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Abstract—Processors with large numbers of cores are becom-
ing commonplace. In order to take advantage of the available
resources in these systems, the programming paradigm has to
move towards increased parallelism. However, increasing the
level of concurrency in the program does not necessarily lead
to better performance. Parallel programming models have to
provide flexible ways of defining parallel tasks and at the same
time, efficiently managing the created tasks. OpenMP is a widely
accepted programming model for shared-memory architectures.
In this paper we highlight some of the drawbacks in the OpenMP
tasking approach, and propose an alternative model based on
the Glasgow Parallel Reduction Machine (GPRM) programming
framework. As the main focus of this study, we deploy our model
to solve a fundamental linear algebra problem, LU factorisation
of sparse matrices. We have used the SparseLU benchmark from
the BOTS benchmark suite, and compared the results obtained
from our model to those of the OpenMP tasking approach. The
TILEPro64 system has been used to run the experiments. The
results are very promising, not only because of the performance
improvement for this particular problem, but also because they
verify the task management efficiency, stability, and flexibility
of our model, which can be applied to solve problems in future
many-core systems.

I. INTRODUCTION

Task-based parallel programming models are evolving
rapidly. With the emerge of many-core processors, they can
compete with data-parallel approaches, while offering more
flexibility, because of their MIMD nature. A task is any form
of computation that can be run in parallel with other tasks,
if their data dependencies allow. Most of these programming
models provide the programmer with some keywords to ex-
press parallelism in an imperative language such as C/C++.
Pure functional programming languages on the other hand pro-
vide native parallelism, but compared to mainstream languages
such as C++ and Java, none of them have found widespread
adoption. Even if a many-core programming language would
find wide adoption, it would in the short term obviously be im-
possible to rewrite the vast amount of single-core legacy code
libraries, nor would it be productive. Our mission is therefore
to propose a programming model that can be integrated into
existing codes in imperative languages, while offering native
parallelism, similar to functional languages. Before going into
the details of our approach, the Glasgow Parallel Reduction
Machine (GPRM), we would like to briefly review some of
the available models in the market, namely Clojure, Chapel,
Intel Cilk Plus, Intel Threading Building Blocks (TBB), and
OpenMP.

Parallel programming is not as simple as sequential pro-
gramming. In addition to what to compute, the programmer
should specify how to coordinate the computation. Clojure
[1] –also called a modern Lisp– is a functional programming
language that targets the Java Virtual Machine (JVM). Clo-
jure’s syntax is based on S-expressions, i.e. lists where the
first element represents the operation and the other elements
the operands. GPRM uses a similar approach for the internal
representation of its communication code.

OpenCL [2] is an industrial standard for heterogeneous
architectures. It basically defines a set of core functionality
that is supported by all devices, and allow vendors to expose
more programming interfaces as well as hardware features. It
is however not as easy to use as the following models for
shared memory architectures.

Intel Cilk Plus which is based on the Cilk++ [3] is an exten-
sion to C/C++ to provide both task and data parallelism. Is has
become popular because of its simplicity. It has _Cilk_spawn
and _Cilk_sync keywords to spawn and synchronise the
tasks. _Cilk_for loop is a parallel replacement for sequential
loops in C/C++. Intel Cilk Plus starts a pool of threads in the
beginning of the program which is analogous to the GPRM
thread pool.

Intel Threading Building Blocks (TBB) is another well-
known approach for expressing task-based parallelism [4].
Intel TBB is an object-oriented C++ runtime library that
contains data structures and algorithms to be used in parallel
programs. It abstracts the low-level threading details, which
is similar to the GPRM design consideration. However, the
tasking comes along with an overhead. Conversion of the
legacy code to TBB requires restructuring certain parts of the
program to fit the TBB templates. One of the advantages of
TBB over OpenMP and Cilk Plus is that it does not require
specific compiler support.

OpenMP can be called the most widely used programming
standard in the shared-memory architectures. Since the release
of OpenMP 3.0 [5], irregular parallelism can be expressed by
means of the OpenMP tasks. Moreover, OpenMP works very
well with predictable data parallel situations compared to Cilk
Plus and TBB. This makes it a challenging competitor for new
programming models such as GPRM. We have compared the
performance of GPRM with that of OpenMP in 2 different
scenarios: first a micro-benchmark which has structured par-
allelism, and second, a linear algebra problem which fits very
well into less structured task-based parallelism.
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It has been studied in [6]–[9] that OpenMP performs poorly
for fine-grained tasks. It indicates that the programmer is
responsible to figure out how a problem with specific input
parameters would fit on a particular platform. As a com-
mon solution, programmers use a cutoff value when creating
OpenMP tasks to avoid composing fine-grained tasks. Firstly,
finding a proper cutoff value is not straightforward, and
sometimes needs a comprehensive analysis of the program.
It often depends on the application structure and the input
data set [10]. Secondly, only in some special cases, such as
recursion, the cutoff value can be controlled by the user code.
Leaving the decision to the runtime system has been proposed
as an alternative. The idea is to aggregate tasks by not
creating some of the user specified tasks and instead executing
them serially. Adaptive Task Cutoff (ATC) [6] implemented
in the Nanos runtime system –a research OpenMP runtime
system– is a scheme to modify the cutoff dynamically based
on profiling data collected early in the program’s execution.
This, however, cannot be done without any overhead at all,
plus the scheme needs to be extended to find all interesting
situations for cutoff. Instead, in GPRM there is a technique to
specify which task would initially run on which thread. This
reduces the overhead of tasks considerably. Moreover, there
are some worksharing constructs that can be used along with
tasks to avoid generating too many fine-grained tasks.

The trade-off between task granularity and the number of
tasks in OpenMP is covered in [8]. The authors suggest that
tasks should have sufficient granularity and the granularity
should be increased as the number of consumer threads
increases. This is to ensure that all threads are kept busy
doing some useful work. They have also explored that the
number of tasks has an effect on the load balance, which means
programmers have to trade-off between the number of tasks
and granularity in order to get a fair load balance, hence a
good performance.

For the purposes of this paper, we will show how OpenMP
fails to operate normally for fine-grained tasks, while the pro-
posed model copes with such situations naturally (See Section
V). Furthermore, we will introduce a hybrid worksharing-
tasking approach to avoid creating too many tasks (See Section
Section VI). In other words, a hybrid methodology for exploit-
ing both task and data parallelism will be employed to solve
an LU Factorisation problem on a homogeneous many-core
processor .

Lower-Upper factorisation over sparse matrices is a funda-
mental linear algebra problem. Due to the sparseness of the
matrix, conventional worksharing solutions are not enough,
since a lot of load imbalance exists. As a well-known testcase,
we have used the SparseLU benchmark from the the Barcelona
OpenMP Tasks Suite (BOTS) [11]. In this problem, the
matrix is organised in blocks that may not be allocated. More
information along with the source code is openly available.

II. GPRM

The Glasgow Parallel Reduction Machine (GPRM) [9]
provides a task-based approach to many-core programming.

The programmer structures programs into task code, written as
C++ classes, and communication code, written in a restricted
subset of C++. A task is a list of bytecodes representing
an S-expression, e.g. (S1 (S2 10) 20) represents a task S1

taking two arguments, the first argument is the task S2 which
takes as argument the numeric constant 10, and the second
argument is the numeric constant 20. GPRM executes the
corresponding list of bytecodes with concurrent evaluation of
function arguments. For more details on the compilation of
the S-expressions and the bytecode see [9]. In our parlance,
a task node consists of a task kernel and a task manager.
A task kernel is typically a complex, self-contained entity
offering a specific functionality to the system, which on its
own is not aware of the rest of the system. The task kernel has
run-to-completion semantics. The corresponding task manager
provides an interface to the kernel. The computational task
kernels are written as C++ classes. This means that the end
user simply creates classes in the GPRM::Kernel namespace.

Conceptually, GPRM consists of a set of tiles connected
over a network. Each tile consists of a task node and a
FIFO queue for incoming packets. Every tile runs in its own
thread and blocks on the FIFO. The system is event driven,
with two possible types of events: arrival of a packet, or
the events generated by the task kernel. The latter is either
creation of a packet or modification of the local state. The
reduction engine, i.e. the task manager evaluates the bytecode
via parallel dispatch of packets requesting computations to
other tiles.

Threads in GPRM are treated as execution resources. There-
fore, for each processing core there is a thread with its own
task manager. At the beginning, a pool of threads is created
before the actual program starts. It has been pointed out
in the Introduction that GPRM offers an effective way of
combining tasks with worksharing constructs to avoid creating
fine-grained tasks. For instance, instead of creating tasks in
a loop which is common in the OpenMP tasking approach
[5], one can create as many tasks as the concurrency level in
GPRM, each of which with their own indices. These indices
can be then used by a worksharing construct to specify which
elements of the loop belongs to which thread. The concurrency
level is defined as the number of jobs that can be theoretically
run simultaneously in the system.

Normally, when the tasks are fairly equal, the best result
can be obtained by choosing the concurrency level as the same
as the number of threads, which is itself as the same as the
number of cores in GPRM. Although in Section VI tasks are
not equal, as a solution one can use the GPRM parallel loops
to balance the load amongst threads. This solution, as will be
shown, works very well when medium size or large sparse
matrices are used.

III. PARALLEL LOOPS

We have created a number of useful parallel loop constructs
for use in GPRM. These worksharing constructs corresponds
to the for worksharing construct in OpenMP, in the sense that
they are used to distribute different parts of a work among



different threads. However, there is a big difference in how
they perform the operation. In OpenMP, the user marks a loop
as an OpenMP for with a desirable scheduling strategy, and
the OpenMP runtime decides which threads should run which
part of the loop; in GPRM, multiple instances of the same task
–normally as many as the concurrency level– are generated,
each with a different index (similar to the global_id in
OpenCL). Each of these tasks calls the parallel loop passing
in their own index to specify which parts of the work should
be performed by their host thread.

The par_for construct is used to parallelise a single loop.
It distributes the work in a Round-Robin fashion to the threads.
A par_nested_for treats a nested loop as a single loop and
follows the same pattern to distribute the work. Alternatively,
the contiguous method gives every thread an m/n chunk, and
the remainder m%n is distributed one-by-one to the foremost
threads. These methods are shown in Fig 1. The need to
parallelise nested loops arises often, e.g. in situations where
there are variable size loops such as the SparseLU benchmark
in Section VI.

Fig. 1: Partitioning a nested m(3× 3) or a single m(9) loop
amongst n(4) threads. a) Step size of 1, as in the par_for

and par_nested_for, b) Contiguous

1 template<typename T c l a s s , typename Param1>
2 i n t p a r f o r ( i n t s t a r t , i n t s i z e , i n t ind , i n t CL ,

T c l a s s ∗ TC , i n t ( T c l a s s : : ∗ w o r k f u n c t i o n ) ( i n t ,
i n t , i n t , Param1 ) , Param1 p1 ) {

3 /∗ i n d : Index , CL : Concurrency L e v e l ∗ /
4 i n t t u r n =0;
5 f o r ( i n t i = s t a r t ; i < s i z e ; ) {
6 i f ( t u r n % CL == i n d ) {
7 (TC−>∗w o r k f u n c t i o n ( i , s t a r t , s i z e , p1 ) ;
8 i = i + CL ;
9 }

10 e l s e {
11 i ++;
12 t u r n ++;
13 }
14 }
15 re turn ;
16 }

Listing 1: Implementation of the par_for

The par_for and par_nested_for loops in GPRM are
implemented using C++ templates and member-function point-
ers. The implementation of these worksharing constructs are
given in Listing 1 and 2. They would be our worksharing
constructs by default. The Contiguous parallel loops have
similar implementations. We denote Contiguous parallel loops
as Contiguous GPRM approaches.

Another useful worksharing construct is a parallel nested
loop. Since the GPRM par_nested_for is implemented with
minimum overhead, it is a significantly useful worksharing
construct, as we will see in the next sections.

1 t emplate <typename T c l a s s , typename Param1>
2 i n t p a r n e s t e d f o r ( i n t s t a r t 1 , i n t s i z e 1 , i n t

s t a r t 2 , i n t s i z e 2 , i n t ind , i n t CL , T c l a s s ∗
TC , i n t ( T c l a s s : : ∗ w o r k f u n c t i o n ) ( i n t , i n t , i n t ,
i n t , i n t , i n t , Param1 ) , Param1 p1 ) {

3 i n t t u r n =0;
4 f o r ( i n t i = s t a r t 1 ; i < s i z e 1 ; i ++) {
5 f o r ( i n t j = s t a r t 2 ; j < s i z e 2 ; ) {
6 i f ( ( t u r n >= 0) && ( t u r n % CL == i n d ) ) {
7 (TC−>∗w o r k f u n c t i o n ) ( i , j , s t a r t 1 , s i z e 1 , s t a r t 2 ,

s i z e 2 , p1 ) ;
8 j = j + CL ;
9 i f ( j >= s i z e 2 ) t u r n = s i z e 2 − j + i n d ;

10 }
11 e l s e {
12 j ++;
13 t u r n ++;
14 }
15 }
16 }
17 re turn ;
18 }

Listing 2: Implementation of the par_nested_for

IV. EXPERIMENTAL SETUP

The Tilera TILEPro64 Tile Processor is a 32-bit VLIW
multicore with 64 tiles, interconnected via multiple 8 × 8
mesh networks. It provides distributed cache-coherent shared
memory by default. It has 16GB of DDR memory, but in
order to use the global address space shared among all tiles,
addressing is limited to 32-bit, i.e. 4GB. It has per-core L1
caches of 8KB, and L2 caches of 64KB. The union of all L2
caches across the chip comprises the distributed L3 cache. The
operating frequency of the cores is 866MHz. Out of 64 tiles,
one is used for the PCI communication, and the other 63 tiles
have been used for our experiments. For our experiments in
this study, we have used the tile-g++ compiler provided by
MDE 3.0 from the Tilera Corporation, and is based on the
GCC version 4.4.3. The compiler flags -O2 and -std=c++0x
have been specified. It is worth stating that the TILEPro64
runs Tile Linux which is based on the standard open-source
Linux version 2.6.36.

V. MATRIX MULTIPLICATION MICRO-BENCHMARK

In this section, we use a naive matrix multiplication al-
gorithm with a triple nested loop as a micro-benchmark to
evaluate the overhead of the OpenMP approach compared to
the model we use to solve matrix problems. The code is given
at Listing 3.

As our aim is to use this micro-benchmark to identify the
most important barriers on the way, we change the interpreta-
tion of the problem to performing multiple jobs. Suppose that
the product of an m×n matrix A and an n×p matrix B is the
m × p matrix C. We want to parallelise the first loop of the
triple nested loop, which loops on m, therefore m becomes
the number of jobs for this problem. The size of each job is
identified by the sizes of the next two loops in the triple nested
loop, i.e. p ∗ n. We have chosen n = p to make the problem
more regular. We end up with matrices with the following



specification: A : m × n, B : n × n, and C : m × n. Due to
the poor data locality of this algorithm, one should not expect
to see a linear speedup.

1 f o r ( i n t i = 0 ; i < m; i ++){
2 f o r ( i n t j = 0 ; j< p ; j ++){
3 f o r ( i n t k = 0 ; k <n ; k ++){
4 C[ i ∗p+ j ] += A[ i ∗n+k ] ∗ B[ k∗p+ j ] ;
5 }
6 }
7 }

Listing 3: Matrix Multiplication Micro-benchmark

Four approaches are selected for the comparison: I) The
OpenMP for worksharing construct, II) The OpenMP for

with dynamic schedule and chunk size of 1, III) The OpenMP
Tasks, and IV) The GPRM par_for construct.

Figure 2 shows the performance measurement for different
job sizes. GPRM outperforms OpenMP in all cases but espe-
cially for the small job case (even then, the job size is still not
small enough to show the real overhead of having fine-grained
tasks in OpenMP). To our best understanding, the performance
difference is due to the overhead of thread scheduling, which
is more visible in the small job cases with short execution
times.

In order to investigate the effect of task granularity on the
behaviour of the OpenMP’s performance, we decrease the size
of the tasks even more. We also looked at the influence of the
cutoff value on the performance. Since the behaviours of the
OpenMP worksharing constructs were fairly similar, only the
default omp for is used for the next experiment.

To improve the behaviour of the tasking approach, we added
a cutoff value for the tasks, such that only m/cutoff tasks were
created. This is similar to sequencing multiple tasks. Fig 3
compares the speedup of a tuned version of the OpenMP task-
based model with the other alternatives. We believe that the
regularity of GPRM in assigning tasks to its threads and the
lower overhead of its tasks make it the winner.

1 f o r ( i n t i = 0 ; i < (m/ c u t o f f ) ; i ++){
2 #pragma omp t a s k f i r s t p r i v a t e ( i )
3 f o r ( i n t t = 0 ; t < c u t o f f ; t ++) {
4 f o r ( i n t j = 0 ; j < p ; j ++){ / / p=n
5 f o r ( i n t k = 0 ; k < n ; k ++){
6 C [ ( i ∗ c u t o f f + t ) ∗p+ j ] += A[ ( i ∗ c u t o f f + t ) ∗n+k ] ∗

B[ k∗p+ j ] ;
7 }
8 }
9 }

10 }

Listing 4: Matrix Multiplication Micro-benchmark with a
cutoff value

Figure 3 shows that the poor behaviour of fine-grained tasks
can be remedied to a considerable extent by using a proper
cutoff value. The OpenMP approaches gradually becomes
better when the size of the job is increased. We have chosen
the first two cases to show the effect of using a cutoff in
more detail, because these cases show degraded performance

compared to the sequential implementation if no cutoff is used
at all.

Figure 4 shows that a good choice of the cutoff value gives
the speedup of 38.6× against the case with no cutoff and 7.8×
against the sequential version, for the job size of 50×50 with
63 threads. The speedup for the job size of 100× 100 is also
improved by 10.8× compared to the case with no cutoff and
8.2× compared to the sequential runtime.

VI. SPARSE LU FACTORISATION

The SparseLU benchmark from the BOTS suite, which
computes an LU factorisation over sparse matrices, is a proper
example of matrix operations with load imbalance. In the
OpenMP approach, a task is created for each non-empty block.
The main SparseLU code from [5] (omitting the details of the
OpenMP task-based programming, such as dealing with shared
and private variables) is copied in Fig 5. The number of tasks
and the granularity of them depends on the number of non-
empty blocks and the size of each block, hence a cutoff value
cannot be defined inside the user-written OpenMP code. As
has also been discussed in [5], using OpenMP tasks results in
better performance compared to using the for worksharing
construct with dynamic scheduling. Therefore, we use the
tasking approach for the comparison.

The code for the SparseLU benchmark in GPRM can be
found in Listing 5.

1 # i n c l u d e <GPRM/ API . h>
2 us ing namespace GPRM : : API ;
3 GPRM : : K e rn e l : : SpLU sp ;
4

5 void f w d b d i v t a s k s ( i n t kk , f l o a t ∗∗ A,
6 c o n s t i n t CL) {
7 #pragma gprm u n r o l l
8 f o r ( i n t n = 1 ; n < (CL / 2 ) ; n ++) {
9 sp . fwd t ( kk , A, n−1, CL / 2 ) ; / / fwd t a s k

10 sp . b d i v t ( kk , A, n−1, CL / 2 ) ; / / b d i v t a s k
11 }
12 }
13

14 void bmod tasks ( i n t kk , f l o a t ∗∗ A, c o n s t i n t CL) {
15 #pragma gprm u n r o l l
16 f o r ( i n t n = 1 ; n < CL ; n ++) {
17 sp . bmod t ( kk , A, n−1, CL) ; / / bmod t a s k
18 }
19 }
20

21 void GPRM : : Compute LU ( ) {
22 #pragma gprm seq
23 { /∗ GPRM e v a l u a t e s i n p a r a l l e l u n l e s s o t h e r w i s e

s t a t e d ∗ /
24 f l o a t ∗∗ A = i n i t t a s k ( ) ;
25 f o r ( i n t kk =0 , kk<NB, i ++) { / / NB: # B l o c k s
26 #pragma gprm seq
27 {
28 l u 0 t a s k ( kk ,A) ;
29 f w d b d i v t a s k s ( kk , A, 6 3 )
30 bmod tasks ( kk , A, 6 3 )
31 }
32 }
33 }
34 re turn ; }

Listing 5: SparseLU code in GPRM, Concurrency Level:
63
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The unroll pragma results in compile-time evaluation of
any control construct in which any of the variable in the
argument list occurs. In the example, this means that the for

loop will be unrolled. By default, expressions in non-kernel
GPRM code are evaluated in parallel. The seq pragma forces

Fig. 5: Main code of the SprseLU benchmark, without
revealing OpenMP programming details [5]

sequential evaluation of the block it precedes.
It is worth mentioning that we have not changed the

initialisation phase of generating sparse matrices in the BOTS
benchmark suite. The matrices become sparser as the number
of blocks increases. For example, in the case of 50×50 blocks,
the matrices are 85% sparse, while for the cases with 100×100
blocks, the matrices become 89% sparse.

To obtain a fair distribution of the matrix elements amongst
different threads –bearing in mind the sparseness of the
matrix– we have used a par_nested_for, because the
numbers of iterations are not fixed in this problem. The



loops become smaller as kk grows, which means that using
a par_for would, after a few iterations when outer iters>
concurrency level, lead to starvation of some of the threads.
By using a par_nested_for the threads can get some work
as long as the outer iters∗inner iters> concurrency level.
Therefore, in order to implement the fwd, bdiv, and bmod
tasks, one can use the GPRM APIs for the parallel loops,
as shown in Listing 6.

1 # i n c l u d e <GPRM/ API . h>
2 us ing namespace GPRM : : API ;
3

4 i n t SpLU : : fwd t ( i n t kk , f l o a t ∗∗ A, i n t ind , i n t CL)
5 { re turn p a r f o r ( kk +1 ,NB, ind , CL , t h i s ,
6 &SpLU : : fwd work ,A) ;}
7

8 i n t SpLU : : b d i v t ( i n t kk , f l o a t ∗∗ A, i n t ind , i n t CL)
9 { re turn p a r f o r ( kk +1 ,NB, ind , CL , t h i s ,

10 &SpLU : : bdiv work ,A) ;}
11

12 i n t SpLU : : bmod t ( i n t kk , f l o a t ∗∗ A, i n t ind , i n t CL)
13 { re turn p a r n e s t e d f o r ( kk +1 ,NB, kk +1 ,NB, ind , CL ,
14 t h i s ,&SpLU : : bmod work ,A) ;}
15

16 /∗ The fwd f u n c t i o n here i s t h e same as fwd i n
t h e c i t e d paper ∗ /

17 i n t SpLU : : fwd work ( i n t j j , i n t kk , i n t NB,
18 f l o a t ∗∗ A) {
19 i f (A[ ( kk−1)∗NB+ j j ] != NULL)
20 fwd (A[ ( kk−1)∗NB+kk−1] ,A[ ( kk−1)∗NB+ j j ] ) ;
21 re turn 0 ;
22 }

Listing 6: Implementation of the member functions of the
SparseLU class. Work functions can also be defined similar
to the phases in [5]
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Figure 6 shows a sparse matrix of 4000×4000 divided
into blocks of varying size. It is again clear that with larger
numbers of blocks in each dimension which results in smaller
block sizes, the OpenMP’s performance drops drastically.
GPRM can deal with tiny 8×8 blocks 6.2× better than the
best result obtained by OpenMP.

Table I reveals that the best results for the OpenMP ap-
proach is not obtained with the default setting, which is
as many threads as the number of cores. Besides the large
difference in execution times when the block size becomes

less than 20×20, there is a significant performance degradation
if the number of threads is set to the default value of 63.
For example, the execution time becomes 12.25× worse than
the best time for the last case. However, it is clear that
GPRM reaches its best execution time without the need to
tune the number of threads –here, the number of threads and
concurrency level are the same for GPRM–. This is again
due to the fact that instead of creating very small tasks,
GPRM offers an efficient way of distributing the work amongst
threads.

The speedup diagrams for the SparseLU benchmark have
been shown in Fig 7. We increased the concurrency level up
to 128 to show how regular our approach is, in the sense that
it gets its best performance with the factors of the number
of cores. This is not surprising, since the problem has been
partitioned amongst threads regularly, and therefore they can
exploit the underlying architecture more efficiently. Since the
OpenMP tasking model is different from ours, we simply
increased the number of threads in that case.

TABLE I: Number of threads for the best results

Number of Blocks 50 100 200 400 500

OpenMP tasks 64 63 32 16 8
GPRM 63 63 63 63 63

VII. DISCUSSIONS

A. OpenMP Performance Bottlenecks

We have identified a number of performance bottlenecks
when programming with OpenMP. The first is the thread
migration overhead. This overhead can often be removed by
statically mapping (pinning) the OpenMP threads to the execu-
tion cores. Using static thread mapping (pinning) in a platform
with per-core caches could be very useful, particularly for load
balanced data parallel problems, in which the portion of the
work to be done by each thread is fairly equal, and therefore
CPU time and local caches can be effectively utilised. Our
study [12] shows that for such a platform, static thread map-
ping is often a good practice in single-program environments,
but for multiprogramming environments, in which different
programs compete for the resources, it is not always efficient.
We refer the readers to [12]–[14] for detailed discussions on
thread mapping (pinning) for OpenMP programs.

Another barrier is to find a proper cutoff point to avoid
creating overly fine-grained tasks. Programmers have to be
very careful about the granularity of the tasks, otherwise the
results maybe totally unexpected. It has also been observed
that there is no guarantee that running an OpenMP program
with the maximum number of threads –equal to the number
of cores– will result in the best performance.

B. Comparison of OpenMP and GPRM Approaches

For the SparseLU problem, although creating OpenMP tasks
for non-empty blocks is a smart solution, it is not working very
well for all matrices. The first reason is that a single thread
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Fig. 7: SparseLU Factorisation: GPRM approaches vs. OpenMP Tasks, on the TILEPro64 with 63 available cores

explores the whole matrix and creates relatively small tasks for
non-empty blocks, while in the proposed solution implemented
in GPRM, multiple threads look into their portions of the work
in parallel. The difference in performance can be noticeable
especially in the bmod phase with a nested loop. As also
reported in [15], combining the OpenMP for worksharing
construct with tasks, as implemented in sparselu_for in the
BOTS benchmark suite, is not a viable approach with OpenMP
3.0.

Secondly, in GPRM, every thread has specific work based
on the program’s task description file. If needed, runtime
decisions will be applied to improve the performance, while
OpenMP creates the tasks dynamically and all decisions are
taken dynamically at runtime, which makes its task manage-
ment less efficient when the numbers of tasks and/or threads
become larger. Moreover, the overhead of task management
becomes significant when the tasks become more fine-grained,
as made clear by the Matrix Multiplication micro-benchmark.

In GPRM, using a par_nested_for construct in order to
partition the matrix in a non-contiguous manner results in
a good load balance. Furthermore, our hybrid worksharing-
tasking technique is pretty much straightforward. There is no
pressure on the programmer to worry about private and shared
variables, in contrast to many other parallel programming
models, including OpenMP.

The proposed programming toolkit, GPRM is stable, scal-
able, low-overhead, and flexible compared to OpenMP. Stable,
as there is no need to change the default configurations, such as
the number of threads in order to get the optimal performance.
It scales as expected, which is showing continuous speedup
as the concurrency level increases up to the number of cores.
The overhead of task management is negligible, even for fine-
grained tasks. It is flexible, because the number of tasks can be
easily controlled by the programmer. It is also straightforward
to specify which task to be run on which thread initially.
If required, the runtime system can change the host thread
dynamically.

VIII. CONCLUSION

Many-core systems have emerged to solve the existing prob-
lems faster. Giving the same amount of work to more execution
resources simply means having more fine-grained tasks. In this
paper, we have proposed a regular task composition approach
which can address both regular and irregular parallel problems.
We have shown that it fits naturally to the systems with per-
core caches, which consequently makes it very promising for
future many-cores.

In this paper, our new model is used to solve a fundamen-
tal linear algebra problem, namely lower-upper factorisation
over sparse matrices. We used a matrix multiplication micro-
benchmark to highlight the differences between the proposed
model and OpenMP. For the small jobs, GPRM outperformed
OpenMP by 2.8× to 11×. For the medium-sized jobs, the
speedup improvement ranged from 1.5× to 3.3×. As the jobs
get larger the difference became less significant. For the large
jobs, the speedup ranged from 1.3× to 2.2×.

As a real-world example we used the SparseLU testcase
from the BOTS benchmark suite. We used a sparse matrix of
4000×4000 divided into blocks of varying size. We demon-
strated that for the larger numbers of blocks, i.e. smaller block
sizes, the difference is considerable. The main advantage of
GPRM is that it does not need to be tuned it terms of the
number of threads. By contrast, tuning is crucial for OpenMP,
otherwise for fine-grained tasks a huge drop in performance
is inevitable.

We also investigated the impact of the concurrency level on
speedup. Again, GPRM scaled 2× better than the best result
obtained using OpenMP for both the 50×50 and 100×100
cases. For concurrency level=63, which is the default setting,
the speedup improvements were respectively 2.1× and 4.9×.

As GPRM can offer a hybrid task-data parallelism, utilising
it on hybrid CPU-GPU systems remains an open research area.
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