 2 ) { /* Unrolled */
A[i] = B[i] + C[i];
A[i+1] = B[i+1] + C[i+1];

}
/* Last three iterations peeled */
for (i=994;i<1000;i++)
A[i] = B[i] + C[i];

(c)

for (i=0;i<994;i += 2 ) {
/* prefetch 3 iterations in advance */
prefetch(A[i+6]);
prefetch(B[i+6]);
prefetch(C[i+6]);
A[i] = B[i] + C[i];
A[i+1] = B[i+1] + C[i+1];

}
for (i=994;i<1000;i++)
A[i] = B[i] + C[i];

(d)

for (i=0;i<994;i += 2 ) {
prefetch(A[i+6]);
prefetch(B[i+6]);
/* Does not prefetch C */
A[i] = B[i] + C[i] ;
A[i+1] = B[i+1] + C[i+1];

}
for (i=994;i<1000;i++)
A[i] = B[i] + C[i];

(e)

for (i=0;i<996;i += 2 ) {
/* prefetch 2 iterations in advance */
prefetch(A[i+4]);
prefetch(B[i+4]);
prefetch(C[i+4]);
A[i] = B[i] + C[i] ;
A[i+1] = B[i+1] + C[i+1];

}
/* Last two iterations peeled */
for (i=996;i<1000;i++)
A[i] = B[i] + C[i];

Figure 2. (a) Original code before loop prefetching (b) Loopunrolling
and peeling to isolate likely cache misses (c) Code after Mowry’s pre-
fetching algorithm (PrefDistance= 3) (d) Code after applying GCC loop
prefetching algorithm (prefetch slots=6) (e) Outcome of theRAP algorithm:
PrefDistancelowered to 2.

reduces the instruction overheads. However, it does not
take into consideration the number of in-flight memory
requests supported by the hardware. The maximum number
of prefetch requests active at any time can be computed
using:

MaxRequests= NumRefs× PrefDistance (2)

where NumRefsrepresents the number of static references
that require prefetching. Going back to the code in Fig. 2(c),
we haveMaxRequests= 3 × 3 = 9. Suppose that our
architecture has 6 registers in the MSHR file. After the
first six prefetch requests have been issued, when the next
request arrives at the MHA unit, one of the following can
happen, depending on the hardware implementation:(i) The
additional request is silently dropped, and nothing is sentto
the lower levels of the memory hierarchy. This causes the
program to slow down, since it incurs all the instruction
overheads of prefetching, but none of the benefits – the
cache miss was not avoided.(ii) The MHA does not accept

the prefetch request, stalling the issuing CPU until one
MSHR becomes available. Stalling the CPU was exactly
what prefetching was aiming to avoid, and thus the benefits
of prefetching are again lost, leaving only the overheads.

GCC (GNU Compiler Collection), a state-of-the art open
source compiler which supports a wide range of architectures
and programming languages, includes an implementation of
Mowry’s algorithm for loop prefetching. The GCC algorithm
extends if further by introducing the notion of a platform-
specific number ofPrefetchSlots. This is used to limit the
number of prefetches that can be in flight at the same time.
As far as we know, GCC’s method is the only software
prefetching algorithm that attempts to limit the number of
in-flight prefetches based on hardware limitations. After
performing the same steps 1-2 as above, the GCC algorithm
starts scheduling prefetches for all the references in program
order. One prefetch instruction issuedPrefDistanceiterations
in advance of the reference causes the number of available
prefetch slots to be decremented byPrefDistance. Once not
enoughPrefetchSlotsare left, it stops issuing prefetches for
the remaining references.

For our running example, Fig. 2(d) shows the outcome of
the GCC algorithm. Since the prefetch instructions for the
A[i] andB[i] references use up all 6 available prefetch
slots, no prefetch is issued for theC[i] reference. At
runtime, this means a cache miss penalty will be encountered
every iteration of the unrolled loop, significantly affecting its
running time.

III. N EW RAP PREFETCHINGMETHOD

Intuition. Our main contribution is a new compiler pre-
fetching algorithm – Resource-Aware Prefetching (RAP) –
which improves upon Mowry’s standard loop prefetching
algorithm as well as the GCC implementation by using the
very limited MHA resources more efficiently. Our algorithm
robustly adapts to constrained resources and uses them to
hide as much latency as possible. More concretely, we
show that in situations where not enough prefetch slots are
available to issue prefetch instructions for all references,
it is more beneficial to decrease the prefetch distance and
prefetch for as many references as possible. By contrast,
the GCC implementation uses a fixed prefetch distance and
may prefetch fewer references.

Fig. 2(e) shows the outcome of the RAP algorithm applied
to our example code. The prefetch distance has been lowered
to two iterations, which allowed prefetches to be issued for
all three references. With this transformation, there willbe
only one cache miss per three iterations: once a cache miss
is encountered, it gives enough time for all previously issued
prefetch requests to complete, including current and next two
iterations. By contrast, the GCC implementation encounters
one miss per each iteration, which translates to three times
more time spent in memory stalls.



Implementation. To formulate an algorithm for RAP, it
is useful to understand the limitations of GCC’s prefetcher.
There is a subtle inconsistency in the way GCC schedules
prefetching instructions: on one hand, the prefetch distance
is computed assuming all memory latencies can be hidden
through prefetching; on the other hand, under certain condi-
tions, prefetch instructions for some references are not even
issued, causing some references to be cache misses. This
affects the iteration time, and therefore the prefetch distance
should be adjusted accordingly: if each iteration takes longer,
then prefetches can be issued fewer iterations in advance and
still be able to hide the latency. However, GCC does not
adjust the prefetch distance in these cases,effectively using
a flawed model for scheduling prefetches.

Figure 2(d) shows an example of the suboptimal schedul-
ing algorithm described above. To help understand the run-
time behavior, we show the resulting dynamic cache trace in
Figure 3(a). The first three iterations are not prefetched for,
hence all references are cache misses. At each iteration from
i = 6 onward, the read fromC[i] is going to be a cache
miss, which on our hypothetical architecture takes 50 clock
cycles. This is 49 cycles more than in the original estimate,
and thusIterTime= 20 + 49 = 69. Using Equation (1), we
only needPrefDistance= ⌈50/69⌉ = 1 iteration in advance.
However, GCC schedules prefetches usingPrefDistance= 3

iterations in advance, according to the original calculation.

Let us examine an alternative scheduling algorithm in
which a smallerPrefetchDistanceis used. The RAP algo-
rithm discussed in the rest of this paper is based on this
scheme. If we usePrefDistance= 1 iteration instead of 3,
we can now issue prefetches for all three references, using a
total of MaxRequests= 3× 1 = 3 prefetch slots. The cache
trace for this case is shown in Figure 3(b). Wheni = 0,
we issue prefetch requests forA[2], B[2] and C[2],
then we encounter three cache misses forA[0], B[0] and
C[0]. For i = 2, we start by issuing prefetches for iteration
i + 2 = 4, then all references are cache hits, because the
prefetch requests issued at the beginning of iterationi = 0

overlapped with the previous misses and have had time to
complete (see Figure 3(b)). Fori = 4, we have a cache miss
for A[4], but that gives enough time for the prefetches for
B[4] andC[4] to complete, and thus they become cache
hits. The cache miss forA[4] also gave enough time for
all prefetches for iterationi = 6 to complete, meaning we
have three cache hits in that iteration. The execution enters
a steady stateat this point, with one cache miss every other
iteration, until the end of the loop.

Similarly, we can also usePrefDistance= 2, which yields
the code in Fig. 2(e) and the trace in Fig. 3(c). Following
a similar reasoning, we observe that in the steady state we
encounter one miss every 3 iterations, leading to:

Claim 1 Let PDMowry =
⌈ MissLatency

IterationTime

⌉

the prefetch
distance computed by Mowry’s algorithm (and also GCC).
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Figure 3. Dynamic cache trace for the code in Figure 2. (a) GCC
loop prefetching withPrefDistance = 3 and (b) RAP algorithm with
PrefDistance= 1 (c) RAP algorithm withPrefDistance= 2.

For any prefetch distancePDRAP < PDMowry and

PDRAP × NumRefs≤ PrefetchSlots (3)

we can issue prefetch instructionsPDRAP iterations in
advance for all references without exceeding the available
PrefetchSlots (number of MSHR entries), and this will result
in exactly one cache miss perPDRAP + 1 iterations in the
steady state.

The claim can be easily verified: once a cache miss has
been encountered, it allows enough time for all the prefetch
requests already issued for the nextPDRAP iterations to
complete, ensuring they are all hits. However, sincePDRAP

iterations with all hits do not provide enough time to hide
the miss latency, iterationPDRAP + 1 encounters a cache
miss for the first read. The cycle then repeats.

Using Claim 1, we can compute the average loop iteration
time in the steady state whenPDRAP < PDMowry :

AvgIterTime= IterHit +
IterMiss− IterHit

PDRAP + 1
(4)

where IterHit is the iteration time when all references are
hits (20 cycles in our example) andIterMiss is the iteration
time with one cache miss (69 for our example).

The average iteration time (4) is a strictly decreasing
function of the prefetch distancePDRAP . To minimize the
overall execution time, we use the upper bound

PDRAP =

⌊

PrefetchSlots
NumRefs

⌋

(5)

given by (3). In the example in Figure 2(e), we have
PDRAP = ⌊6/3⌋ = 2. We can now present our improved
compiler algorithm:

Algorithm 2 Resource-Aware Prefetching
I-II. Identical to StepsI-II in Algorithm 1.

III. ComputePDMowry =
⌈ MissLatency

IterationTime

⌉

and NumRef the

number of references. LetPDRAP =

⌊

PrefetchSlots
NumRefs

⌋

.

III.1 If PDMowry × NumRefs≤ PrefetchSlots, sched-
ule prefetch instructions for all NumRef references
PDMowry iterations in advance.

III.2 If PDMowry × NumRefs > PrefetchSlots and
PDRAP ≥ 1, schedule prefetch instructions for all



NumRef referencesPDRAP iterations in advance.

III.3 If PDMowry × NumRefs > PrefetchSlots and
PDRAP = 0, schedule prefetch instructions for the
first PrefetchSlots references in program order exactly
one iteration in advance.

Case III.1 corresponds to the non-resource restricted situ-
ation, where we fall back on the same scheduling algorithm
as Mowry’s (and GCC) algorithm. Case III.2 occurs in situa-
tions when there are not enoughPrefetchSlotsto completely
hide all cache misses; the algorithm issues one prefetch for
each reference using a smaller prefetch distance, resulting in
one cache miss everyPDRAP+1 iterations. Case III.3 occurs
in severely resource-constrained cases, where we have more
static references thanPrefetchSlots. The algorithm issues
prefetch instructions one iteration ahead to as many refer-
ences as possible, without exceedingPrefetchSlots.

Thread Clustering. Loop prefetching does not naturally
apply to all types of workloads and data structures. However,
given the nature of fine-grained parallel code – short threads,
high degree of parallelism – prefetching can be enabled for
some benchmarks by inserting several short thread bodies
in a loop within a coarser thread. This compiler technique,
called thread clustering[3] effectively enabled the use of
prefetching for all of our benchmarks.

IV. T HE XMT FRAMEWORK

In Section I we argue that the constraint on the amount of
Memory-Level Parallelism is a major limitation for many-
core architectures. For evaluation purposes, we chose the
XMT architecture as a representative lightweight-core plat-
form. Recent benchmarking efforts have shown that XMT
can achieve consistent performance improvements when
compared to modern architectures [4], [5], [6], while using
a straightforward scalable design and an easy-to-program
interface.

The primary goal of the eXplicit Multi-Threading (XMT)
on-chip general-purpose computer architecture (e.g. [3])
is improving single-task performance through parallelism.
XMT was designed from the ground up to capitalize on
the huge on-chip resources becoming available. It is meant
to leverage the vast body of knowledge, known as Parallel
Random Access Model (PRAM) algorithmics, and the latent,
though not widespread, familiarity with it. A 64-core FPGA
prototype was reported and evaluated in [5].

The XMT architecture, depicted in Fig. 4, includes an
array of lightweight cores, Thread Control Units (TCUs)
and a serial core with its own cache (Master TCU). The
processor includes several clusters of TCUs connected by a
high-throughput mesh-of-trees (MOT) interconnection net-
work [8]; an instruction and data broadcast mechanism;
a global register file (GRF); a prefix-sum unit (PS). The
first level of cache is shared and partitioned into mutually-
exclusive cache modules sharing several off-chip DDR2
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Figure 4. XMT architecture overview.

int A[N],B[N],base=0;
spawn(0,N-1) {

int inc=1;
if (A[$]!=0) {

ps(inc,base);
B[inc]=A[$];

} } (a)

spawn

join

spawn

join$

(b)
Figure 5. (a) XMTC program example: Array Compaction. (b) Execution
of a sequence ofspawn andjoin.

DRAM memory channels. The TCU Load-Store unit ap-
plies a hashing function on each address to avoid memory
hotspots. Cache modules handle concurrent requests and
provide buffering and request reordering to achieve better
DRAM bandwidth utilization. Within a cluster, a compiler-
managed Read-Only Cache (ROC) is used to store constant
values across all threads. TCUs include lightweight ALUs,
but the more expensive units are shared by all TCUs in a
cluster.

The underlying programming model of the XMT frame-
work is an arbitrary CRCW (concurrent read/write) SPMD
(single program, multiple data) with serial and parallel ex-
ecution modes. Thespawnand join instructions specify the
beginning and the end of a parallel section that contains an
arbitrary number of virtual threads sharing the same code, as
shown in Fig. 5. An algorithm designed in the XMT model
usually permits each thread to progress at its own speed
from its initiating spawn to the terminating join, without
ever having to busy-wait for other threads, methodology
called “independence of order semantics (IOS).” XMT also
includes a hardware implementation of a powerful prefix-
sum primitive similar in function to the NYU Ultracomputer
Fetch-and-Add; it provides constant, low overhead inter-
thread coordination, a key requirement for implementing ef-
ficient intra-task parallelism. Fig. 5(a) illustrates the XMTC
programming language, a simple SPMD extension of C.
The example shows how it can be used to assign a unique
index in arrayB when compacting an arrayA. The non-
zero elements of array A are copied into an array B. The
order is not necessarily preserved. After the execution of the
prefix-sum statementps(inc,base), the base variable
is increased byinc and theinc variable gets the original



value ofbase, as anatomic operation.
XMT allows concurrent instantiation of as many threads

as the number of available processors. Threads are efficiently
started and distributed thanks to the use of prefix-sum for
fast dynamic allocation of work and a dedicated instruction
broadcast bus. The high-bandwidth interconnection network
and the low-overhead creation of many threads facilitate
effective support of fine-grained parallelism.

Ease-of-programming is a necessary condition for the
success of a many-core platform, and it is one of the main
objectives of XMT. Indications that XMT is an easy-to-
program efficient parallel architecture, include: (i) XMT is
based on a rich algorithmic theory(PRAM) that provides
a solid framework for designing and analyzing algorithms,
equivalent to the serial model; (ii) theease of teaching of
XMT programming as an adoption benchmarkhas been
established in repeated instances, from middle-school and
up, and by independent education experts [9], and shown
to be superior to alternative parallel approaches such as
MPI, OpenMP and CUDA; (iii) XMT provides aprogram-
mer’s workflowfor deriving efficient programs from PRAM
algorithms, and reasoning about their execution time [10]
and correctness, and (iv) in a semester-long study supported
through the DARPA HPCS program, thedevelopment time
of XMT was, not surprisingly, shown to be about half that
of MPI under circumstances favoring MPI [11].

Prefetch support. In the XMT design in Fig. 4, the pre-
fetch buffer unit represents the Miss Handling Architecture
(MHA) at the TCU level, consisting of one MSHR file per
TCU. Each MSHR file contains a number of MSHR entries.
The RAP algorithm is applied at the XMT thread level.

V. EXPERIMENTAL EVALUATION

Simulated configuration. We are using XMTSim, a
configurable, event driven cycle-accurate simulator of the
XMT architecture. XMTSim timing is accurately modeled
after the 64-core FPGA implementation, but it can be cus-
tomized to realistically simulate any configuration, beyond
the resource limitations of the FPGA prototype. At this time,
off-chip buses and DRAM modules are modeled as fixed
latency components in the simulator. The XMT compiler
and simulation environment are publicly available [12].

The simulated configuration consists of 64 cores (TCUs)
grouped in 8 clusters, with 256KB of shared on-chip cache
and 4 DDR2 DRAM channels. The TCU MSHR file size
varies between 1 and 12 entries.

Compiler Infrastructure. We used the GNU C compiler
(GCC) 4.0.2 as the base compiler for our infrastructure. We
adapted and improved upon the loop prefetching optimiza-
tion pass targeted at the code executed by TCUs while in
parallel mode. The loop prefetching algorithm operates using
the Tree-SSA framework of GCC 4.0+.

Benchmarks. Table I describes the benchmarks used
for evaluating the compiler algorithm performance. The

Table I
BENCHMARKS USED.

Name Description Input MR a

jacobi 2D PDE solver kernel 1024x1024 12
lu LU factorization 256x256 12
conv Image convolution 128x128 12
separ Separable image filtering 512x256 8
dbscan SQL Non-indexed Select query 2M records 6
matmult Dense matrix multiplication 256x256 12
SpMV Sparse matrix - vector mult. 4M values 9
treeadd Summation of binary tree nodes 1M values 6

aMaximum number of simultaneous prefetch requests required when
using loop prefetching
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Figure 6. Performance improvement of RAP compared to (a) Mowry, (b)
GCC and (c) OBL hardware prefetching

benchmarks are written in XMTC and were chosen from
a variety of domains to reflect various access patterns and
application types. Our goal in collecting the benchmarks was
to sample as many application domains as possible, and as a
result we have both integer and floating point kernels from
scientific computing, image processing, databases and linear
algebra.

Evaluation of Compiler Algorithm. To determine the
effectiveness of the RAP algorithm we set out to execute
our benchmarks on a series of configurations. For each
benchmark, we computed the performance improvement of
the RAP algorithm versus both Mowry’s original algorithm
and the GCC implementation when using configurations
with 1, 2, 4, 6, 8, 10 and 12 MSHR file capacity.

The improvements of RAP over Mowry’s algorithm and



the GCC implementation are shown in Figs. 6(a) and 6(b).
As we see from the two figures, the average run-time im-
provement from our compiler algorithm ranges from 25.63%
to 40.15% when compared to Mowry’s algorithm, and from
13.18% to 34.79% when compared to GCC.

Fig. 6(b) shows the comparison of the RAP algorithm
with the GCC implementation of loop prefetching. For each
configuration, we provide GCC with the exact size of the
MSHR file as the number ofPrefetchSlots. When not enough
PrefetchSlotsare available to hide all latencies, the GCC
algorithm does not issue prefetch instructions for some of
the references. By contrast, the RAP algorithm decreases the
prefetch distance, and issues as many prefetch instructions
as the MSHR has capacity. This allows it to hide more of
the memory latencies, and to outperform GCC.

Note that on XMT, we are prefetching from the shared L1
cache to the TCUs. The latency for an L1 access is≈ 24

cycle in the current configuration. Given this latency, the
prefetch distance is usually small (1-3 iterations), and thus
theMaxRequestvalue for the benchmarks ranges between 6
and 12 for our benchmarks, as shown in Table I. Therefore,
for MSHR files with 12 entries or larger, we are not in a
resource-constrained regime, and there are no advantages
for using the RAP algorithm over the alternative algorithms.
However, for the class of highly parallel architectures we are
targeting, even a per-core MSHR of 12 entries represents a
significant amount of area. Future manycore architectures
will probably devote even fewer resources for the MHA,
making the RAP algorithm highly relevant.

Comparison with Hardware Prefetching. We compare
the RAP software prefetching algorithm with an imple-
mentation of XMT that includes a hardware prefetching
mechanism. Traditional single- and multi-core processors
include sophisticated hardware prefetching units, capable of
monitoring and distinguishing multiple independent streams
of requests and identifying large access strides. However,the
hardware complexities of such units make them prohibitively
expensive per-core for a many-core architecture. Only a
simple hardware prefetcher, that requires minimal hardware
additions, could be considered. A well known such technique
is One-Block-Lookahead (OBL, e.g. [13]), which prefetches
the next cache lineonce a particular line is first read.

We implemented this scheme in the XMT Simulator.
Since TCUs have no regular caches (to avoid coherence costs
and area constraints), we prefetch at the granularity of one
word, instead of one cache line: once a read request for
addressx is issued, a prefetch request for addressx + 4 is
automatically generated. The results in Fig.6(c) show that
the software RAP prefetching algorithm outperforms the
OBL hardware scheme by 7.64% to 24.61% on average.
This strengthens the case that given the severe per-core
limitations present in many-cores, least resource-intensive
latency hiding techniques such as software prefetching offer
the best performance.

VI. RELATED WORK

Prefetching is a widely studied technique used to hide
the increasingly high latencies (in terms of clock cycles)
of memory accesses in modern architectures. Software pre-
fetching [7], [14], [15] relies on the existence of non-
blocking prefetch instructions and is usually enabled by the
compiler. In hardware prefetching (e.g. [13], [16], [17]) a
specialized hardware unit infers prefetching opportunities
by monitoring run-time behavior. Prefetching schemes for
parallel architectures in both software [14], [18], [19] and
hardware (e.g. [20]) build upon uni-processor prefetchingby
taking into consideration issues caused by sharing of data
and resources, such as coherence traffic and overheads.

Several studies have considered the interaction of the
architectural parameters with the performance of software
prefetching algorithms. In his comprehensive work on soft-
ware data prefetching, Mowry [21] explores the effect on ex-
ecution time of varying the number of outstanding prefetch
requests that can be handled simultaneously by the hardware.
In follow-up work, Mowry [19], as well as McIntosh [14],
settle for a fixed-size prefetch issue buffer of 16 locations.
Several other papers study the effects of changing the size of
the prefetch destination (either cache or dedicated prefetch
buffers) for systems with software [15], [22] or hardware
prefetching [16]. However, unlike our approach, in all of
these existing schemes the prefetch algorithm is unaware of
the prefetch hardware configuration, and does not adapt its
behavior.

GCC is the only attempt to consider the amount of
prefetch resources available as part of the loop prefetching
algorithm. As described in Section I, the GCC algorithm
limits the number of memory references prefetched to meet
a fixed upper bound. However, no guidance is given on
how to chose this upper bound, as it is not clear what the
underlying hardware limitation is accounted for. Yang et.
al [23] empirically set the maximum number of prefetch
instructions issued by the GCC compiler for the IA64
platform to 12. However, their study does not address the un-
derlying limitations of the GCC algorithm discussed above.
In our approach, we identify the hardware resource dictating
the maximum number of prefetch requests allowed (the
MSHR file), and provide an original scheduling algorithm
which limits the prefetch distance instead of the number
of references prefetched, and show that it outperforms both
Mowry’s and GCC’s implementations.

VII. C ONCLUSION

We presented RAP – an improved compiler loop pre-
fetching algorithm targeted at many-core architectures, and
showed that under resource constrained scenarios it outper-
forms Mowry’s well known loop prefetching algorithm by
up to 40.15%, the GCC improved implementation by up to
34.79% and a simple hardware prefetching scheme by up to



24.61%. The RAP algorithm is robust, providing consider-
able improvements and never falling behind significantly on
any of the hardware configurations tested, making it a timely
and necessary addition to any compiler targeting many-core
architectures.
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