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Abstract—Bid-centric service descriptions have the potential to
offer a new cloud service provisioning model that promotes porta-
bility, diversity of choice and differentiation between providers.
A bid matching model based on requirements and capabilities
is presented that provides the basis for such an approach.
In order to facilitate the bidding process, tenders should be
specified as abstractly as possible so that the solution space is
not needlessly restricted. To this end, we describe how partial
TOSCA service descriptions allow for a range of diverse solutions
to be proposed by multiple providers in response to tenders.
Rather than adopting a lowest common denominator approach,
true portability should allow for the relative strengths and
differentiating features of cloud service providers to be applied
to bids. With this in mind, we describe how TOSCA service
descriptions could be augmented with additional information in
order to facilitate heterogeneity in proposed solutions, such as
the use of coprocessors and provider-specific services.

Index Terms—Cloud Computing, Service Description Lan-
guage, TOSCA, Bid-Centric

I. INTRODUCTION

Cloud service description languages are at an early stage
of development and adoption. Nevertheless, technologies and
standards are emerging that allow for abstract descriptions
to be instantiated in a portable fashion on multiple cloud
providers. This process occurs by mapping the service topol-
ogy specified in the service description to the resource
types, such as virtual machine specifications, available at the
provider. The required resources are then provisioned and
configured as necessary to bring the service online. However,
the current state of the art is to adopt a lowest common denom-
inator approach where only the generic features commonly
supported by cloud providers are assumed.

In reality, the cloud providers’ offerings are anything but
generic, with competition spurring innovation and differenti-
ation. Apart from their low-level Infrastructure-as-a-Service
(IaaS) offerings, many providers offer additional services –
such as object stores, e-mail, messaging and monitoring –
that can be used in place of equivalent services running on
virtual machines provisioned directly by the client. Higher-
level services such as Amazon Elastic MapReduce can replace

entire clusters of directly-provisioned virtual machines. Some
providers allow for coprocessors, such as GPUs, to be attached
to and used by virtual machines. This trend is expected to
accelerate in the future, allowing for a variety of heterogeneous
computing resources to be used by cloud services.

Rather than ignoring the diversity amongst cloud providers,
it can be advantageous to embrace it. Using a provider’s
service for generic functionality, such as monitoring and
database hosting, might be cheaper and more reliable than
running a dedicated virtual machine. Other features, such as
automated backups and scalability, might also make them
attractive alternatives to providing the equivalent functionality
directly as part of the service deployments. Compute-intensive
services, such as genomics applications, may be able to take
advantage of coprocessors if they are available.

The desire to maintain service portability through abstract
service descriptions stands in conflict with the desire to take
advantage of provider-specific services. We propose that this
issue can be addressed by introducing a bid-centric provision-
ing model. Under this approach, services are partially specified
and submitted as a tender to multiple cloud providers, or to
some brokers acting on their behalf. The partial description
may then be fleshed out by each service provider based on the
resources and services available, resulting in one or more bids.
Each bid represents a complete service description that can be
deployed with the corresponding provider when a winning bid
is chosen. A sketch of our proposed bid-centric provisioning
model is presented in Section II. The bid-centric provisioning
model, although independent, is motivated by the concept of
self-organizing clouds, where autonomous resources configure
themselves to form responses to bids. A generalized bid
matching model is presented in Section III that can be applied
to both scenarios.

In order to make the bidding model a reality, some method
of describing tenders and bids is required. We argue that the
existing TOSCA service description standard can be used to
fulfill both roles. Section IV gives a brief overview of the
current state of the art for service description languages. In
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Section V we outline how TOSCA service descriptions can
be used as the basis for a bid-centric provisioning model.
Section VI describes how partial TOSCA service descriptions
can be used to implement a bidding process that promotes
diversity amongst the resulting bids. Section VII examines how
the flexible tagging mechanism included in the TOSCA XML
schema can be leveraged to include additional information
that would allow for the bidding process to be opened up
to include heterogeneous resources as coprocessors. Some
simulation results based on our proposed bidding model are
presented in Section VIII. Related work is examined in Section
IX. Finally, our conclusions and future work are presented in
Section X.

II. BID-CENTRIC CLOUD PROVISIONING MODEL

Traditionally, cloud resources have been provisioned using
a direct purchasing model. Under the simplest scenario, cus-
tomers purchase directly from a provider that they trust. This
approach has the advantage of a rapid turnaround time and
minimal evaluation effort, at the cost of ignoring potentially
better offerings from rival providers. A more structured and
involved evaluation process often begins with a research
phase that gathers information on various providers’ offerings
through analysis of technical specifications, SLAs and pricing
plans. The requirements of the service under consideration
are then mapped to the offerings of the various providers,
resulting in a number of potential instantiations of the service.
A scoring mechanism is then used to decide which potential
instantiation is best, using either a single parameter such as
cost, or a more nuanced method such as a comparison table.
The highest scoring instantiation may then purchased from the
corresponding service provider. This approach places a burden
on the customer, who must gather the information required
to make an informed decision, then manually carry out the
evaluation process.

In contrast, a bid-centric model would allow for the informa-
tion gathering processing and the specification of potential in-
stantiations to be performed externally, allowing the customer
to focus on the service specification and the evaluation of
the potential instantiations. This is achieved by following the
tendering process as described in the Procurement literature
[1]:

1) The procurer drafts a tender describing a lot and dis-
seminates it to suppliers.

2) Each supplier returns zero or more bids in response to
the tender.

3) The procurer evaluates the bids and chooses a winner if
all necessary conditions are met.

4) If a winning bid is selected, it is purchased from the
corresponding supplier.

In a Cloud Computing context, the roles of procurer and
supplier map directly to the concepts of cloud consumer and
cloud provider as defined by NIST [2], and the lots being ten-
dered are cloud service instantiations. A suitable mechanism is
required for for describing services as tenders. Additionally, a
corresponding mechanism must be found for describing bids in

unambiguous terms so that they can be evaluated objectively.
Rather than developing new service specification formats for
this purpose, we argue that the existing TOSCA format can
represent both tenders and bids if used appropriately. We note
that other specification languages exist but few, if any, offer
the advantages of TOSCA for capturing the bid-centric model.

Once suitable representation formats have been found for
tenders and bids, the issue arises of how to conduct the
procurement process. Ideally, the consumer would contact
potential providers directly in order to notify them of the
tender using a web service or some other suitable business-
to-business communication method. There are two obvious
drawbacks to this approach: it leads to a chicken-and-egg
problem in terms of adoption, and the tender will only
reach providers that the consumer is aware of. Alternatively,
a brokerage service could be created that maintains a list
of providers and contains sufficient knowledge about them
to create bids on their behalf. This approach addresses the
adoption issue but necessitates the creation of the brokerage
service itself, and requires that the brokerage service maintains
up-to-date information about the various provider offerings.

The broker concept could be extended to embody both of the
previous approaches by forwarding tenders to providers that
accept them but constructing bids itself on behalf of those
that don’t. This hybrid approach has the advantage of cen-
tralizing knowledge about the number of available providers,
and their capabilities, while still allowing for providers to use
internal information to construct bids. At the simplest level,
this internal information could include up-to-date pricing and
utilization data. However, more exotic schemes are possible,
in particular the use of self-organization techniques to respond
to individual tenders [3]. We see this as an important future
direction because it creates a new delivery model for Cloud
Computing that augments the traditional IaaS, PaaS, and SaaS
models.

After all the bids for a tender have been assembled, some
mechanism for choosing a winner is required. As noted
above, the evaluation process can become involved if multiple
parameters are under consideration. A simple solution would
be to present the customer with a table summarizing the values
of parameters of interest for each bid. This approach has the
benefit of simplicity but relies on human judgment, which may
not be appropriate in all cases. An alternative would be to
provide a decision support mechanism that uses a more formal
process or, in the extreme case, for the system to automatically
accept a bid if it meets a threshold of objectively specified
criteria. As a starting point, a large body of related work is
available on the use of structured decision making processes
to evaluate bids [4].

III. BID MATCHING MODEL

Next, we present a generalized capability-based bid match-
ing model that can be used by suppliers to decide what bids, if
any, should be submitted in response to tenders. Without loss
of generality, this model can be used to implement the bid-
centric cloud provisioning model described above. It could



also form the basis of a self-organization model for cloud
resources in response to service requests. The requirements
of procurers and capabilities of suppliers are described by m
attributes, A1,A2, . . . ,Ai, . . . ,Am, where each attribute has
at most p possible realizations

Ai = (ai,1, ai,2, . . . , ai,j , . . . , ai,p). (1)

In a Cloud Computing context, examples of attributes might
include: system architecture with 32- and 64-bit realizations;
the presence of CUDA-compatible GPUs, with the realizations
being individual GPU card models; or, TOSCA node types,
with the realizations being TOSCA node type implementa-
tions. Supplier Sk is described by an m× p capability matrix

Ck =



ck1
...
cki
...
ckm

 cki = (cki,1, . . . , c
k
i,j , . . . c

k
i,p)

and cki,j =

{
1 if aij is supported for Ai

0 otherwise. (2)

A tender T n is described by an m× p requirement matrix

Tn =


rn1
...
rni
...
rnm

 rni = (rni,1, . . . , r
n
i,j , . . . r

n
i,p)

and rni,j =

 1 if rij is desired for Ai

0 if rij is not desired for Ai

−1 if rij is not specified for Ai.
(3)

The matching vector for supplier Sk and tender T n is

µk,n =
(
µk,n
1 , . . . , µk,n

i , . . . , µk,n
m

)
with µk,n

i = cki · rni . (4)

The matching vector µk,n can be used by supplier Sk to decide
if it should submit a bid for tender T n. The number of nonzero
components of µk,n indicates the number of attributes that Sk
can satisfy and the number of zero components indicates the
number of attributes it cannot satisfy.

A. Example

Consider the case when m = 3; we have three attributes
A1,A2,A3. There are at most four realizations of each at-
tribute, p = 4. We assume that Sk offers: a1,1 and a1,2 for
A1; a2,3 for A2; and a3,1 and a3,3 for A3; the tender T n

demands: a1,1 or a1,2 for A1; a2,1 or a2,4 for A2; and it is
satisfied with any choice for A3. Then

Ck =

 1 1 0 0
0 0 1 0
1 0 1 0


and

Tn =

 1 1 0 0
1 0 0 1
−1 −1 −1 −1


thus, the matching vector is

Mk,n = (2 0 − 2).

Supplier Sk is able to provide two desired realizations for at-
tributes A1 and substitute two choices for A3; it cannot satisfy
A2. Therefore, no bids should be placed in this instance.

B. Bid Quantification

In order to estimate the size of the potential solution space
for a tender, it is useful to quantify various attributes of the
bid matching process. The number of unspecified attributes of
tender T n is

νn =
1

2p

m∑
i=1

p∑
j=1

(| rni,j | −rni,j). (5)

Given N suppliers the probability that a randomly selected
supplier Sk supports realization aij for attribute Ai is

P k
i,j =

κki,j
N

κki,j =

N∑
k=1

cki,j , (6)

where κi,j is the number of suppliers supporting realization
aij for attribute Ai. The probability that a random tender T n

in a series of M tenders is satisfied with the realization ai,j
for attribute Ai is

Qn
i,j =

1

M

M∑
n=1

| rni,j | (7)

if we assume that T n can accept any realization of the attribute
Ai if it does not either specify or reject the realization ai,j
of Ai. The probability that a random tender T n in a series of
M tenders is satisfied by a randomly selected supplier Sk in
a set of N suppliers is

VM,N =

m∏
i=1

p∏
j=1

P k
i,jQ

n
i,j . (8)

IV. CLOUD SERVICE DESCRIPTION LANGUAGES

Several service description languages (SDLs) are available
that allow various aspects of services to be described. Some
are specific to Cloud Computing, while otehrs are more
generalized. A survey by Sun et al. found that the available
SDLs exhibit wide variety in the level of abstraction used for
service descriptions, semantic expressibility and their service
coverage [5]. Most languages lack support for the different
cloud deployment models (such as public, private and hybrid),
each of which comes with its own requirements, restrictions



and dependencies. Each language tends to specialise in a
particular area, such as operational, business or technical. In
general, they lack a comprehensive specification model that
covers disparate cloud resources, specific interaction interfaces
and the actors involved in the service lifecycle (such as the
service owners, consumers, and providers). We have found
that the most comprehensive coverage of all aspects of cloud
service deployments can be captured by using TOSCA and
USDL in tandem. Together, they can capture the details of both
the operational and business sides of a service, respectively.

A. TOSCA

TOSCA (Topology and Orchestration Specification for
Cloud Applications) [6] is a cloud service standard by the
Organization for the Advancement of Structured Information
Standards (OASIS). TOSCA allows a service to be speci-
fied by an XML document that describes its topology, its
components, and their relationships. Graphical editors are
available that assist with the creation of description documents
[7]. Service components are modelled as nodes, which can
represent software components as well as physical or virtual
machines. Multiple nodes are typically used to describe a host
and the software stack running on it. A key feature of the
TOSCA model is that each node has one or more capabilities
and one of more requirements. Nodes are connected together
my matching requirements to capabilities, allowing for a
loosely coupled design-by-contract model where nodes can be
replaced by others with the same capabilities. The relationship
between the nodes always has a source and a target and can
have optional relationship constraints, such as depends on
and hosted on. Multiple hosts can be abstracted into tiers
to facilitate horizontal scalability and failover mechanisms.

TOSCA allows for service lifecycle management to be spec-
ified by providing functionality for service creation, updates
and termination. These so-called plans are defined as process
models, i.e., a workflow of one ore more steps. TOSCA relies
on the established BPMN and BPEL standards to describe
these workflows, but other languages can be used if desired.
The implementation of the components of a plan is not fixed
and can include shell scripts or configuration management
scripts for tools such as Puppet or Chef. It is also possible to
specify non-functional behaviour, such as SLAs. In TOSCA
terminology, these are referred to policies. Policies can also
include monitoring behaviour, payment conditions, scalability
or availability. The policies can be assigned to the whole
service topology or individually to nodes. TOSCA applications
are packaged as Cloud Service Archives (CSARs), which are
ZIP files containing TOSCA definition files, plans and other
resources required to deploy the service.

B. TOSCA and USDL

The Unified Service Description Language (USDL) [8] is
a service description standard developed as a collaboration
between several international research institutes, each of which
contributed expertise from different backgrounds, such as
Business, SLAs, Security and Computer Science [9]. The

chief design objectives were conceptualization and modularity.
The various service aspects are organized into packages,
each of which represents a USDL module. Together, these
modules model the business, operation and technical aspects
of services.

Cardoso et al. evaluated the extent to which USDL and
TOSCA could be combined to link the description and man-
agement of cloud services [10]. Whereas USDL can be used
to enhance the service description for service discovery and
selection, TOSCA helps service providers to automate the
deployment and management of services. This allows for the
creation of service marketplaces where service templates can
be purchased and deployed to any one of a number of service
providers. The combination of the two standards also allows
for partial automation of the lifecycle management, such as
discovery, selection, deployment and management. Under this
scenario, different service level objectives can be specified for
service templates, with the service topology specified using
TOSCA and the SLA defined using USDL. Services specified
in this fashion can cover a wide range of use cases and service
types without compromising interoperability, portability or
reversibility.

V. BID-CENTRIC SERVICE DESCRIPTIONS

As noted above, TOSCA can be used to completely specify
the resources required to deploy a cloud service, from appli-
cation software at the top level down to operating systems and
virtualized resources. Consider the two tier service description
outlined in the TOSCA Primer [11] depicted in Figure 1. In
the web tier, the application, web server, operating system and
virtual machine are specified. Similarly, in the database tier the
schema, database management system, operating system and
virtual machine are specified. This completeness of description
allows for services to deployed in a portable fashion across
multiple cloud providers.

However, the portability afforded by complete service de-
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scriptions comes at a cost: by fully specifying all aspects of
the service deployment, the diversity of potential solutions is
curtailed. Individual providers could differentiate in a number
of ways, given the opportunity to do so:

• A provider might have PaaS offerings that could be sub-
stituted for some service requirements, such as web host-
ing and database management. For example, Amazon’s
Relational Database Service (RDS) could be substituted
for the database virtual machine specified in the service
description in Figure 2. Substituting a provider-specific
offering might lead to improved cost, availability and
scalability.

• A provider might have heterogeneous computing re-
sources, such as GPUs, MICs and FPGAs, available
as coprocessors. Application code may be able to take
advantage of these if they are available.

• A provider may offer additional functionality, such as de-
tailed monitoring or backup services. It may be desirable
to avail of this additional functionality if it is available.

In general, the portability of complete service descriptions
is achieved by targeting the lowest common denominator in
terms of functionality across service providers. In a bidding
scenario, this prevents providers from differentiating based on
their individual offerings. Furthermore, curtailing the solution
space places limits on the novelty and diversity of the resulting
bids. In contrast, a bid-oriented approach to describe services
should strive to be as minimal as possible in order to allow for
a wide range of potential solutions, and hence potential bids.
Using the TOSCA service model, this “opening up” of the
solution space can be achieved by partially specifying service
descriptions so that they contain the minimum information
required for a successful deployment, allowing for bids that
fill in the blanks. This approach is described in Section VI. The
solution space can be opened up further by enhancing service
descriptions with additional information that provides hints to
bidders about the range of acceptable solutions. In Section
VII we examine how this can be accommodated within the
TOSCA specification.

VI. PARTIAL SERVICE DESCRIPTIONS AS TENDERS

The TOSCA service description model centres around tiers,
each of which is composed of nodes that have requirements
and implement capabilities. Nodes represent composable ser-
vice components. The top-level node of each tier typically
has requirements. Requirements are met by adding nodes
that provide the corresponding capability. However, nodes
providing capabilities may in turn introduce transitive require-
ments. Dependencies may also exist between nodes in different
tiers. As such, the process of creating a complete service
description involves starting with one or more top-level nodes
and iteratively adding nodes and tiers until all requirements
are matched with corresponding capabilities.

TOSCA’s requirements and capabilities model is powerful
as it allows for a clean separation between service components,
promoting modularity. The dependency relationship acts as a
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Fig. 2. A partial description of a SugarCRM service fully described in Figure
1.

contract, allowing nodes to be substituted with differing im-
plementations provided that required functionality is provided.
In a bid-oriented system it is desirable to open the potential
solution space to as many competing bids as possible. On the
other hand, it is imperative that the resulting bids are capable
of running the desired service. This can be achieved by using
the TOSCA model to specify the minimal set of capabilities
required to successfully deploy the service, while leaving non-
essential capabilities unspecified to promote diversity amongst
bids. The resulting bids would then fill out the unspecified
functionality, resulting in a diverse collection of bids with
differing approaches. However, the service descriptions in
individual bids would be complete, allowing the service to
be deployed when the winning bid is chosen.

From a bid matching perspective, each partially specified
TOSCA node type can be modelled as an attribute Ai as
described in Section III. The rows of the requirement matrix
T n for a tender are defined by the set of partially specified
nodes in the service description. The realizations ai,1, . . . , ai,p
of each attribute are the set of possible implementations across
all cloud providers. The capability matrix Ck for each provider
is defined by the implementations supported for the different
node types.

Figure 2 depicts a partial description of the service fully
described in Figure 1. The building blocks that are necessary
for a successful deployment are specified: the web application
to deploy, the web server and PHP module that it depends
on, and the database containing the required schema. Lower-
level details, such as operating systems and virtual machines,
are left unspecified. This partial service description would be
submitted as part of a tender, and providers would return bids
that satisfy the unspecified dependencies in various ways. If
a provider has web hosting and/or database PaaS offerings,
then these could be used instead of implementations based
on virtual machines. Multiple bids based on virtual machines
could be returned, such as a minimal cost implementation
using a single VM and a high availability configuration with
load balancing and redundancy. Figure 3 depicts a bid for the
tender specified in Figure 2 where integration with the Amazon
Relational Database Service is used place of a tier of virtual
machines running the MySQL DBMS.
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VII. EXTENDED SERVICE DESCRIPTIONS FOR
HETEROGENEOUS RESOURCES

Some software packages, such as the SOAP genomics read
alignment tool [12] and the Cycles 3D rendering engine [13],
can make use of GPUs for acceleration if available. Access
to GPUs is already available from some commercial cloud
providers, such as Amazon, with support also available in the
OpenStack platform [14]. As many integrated core (MIC) ar-
chitectures, such as Intels Xeon Phi, become more widespread,
it has been predicted that software will be increasingly adapted
to make use of these resources given the lower development
effort required compared to GPU acceleration [15]. Although
not widely supported at present, FPGAs are another coproces-
sor type that could be made available to cloud consumers [16],
with technical advances such as partial reconfiguration being
proposed as enabling technologies [17]. More generally, it has
been predicted that coprocessing via heterogeneous computing
resources will be increasingly supported by cloud providers in
the future [18].

The non-uniformity of the coprocessing resources available
at different cloud providers raises the question of how these
can be incorporated into the bidding process. The existence
of cloud service providers with no coprocessing resources
available implies that a lowest common denominator approach
cannot assume that any coprocessing resources are available.
An alternative is to mandate the presence of coprocessors
of a particular type, for example the NVIDIA Tesla M2050
GPUs currently offered by Amazon. However, this approach
constrains the solution space – it may be possible to run the
application unaccelerated (e.g., the Cycles rendering engine) or
it may be possible to accelerate using a number of coprocessor
types, families or models. It is therefore necessary to provide
a mechanism for augmenting the minimal description of a ser-
vice with additional information that invites bids that include
coprocessing resources. From a bid matching perspective using

the model described in Section III, this additional information
has the effect of increasing the number of potential realizations
of each attribute Ai.

A similar issue has arisen in the context of matching jobs
to compute nodes in HPC clusters. The Condor distributed
computing platform has a matchmaking system that matches
jobs to machines capable of executing them [19]. A classi-
fied advertisement (classad) language is used to specify the
characteristics, constraints and preferences of the entities to be
matched. Classads are expressed as a collection of name/value
pairs, with a sophisticated query-like syntax available for
expressing constraint values. The classad matching scheme
has been used to support GPU acceleration, allowing detailed
information such as supported APIs, technical specifications
and characteristics to be matched against1. An example of a
GPU matching classad is provided in Listing 1.

Requirements=HAS_GPU \
&& (GPU_API == "CUDA") \
&& (GPU_NUM_CORES >= 16)

Listing 1. Condor classad excerpt indicating a requirement for a GPU with
at least 16 cores that supports CUDA.

The Condor classad scheme demonstrates that complex
coprocessor capabilities can be expressed and matched against
using a simple name/value pair specification scheme. The
question now arises as to how such a scheme can integrated
with TOSCA service descriptions. Conveniently, the TOSCA
specification includes a mechanism for associating arbitrary
name/value pairs with the definitions of services, node types,
and node type implementations (see Listing 2). By annotating
node types definitions with tags describing supported copro-
cessors, detailed acceleration capabilities can be expressed
while remaining within the confines of the TOSCA specifi-
cation. Bidders could then take advantage of this information
when responding to tenders.

<NodeType name="xs:NCName"
targetNamespace="xs:anyURI"?
abstract="yes|no"? final="yes|no"?>

<Tags>
<Tag name="xs:string" value="xs:string"/> +

</Tags> ?

Listing 2. Excerpt from the TOSCA XML schema definition. Arbitrary
name/value pairs can be associated with node types.

Listing 3 provides an example of how such a scheme
might work in practice. The presence of gpu.support
tag with optional value indicates that this node type can
be accelerated with a GPU if available, but that a GPU
does not need to be present for the node type to function.
The gpu.cudaSupport and gpu.minCudaVersion in-
dicate that CUDA versions 3.0 and greater are supported.
The gpu.minNumCores and gpu.maxNumCores tags
indicate the number of GPU cores that can be usefully
employed, indicating which models are most appropriate.
The gpu.multiCardSupport indicates that the required
number of cores can be made up by attaching multiple
cards. Suitable tags could be included for specifying particular

1See the “How to Manage GPUs” entry in the HTCondor Wiki.



GPU families and models. Tags could also specify memory
charecteristics, such as the amount of memory per card and
the memory type (such as GDDR version and ECC support).

<Tags>
<Tag name="gpu.support" value="optional"/>
<Tag name="gpu.cudaSupport" value="true"/>
<Tag name="gpu.minCudaVersion" value="3.0"/>
<Tag name="gpu.minNumCores" value="448"/>
<Tag name="gpu.maxNumCores" value="5000"/>
<Tag name="gpu.multiCardSupport" value="true"/>

</Tags>

Listing 3. Proposed TOSCA node type tags for GPU acceleration

Similar tagging schemes could be put in place for other
coprocessor types, such as MICs and FPGAs. The attributes
for specifying MIC support would be similar to those for GPUs
given the similarity in their characteristics. However, attributes
for FPGAs would need to be more specific, given the fact that
the place-and-route process is typically targeted to a particular
FPGA model.

VIII. SIMULATION RESULTS

We now report on the results of simulation experiments
based on the model introduced in Section II. In our simulation
a tender can be described by up to m = 50 attributes and there
are p = 10 possible realization of each attribute. The N = 100
suppliers provide 105 bids for the 1, 000 tenders. We display
the success ratio and group the tenders in bins of 2, 000 and
the average number of unspecified attributes in bins of 20 for
several capability and requirement matrices.

In the first experiment, the probability that the supplier Sk

supports attribute aki,j for Ck is uniformly distributed in the in-
terval [0.1, 0.8]; the number of unspecified attributes of tender
Tn is uniformly distributed in the range of [2,6]. Figures 4(a)
and (b) show the average success ratio and the average number
of unspecified attributes displayed, respectively. In the next
two experiments, see Figures 5 and 6, the attributes are
uniformly distributed in the intervals [0.3, 0.8] and [0.5, 0.8],
respectively.

These results show that in the first experiment the average
success rate is very low, in the 2− 10% range due to the low
average probability p̄(ai) = 0.45 that a server supports a given
attribute. As this average increases to 0.55 and then to 0.65
the range of the success ratios are much higher, [19 − 26%
and 79− 83%, respectively. The distribution of the number of
unspecified attributes seems to be invariant.

IX. RELATED WORK

ABACUS [20] is a resource management framework that
allows for cloud service differentiation based on job charac-
teristics. Each job submission has an associated budget and
utility function. The utility function is used to indicate the
benefit accrued by allocating the job to sets of resources.
When resources become available, these parameters are used
to decide which outstanding job they will be allocated to.
Experimental results based on a MapReduce use case are
presented.

Shi et al. present an electronic auction platform for cloud
resources based on a continuous double auction mechanism
[21]. The platform uses trading rounds to match bids from
consumers with asks from cloud service providers. A two stage
game bidding strategy is also presented. Song et al. present
another market model based on combinatorial auctions [22].
This model allows for collaboration between service providers
when creating bids. Service providers can autonomously find
partners and create groups that increase their competitive
power and hence improve their chances of submitting a
winning bid.

The MODAClouds project [23] seeks to develop a a model-
driven approach for the design and execution of applications
across multiple clouds. Under this approach, applications are
developed at a high level that abstracts the capabilities of the
clouds that may be targeted during deployment. These high-
level specifications are then semi-automatically translated to
run on multiple cloud platforms, allowing for flexibility in
terms of cost, risk and quality of service.

X. CONCLUSIONS AND FUTURE WORK

Rather than focusing simply on the functionality of the
service descriptions, future work will consider the inclusion
of service level objectives, such as cost and response time,
as bid criteria. A large body of existing work is available on
the topic of machine readable SLAs and automated SLA ne-
gotiation [24], [25]. By combining existing machine-readable
SLA technologies such as WS-Agreement and SLA*, it should
be possible to incorporate SLA negotiation into the bidding
process.

Many cloud services are not mapped to a static set of
resources for the operational phase of their lifecycle – the
on-demand nature of cloud computing allows them to scale
the resources used in response to demand. The issue of
incorporating elasticity into TOSCA service descriptions and
the TOSCA runtime have already been addressed by the
ElasticTOSCA project [26]. Future work will examine how
elasticity can be incorporated into the tendering and bidding
processes.

The question of bid evaluation by consumers will also
be examined through the application of formal evaluation
techniques such as the analytic hierarchy process [27]. This
would allow for objective evaluation based on the consumer’s
particular preferences. This preference information could also
be incorporated into the tendering process, allowing service
providers to tailor their bids to the individual requirements of
the consumers.
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Fig. 4. aki,j uniformly distributed in [0.1 0.8]. (a) Average success ratio of tenders. (b) Average number of unspecified attributes for tenders.
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Fig. 5. aki,j uniformly distributed in [0.3 0.8]. (a) Average Success rate of tenders. (b) Average number of unspecified attributes for tenders.
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Fig. 6. aki,j uniformly distributed in [0.5 0.8].(a) Average Success. (b) Average number of unspecified attributes for tenders.
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