
A Symbolic Approach to Permission Accounting for Concurrent Reasoning

Marieke Huisman and Wojciech Mostowski

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
Email: {m.huisman,w.mostowski}@utwente.nl

Abstract—Permission accounting is fundamental to modular,
thread-local reasoning about concurrent programs. This paper
presents a new, symbolic system for permission accounting.
In existing systems, permissions are numeric value-based and
refer to the current thread only. Our system is based on
symbolic expressions that provide a view of permissions for
all relevant threads in the scope of the permission originator –
current thread or a lock. This enables: (a) better understanding
of permission tracking for the specifier, (b) more natural
specification of complex permission transfer scenarios, and
(c) more efficient reasoning for verification tools (in particular,
no reasoning about rational numbers is required). Our system
is based on symbolic permission slicing to divide permissions
between multiple owners, and on tracking the history of per-
mission transfers by means of “I-owe-you” chains of permission
owners. We axiomatised our permission system in the KeY
verifier as well as in PVS, and proved correct with both
tools a list of vital properties about our permissions. KeY
is an interactive verification tool for Java and our primary
target to employ our permission system. First results with the
verification of concurrent Java programs using our permission
system in KeY are also reported.

Keywords-permission accounting; fractional permissions; in-
teractive verification; formal specification; Java

I. INTRODUCTION

Permission accounting [1] is the essential factor in thread-

local reasoning about concurrent programs. In permission-

based verification, programs are annotated with permission

expressions specifying a thread’s access rights to each

memory location. Verification ensures that all memory ac-

cesses are protected by a corresponding permission: full
permissions grant a write access, partial permissions grant

only a read access, no permission prohibits access entirely.

Soundness of the verification technique ensures that multiple

threads are not allowed to collectively hold more than a

full permission to one memory location at all times. This

ensures that verified programs are free of data races, and

that program specifications are stable, i.e., they cannot be

invalidated by other threads. The main complication for this

approach are synchronisation points, like locks or forked

threads, where permissions are transferred between threads.

The most commonly used approach [1] is to represent a

permission as a rational fraction in the range (0, 1] (or a

related structure [2]), where 0 (resp. lack of permission spec-

ification) denotes no access, 1 denotes full access, and any

fraction denotes read access. Upon synchronisation points,

permissions can be split (by division) and recombined (by

addition). The main challenge with fractions is to be able to

combine read permissions back to a write (and only a write)

permission where necessary, as this requires high-precision

specifications and reasoning.

The main contribution of this paper is an alternative and

more flexible permission model, which is fully symbolic and

can be used to specify complex synchronisation scenarios.

In essence, symbolic treatment of permissions is achieved

by specifying what kind of transfer is applied to a per-

mission and between what parties, instead of specifying

how much of the permission is transferred. This relieves

both the specifier and the verification tool of the need to,

respectively, specify and reason about concrete fractions,

which requires dedicated complex decision procedures in

first-order reasoning [3]. To specify complex synchronisation

scenarios such as Java threads with multi-join possibilities,

and latches [4], the system tracks the permission originators
in the permission expressions, which can be used to deter-

mine the permission return path. To handle all scenarios,

under certain conditions, it is allowed to modify this return

path. Section II provides two examples that illustrate these

main characteristics of our permission system. The formal

description of our permission system is provided in Sects. III

and IV.

The context of our work is the VerCors project1 [5],

targeting the functional verification of concurrent data struc-

tures. The base for VerCors is our own version of separation

logic with permissions [6]; we specify programs with Java

Modeling Language (JML) [7]; and we provide tool support

for this combination. For automated tool support we encode

verification problems to the Silver language and use the Sili-

con verifier [8]. For interactive verification, we are currently

adopting the KeY tool2 [9], a user-friendly interactive verifier

for Java, based on dynamic logic. This entails extending the

KeY verifier with permission accounting, thus we formalised

our new permission system in the KeY logic. We also proved

some permission properties with KeY, but as KeY does not

support induction over data types, we could not prove the

properties in their most general form. Therefore, we also

formalised our permissions in PVS [10] and proved the most

general properties correct with PVS. These properties and

their formalisation are described in Sects. V and VI.

1http://fmt.cs.utwente.nl/research/projects/VerCors/.
2http://www.key-project.org/.

14th International Symposium on Parallel and Distributed Computing

978-1-4673-7148-3/15 $31.00 © 2015 IEEE

DOI 10.1109/ISPDC.2015.26

165

Note that our permission model itself is language-inde-

pendent, it can be used for any concurrent programming

language with some means of synchronisation. It has to

be, however, appropriately integrated into the corresponding

program logic. In Sect. VII we very briefly show how this

is done for the dynamic logic used by KeY to verify Java

programs and we discuss another example that also attempts

to show the relationship between our permission system and

the classical fractional approach. The theories and examples

from this paper are available on-line [11].

II. SYMBOLIC PERMISSIONS IN A NUTSHELL

Some of the shortcomings associated with using fractions

for permissions have been already described in the context

of the Chalice verifier for an idealised concurrent lan-

guage [12]. In essence, the problematic points are reasoning

about rational fractions [3] and the necessity to provide

concrete fractions (or relative amounts [13]) in specifica-

tions. Real programming languages bring further challenges,

such as re-entrant locks and other complex synchronisation

methods, like count-down latches [4] in Java. To provide an

intuition how permissions can be treated symbolically, this

section discusses two examples. The first one describes the

most basic case of a permission transfer between a thread

and a lock. The second one is a verification scenario with

multi-joined threads. Although fractions can still be used to

provide a sufficient specification for this second example, it

suffers from two drawbacks that we demonstrate with this

example. In both examples, we keep the specifications and

programs down to a bare minimum to only show the essen-

tials of symbolic permissions; realistic specifications have to

account for many other aspects of concurrent verification,

this is discussed more in Sect. VII.

Simple Read and Write Resource Locking: A basic sce-

nario for permission-based reasoning is when a resource

(access to a memory location, in Java an object field o.f)
is guarded by a lock. Acquiring the lock transfers either

a partial or a full permission from the lock to the locking

thread and allows that thread to, respectively, read or write

the location. Releasing the lock transfers the permission back

to the lock. In Fig. 1 the lock l provides a write access

to o.x and a read access to o.y. For the specification of

fractional permissions we use Perm(l, p) propositions that

state the amount of permission p assigned to a location l.
As in concurrent separation logic [6], only locations that are

provided by the specification can be used by the method.

Otherwise, we use JML syntax [7] for specifications.

Symbolic Permissions: To avoid fractions, we keep track

of permission owners given by thread identifiers. In the con-

text of Java, these are object references, but other identifiers

could be used, e.g., integers. Just for this first example,

consider our permissions to be lists of permission owners

– threads or locks. New owners receive their permissions

by either being added to this list (to gain shared access),

class Client { . . .
l.lock(); // produces Perm(o.x, 1) and Perm(o.y, 1

2)
o.x = o.y; // write o.x, read o.y
l.unlock(); // consumes Perm(o.x, 1) and Perm(o.y, 1

2)
. . . }

class Lock {
//@ requires !locked; ensures locked;
//@ ensures Perm(o.x,1) ∗∗ Perm(o.y, 1

2);
void lock();

//@ requires Perm(o.x,1) ∗∗ Perm(o.y, 1
2);

//@ requires locked; ensures !locked;
void unlock(); }

Figure 1. The use of a simple lock and its fractional-style specification.

or replacing existing owners (to fully take over access of

another owner). When permissions are returned a reverse

operation is applied. Each element in the list is a permission

slice. Each permission slice gives partial access right to one

owner and if all slices in the permission refer to the same

owner, that owner has a full access right (i.e., identical

permissions slices can be merged). Thus, in our approach

the permission keeps a view of which other owners (threads)

have potential rights associated with the permission.

For our example in Fig. 1, prior to locking, the view on

the permissions to both o.x and o.y is that they completely

belong to the lock object l. We denote this with the list [l].
Upon locking, the permission to o.x is completely transferred

to the currently running thread ct, i.e., l is replaced by ct
and the permission becomes [ct] meaning that the current

thread fully owns this permission. The permission to o.y is

transferred to ct only partially by first slicing the permission

[l] into [l, l] and then transferring one of the slices to ct. This

permission becomes [ct, l] meaning that the current thread

owns one slice of this permission and that further permission

transfers from the lock are still possible based on the l slice

that the lock still owns. Upon unlocking, the permissions are

returned to the lock by replacing the current thread object

ct in the list with the lock object l, leaving the permission

to o.x at [l] again, and the permission to o.y at [l, l], which is

equivalent and can be merged into [l].
For the specification, using functional style expressions

rather than separation logic style, through the respective

postconditions we state how the permissions to o.x and o.y
change when lock and unlock are called. We use one return

function retPerm and two transfer functions transPerm
and transPermSplit for a complete and slicing transfer,

respectively. We define these functions formally in Sect. IV.

They all take two (from and to) owners and the permission as

arguments, and return a new permission. Figure 2 shows this.

Thread Multi-joining with Fractions: The second example

illustrates the need to additionally keep track of to whom

each permission slice is owed, i.e., the permission origina-

tors. Consider the two threads and the client code in Fig. 3.

166

class Thread1 { Client c;
2 //@ requires Perm(c.a, 1

2);
//@ ensures Perm(this.join, 1);

4 void start();

6 //@ requires Perm(this.join, p);
//@ ensures Perm(c.a, p

2);
8 void join();

10 void run() {
. . . = c.a; // read c.a

12 } }

class Thread2 { Client c; Thread1 t1;
2 //@ requires Perm(t1.join, 1

2);
//@ ensures Perm(this.join, 1);

4 void start();

6 //@ requires Perm(this.join, p);
//@ ensures Perm(c.a, p

4);
8 void join();

10 void run() {
t1.join(); // get read access from t1

12 . . . = c.a; // read c.a
} }

class Client { int a;
2 void main() {

Thread t1 = new Thread1(this);
4 Thread t2 = new Thread2(this, t1);

t1.start();
6 t2.start();

. . . = this.a; // read this.a
8 t1.join();

t2.join();
10 this.a = . . .; // write this.a

} }

Figure 3. Multiply joined thread annotated with fractional-style permissions.

class Client {
. . . // Perm(o.x), Perm(o.y) are [l]
l.lock(); // Perm(o.x) becomes [ct], Perm(o.y) becomes [ct, l]
o.x = o.y; // [ct] → write access, [ct, ·] → read access
l.unlock(); // Perm(o.x) becomes [l], Perm(o.y) becomes [l, l]
. . . }

class Lock {
//@ ensures Perm(o.x) == transPerm(this, ct, \old(Perm(o.x)));
//@ ensures Perm(o.y) == transPermSplit(this, ct, \old(Perm(o.y)));
void lock();

//@ ensures Perm(o.x) == retPerm(ct, this, \old(Perm(o.x)));
//@ ensures Perm(o.y) == retPerm(ct, this, \old(Perm(o.y)));
void unlock(); }

Figure 2. Simple lock specified with symbolic permissions.

Here permissions are transferred upon thread forking (the

start method) and thread joining. The code that is executed

asynchronously by the forked thread is contained in the run
method. In this example the Client class passes on a partial

permission granting a read access for this.a to thread t1. The

client itself maintains a read permission. It also allows thread

t2 to get a read permission to this.a, but only transitively by

allowing thread t2 to join thread t1 (by passing a special join

permission) and effectively get the permission to read this.a
from t1. After all the threads are joined (thread t1 twice, by

the client and by t2) the client code is again allowed to write

this.a by holding a complete permission to it.

This scenario is specifiable with fractional permissions as

shown in the annotations in Fig. 3. The essential part here

is a so-called join token [14] – a fractional permission to

join a thread that captures what part of the initially acquired

permission should be returned to the joining thread. Splitting

the join token between different threads allows these threads

to join the same resource and acquire a corresponding

partial permission to the resource depending on how much

permission to the join token the joining thread has left. For

instance, the specification of Thread1.start (lines 2–3 on the

left in Fig. 3) states that upon forking, the thread transfers

half of the permission to c.a. When the thread is joined

(specification at lines 6–7) the corresponding part of this half

Perm → this.a t1.join t2.join
thread initialisation 1 — —

t1.start(); 1
2 1 —

t2.start(); 1
2

1
2 1

read this.a (OK) 1
2

1
2 1

t1.join(); (p = 1
2) 1

2 + 1
4 — 1

t2.join(); (p = 1) 1
2 + 1

4 + 1
4 — —

write this.a (OK) 1 — —

Figure 4. Verifying fractional permissions.

is returned based on the current amount of the permission

p to the join token. In particular, if the join token is not

split (p is 1), the complete 1
2 permission to c.a acquired on

start is returned on join. The consistency of this permission

flow is checked by verifying the run method with the start’s
precondition and join’s postcondition.

When verifying the client code given the specifications

of Thread1 and Thread2, all parametric permissions are

assigned concrete values and the permission flow for the

client is traced as shown in Fig. 4. The run method of

Thread2 that also joins t1 is verified in a similar way.

Although fractional permissions still work for this exam-

ple there are two limitations. The first problem is the need to

specify concrete values. In the specification of Thread2.join
one has to calculate the permissions to come up with p

4 . This

specification is not modular, in the sense that extending the

client code might (in principle) invalidate this specification,

and in fact, locally this value seems arbitrary. At this point,

one would really like to specify the transfer of all eligible
permissions. The second problem is the use of the join

token to implicitly store and track the permission amounts to

c.a. We only specified one actual memory location using a

permission, and we used two entire join tokens of threads t1
and t2 to track this permission in our program. In effect, the

information about one memory location is implicitly tracked

in three different permissions, and the join tokens cannot be

used to track other locations, unless they would have the

same permission flow as c.a. If we wanted to include another

memory location, say, c.b that would be first written by t1,

167

then be written by t2, and then be written by the client again,

we would have to start adding new join tokens for each new

location.
Symbolic Permission Transfers and Debts: In our sym-

bolic permissions we store all the information required

to transfer and reconstruct a single permission within the

permission expression itself, so that each resource can use

a fully independent permission, i.e., permission flow is

specified separately for each location and independently of

other permissions. Compared to the simple lock in our first

example, to allow for more general permission transfers we

need to record the transfer history and introduce the notion

of a debt transfer, as we explain in the following.
On initialisation, a new permission Perm(this.a) (let us

abbreviate it by p) now becomes a two-dimensional list that

contains only ct, denoted [[ct]]. It states that the permission

contains only one slice and this slice belongs to the dis-

tinguished current thread ct only, the first originator of the

permission, without any history of permission transfers. The

inner list is used to keep track of the transfer history of each

slice, i.e., an “I-owe-you” dependency chain. After executing

our client program from Fig. 3, the permission p takes the

following forms after each permission transferring call:

init t1.start(); t2.start();

p : [ct] [t1
ct

ct] [t1
t2
ct

t1
ct

ct]

t1.join(); t2.join();

p : [t1
t2
ct

ct ct
︸ ︷︷ ︸

ct

] [ct ct
︸ ︷︷ ︸

ct

]

The inner lists, showed vertically, are single permission

slices. After initialisation the originator ct is the most recent

owner of the only slice in this permission, meaning that

ct has a full permission to the location. After t1.start,
the permission is split and one of the resulting slices is

transferred from ct to t1. At this point, both threads hold

only a read permission, i.e., they each own one slice and

none of them owns all slices. Additionally we know that

thread t1 owes its share to ct in case the return is requested.

This debt replaces the join token from Fig. 3. The most

interesting transformation of p happens when thread t2 is

forked (t2.start). Instead of transferring any current share of

p directly to t2, part of the debt that t1 has to ct is transferred

from ct to t2. The current thread can do that because it is the

holder of the debt. This transfer of debt effectively means,

from the point of view of the originating current thread, that

t2 now also has the potential right to join t1 to obtain a part

of permission p from t1. This corresponds to the splitting of

the join token specified in Fig. 3 (line 2 in the middle).

Because the debt was split before this transfer, ct still

maintains its right to join t1. This happens in the next step

(t1.join) after which t1 is removed from the top of the middle

slice – the permission is returned from t1 to ct. Permission

p now has two identical ct slices, which can be merged

into one, depicted with an under-brace above. Finally, the

specification of t2.join() should capture that thread t2 joins

t1, and then returns its permission to ct. Consequently, the

current thread regains full write permission p it started with

in the first place, and can write to the associated memory

location. Note that the current thread has also the right

to read this location in between the t2.start()–t1.join() and

t1.join()–t2.join() calls, because it owns one of the permission

slices, ct , at these points, but not all of the slices.

As before, we can specify how p is changed upon thread

forking and joining by applying permission transfer func-

tions to p specifying the from and to threads of the transfer.

Using these functions the start and join postconditions of

threads t1 and t2 are specified as follows, where p is

Perm(c.a):

t1.start(): p == transPermSplit(ct, t1, \old(p));
t2.start(): p == transPermDebtSplit(ct, t2, \old(p));
t1.join(): p == retPerm(t1, ct, \old(p));
t2.join(): p == retPerm(t2, ct, retPerm(t1, t2, \old(p)));

The specification for t1.start states that p is transferred from

the current thread to t1 after first being split, like for o.y per-

mission in the first example. Function transPermDebtSplit
specifies the transfer of the debt as explained above, after

also splitting the permission into two slices first. Again, we

define this function formally in Sect. IV.

The correctness of this reasoning is of course subject to

also verifying the behaviour of both threads t1 and t2. In

particular, for thread t1 we need to show that it does not

modify permission p, and for thread t2 we need to show that

it does indeed join thread t1. In the following we describe

our permission data type more formally.

III. THE PERMISSION DATA TYPE

We assume that all threads can be uniquely identified with

values of some data type. In Java these are instances of the

Thread class. We also assume that the distinguished current

thread is uniquely identifiable in the set of all threads with ct
as above. Furthermore, not only threads can hold ownership

of memory locations, so we generally assume objects to be

permission owners. In particular, locks (see first example)

and other synchronisation objects can also hold permissions.

Thus, the owners are simply Object references.

Our permission data type is a two-dimensional list. One of

these dimensions is a list of owners that represent the current

view of the history of ownership (subsequent originators)

of a particular permission slice. A singleton list represents

the initial owner, and a current new owner is added at the

head of the list (or on top when viewed vertically as in

our second example in Sect. II). No owner list should in

principle be empty, the permissions are always initialised

168

with at least one owner, the first originator. The data type

defining permission owner lists is the following:

OwnerList ::= emptyOwner | owner(Object ,OwnerList).

The other dimension of our permission data type stores

complete permission slices. We use lists again; initially a

permission consists of only one slice, meaning the complete

permission belongs to the owner on the top of the owners list

for that slice. In terms of access rights to some associated

resource, such one slice means a full (write) access. When

there are two or more slices of a permission, this indicates

two or more read rights assigned to, possibly different,

owners. If there are multiple slices, but the owner of all

the slices is the same object, the permission is still a full

permission. The exact definition of predicates establishing

the read and the write permission is given shortly in the

next section. The permission data type is defined as:

Perm ::= emptyPerm | slice(OwnerList ,Perm).

To avoid notational confusion between owner’s lists and

slices we purposely use distinctive names for the two lists’

constructors, i.e., emptyOwner and owner for owner lists,

and emptyPerm and slice for permission slices. Further-

more, using dedicated list structures instead of generic ones

also allows us to provide optimised all-in-one permission

transfer functions, see next. However, generic lists could be

also used to define our permissions, this is what we partly

did in the PVS formalisation discussed later in Sect. VI.

An initial permission assigned to a freshly allocated

memory location is a one-owner one-slice permission that

belongs to the current thread: initFull := slice(owner(ct,
emptyOwner), emptyPerm). From this point on, the per-

mission can be subjected to permission checks to establish

access rights and permission transfers upon entering syn-

chronisation points. Structure-wise, initFull is the minimal

expression that our permissions should take, i.e., there is

always at least one slice and at least one owner of this slice.

IV. QUERIES AND COMMANDS ON PERMISSIONS

Our first query function checks that a given object is an

owner in the owners list. We do this for an arbitrary owner

deep in the list, not only the current owner on the top of

the list. This is to allow operating on the owner list below

the top element to provide the ability to transfer debts as

exemplified in Sect. II. The owner list can be changed only

by the object that is the owner at the given depth. Thus, we

define the predicate checkOwner :

checkOwner : Object × nat ×OwnerList → Bool
checkOwner(o, d, l) :=

l = emptyOwner → false
l = owner(o′, t)→

if d = 0 then o = o′ else checkOwner(o, d− 1, t)

that checks the owner at a given index of the owner list. The

definition is straightforward; the list is traversed to find the d
position at which the element should be equal to the element

o being looked for, while the empty list has no owner.

The readPerm and writePerm predicates check the type

of access the given permission grants. The parameters for

both predicates are the object that we check the access for

and the permission expression. The checking is analogous

to existential and universal quantification, respectively. For

the read access we need to find at least one permission slice

with the current owner equal to the object in question, for

write access all slices need to belong to this object:

readPerm : Object × Perm → Bool
readPerm(o, p) :=

p = emptyPerm → false

p = slice(l, p′)→ checkOwner(o, 0, l)
∨ readPerm(o, p′)

writePerm : Object × Perm → Bool
writePerm(o, p) :=

p = emptyPerm → true

p = slice(l, p′)→ checkOwner(o, 0, l)
∧ writePerm(o, p′)

To define the actual permission transfer functions we first

define operations to add a new owner to a single permission

slice and to return permission slices to their previous owners.

As permission slices can be only mutated by the associated

owners, these two functions are partial, i.e., guarded by the

checkOwner predicate. An owner o present anywhere in

the list can insert a new owner o′ above itself to redirect

ownership returning to this other object o′, i.e., o can transfer

its ownership (d = 0) or debt (d > 0) to o′. When owners

return their permissions, the current rightful owner is simply

removed from the top of the owner list:

insertOwner :
Object ×Object × nat ×OwnerList → OwnerList

insertOwner(o, o′, d, l) := [when checkOwner(o, d, l)]
d = 0→ owner(o′, l)
d > 0 ∧ l = owner(h, t)→

owner(h, insertOwner(o, o′, d− 1, t))

returnOwner : Object ×OwnerList → OwnerList
returnOwner(o, l) := [when checkOwner(o, 0, l)]

l = owner(h, t)→ t

The two quoted functions are used in the top-level permis-

sion slicing and recombining functions used for permission

transfer. Their signatures are the following:

transferPerm :
Bool ×Object ×Object × nat × Perm → Perm

returnPerm : Object ×Object × Perm → Perm

and they are formally defined in Fig. 5. The first parameter

to transfer a permission specifies whether a permission slice

should be first split into two before the transfer. This splitting

169

transferPerm(s, f, t, d, p) :=
p = emptyPerm → emptyPerm
p = slice(l, p′)→
f = t→ p
otherwise→

checkOwner(f, d, l)→
s = true → slice(insertOwner(f, t, d, l), p)
s = false → slice(insertOwner(f, t, d, l),

transferPerm(s, f, t, d, p′))
otherwise→ slice(l, transferPerm(s, f, t, d, p′))

returnPerm(f, t, p) :=
p = emptyPerm → p
p = slice(l, p′)→
f = t→ p
otherwise→

checkOwner(f, 0, l) ∧ checkOwner(t, 1, l)→
l = owner(f, l′) ∧ p′ = slice(l′, p′′)→

slice(returnOwner(f, l),
returnPerm(f, t, p′′))

otherwise→ slice(returnOwner(f, l),
returnPerm(f, t, p′))

otherwise→ slice(l, returnPerm(f, t, p′))
Figure 5. Complete definitions of transferPerm and returnPerm .

differentiates between a complete or a partial transfer, as

discussed in Sect. II. In the first case, the ownership of

all slices is transferred – the current owner gives up its

whole access right, whatever it is, to another object. In the

second case one slice is split into two, and then only one

is transferred to another object – the current owner retains

a partial right and grants a partial right to another object.

The two object parameters to transferPerm are the from
and to objects of the transfer. The integer parameter is the

depth at which the transfer happens to allow for transferring

debts as described above and in Sect. II. Finally, the function

takes a permission and returns an accordingly modified one.

The transfer function is an identity in two cases: when the

object that requests the transfer does not have any rights in

the permission, and when the from and to parameters are

identical.

The returnPerm function also only allows the current

slice owners to return their rights. However, contrary to

transferPerm , permissions are always returned completely,

if possible; the current owner is obliged to give up rights

to all currently owned slices to their originators. This is

to ensure that no permissions are unnecessarily lost during

returns. Upon return identical slices are merged together as

in the examples in Sect. II.

The transfer functions from the examples in Sect. II

correspond to the transferPerm function as follows:

transPermSplit(f, t, p) ≡ transferPerm(true, f, t, 0, p)
and transPermDebtSplit(f, t, p) ≡ transferPerm(true, f,

t, 1, p). The retPerm function from Sect. II has a direct

correspondence to returnPerm . Moreover, our definition of

returnPerm ensures that adjacent identical slices likely to

appear after an earlier split transfer are merged into one,

exactly as we showed in Sect. II where [[ct], [ct]] was merged

into [[ct]]. This allows to keep the permission expressions

short, which should improve reasoning. However, in gen-

eral our functions are not guaranteed to always produce

a completely simplified permission. This does not destroy

the correctness of the system, unreduced expressions can

still be queried to establish the associated access rights

and can be subjected to further transfer operations. Hence,

unreduced expressions may only hinder reasoning efficiency.

In practice, however, most verification scenarios shall only

involve a very limited number of threads or synchronisation

objects, keeping the permission expression limited in size

anyhow and maintaining efficiency in reasoning. For exam-

ple, a typical synchronisation pattern with a simple write

lock would involve one complete permission transfer over a

full permission [[l]] and a subsequent permission return, as

shown in our first example in Sect. II.

V. PERMISSION PROPERTIES

The importance of permission accounting in concurrent

reasoning is that threads verified with respect to permission

specifications are guaranteed to be data-race free. But this

only holds if the permissions themselves and their operations

preserve certain properties. For instance, in fractional style

permissions one has to ensure that no permissions greater

than 1 in value are ever created, or that no two threads hold

more than a full permission to one location. More generally,

one has to ensure that no deficit (“negative” permission) or

surplus (more than a write permission) rights are created

when permissions are transferred.

The second vital aspect of permission properties is to sup-

port efficient reasoning and enable abstraction. All proved

permission properties can be turned into lemmas and subse-

quently used for efficient verification. For abstraction, one

can use facts like “transferring and returning a permission

gives the original permission” in which case the actual per-

mission can be left underspecified by only stating predicates

that hold for it.

Our permission expressions are self-contained. In partic-

ular, objects involved in each permission transfer are stated

and stored in the permission expression. Consequently, many

of the properties we are interested in are easy to establish

independently from a particular verification logic or context.

In fact, some of the properties that we list below seem

trivial. We only list the very crucial properties necessary

to guarantee sound reasoning to establish data-race freedom

and support basic abstraction from concrete expressions, but

other auxiliary properties can be added, especially ones that

can support more efficient reasoning. Hence, the properties

that we concentrate on are the following:

170

1) Initial permission is a full access permission,

2) A write permission is also a read permission,

3) A write permission for one object grants no access for

other objects,

4) A split-transfer of any permission to another object

leaves the permission in a read access state for the

original object, but not in a write access state,

5) Similarly, such a transfer gives the receiver a read, but

not a write access,

6) A complete transfer of permissions strips the original

owner of all rights,

7) Similarly, the receiver gets all the rights that the

original object had,

8) Any debt transfer (d > 0) retains all access for all

current permission owners,

9) Objects not involved in the transfer or return retain all

their access rights,

10) Any transfer followed by a corresponding return re-

tains all original rights.

VI. TOOL FORMALISATION AND PROPERTY PROOFS

We formalised both our permission theory and properties

in a formal language of two theorem provers and used the

associated tools to prove the properties correct. The first

prover is the KeY verification system for Java programs. The

formalisation of the permission system in KeY is necessary

anyhow, as KeY is the primary target to implement our

permissions for verification of concurrent Java programs,

see next section. We used the automated mode of KeY

to show the correctness of parts of properties that can be

established with pure first-order reasoning. However, full

properties require structural induction proofs, which KeY

cannot do in a methodological way. Thus, we also employed

a prover more suited for this task, the Prototype Verification

System (PVS) [10].

The KeY system is based on a first-order dynamic

logic [15] tailored to Java [9], but for our permission theory

itself the first-order base of the logic is sufficient. The

sequent calculus of the KeY logic is defined in external

files, that declare the logical sorts, function and predicate

symbols that apply to the corresponding sorts, and rewrite

rules that give the functions and predicates their meaning.

The rules are essentially elaborate pattern-matching-based

find and add/replace schemas for changing proof sequents.

The KeY prover implements a very efficient proof engine to

apply these rules in the effort to close proofs automatically.

Fig. 6 gives a snapshot of the KeY formalisation of our

permissions. Only two rewrite rules that define the full

access permission check are given, it should be clear how

they use pattern-matching to modify the associated formulae.

We also stated our permission properties (to a limited extent,

see below) directly as first-order logic formulae and we used

the core permission rules to prove the properties correct.

Some of our properties have been already defined as lemma

\sorts{ Perm; OwnerList; } \functions { . . . }

\predicates {
readPerm(Object, Perm); writePerm(Object, Perm); }

\schemaVariables {
\term Object o; \term Perm p; \term OwnerList ol; }

\rules {
writePermSlice {
\find(writePerm(o, slice(ol, p)))
\replacewith(checkOwner(o, 0, ol) & writePerm(o, p)) };

writePermEmpty {
\find(writePerm(o, emptyPerm)) \replacewith(true) }; }

Figure 6. Snapshot of the KeY formalisation of symbolic permissions.

rules for verification of programs with KeY, however, the set

of these lemma rules is not yet complete and we introduce

them as required when working with new examples.

As an example, a property that states “a split transfer of

an initial full permission from the current thread to another

object revokes the write permission from the current thread”

is formalised as the following KeY formula:

\forall Object o; (o != ct −>
!writePerm(ct, transferPerm(TRUE, ct, o, 0, initFull)))

This is proved fully automatically with KeY. This property

is a concrete instance of the more general property 4 above

stated for any permission that is at least a read permission for

the current thread. This general property requires a structural

induction proof that is not possible with KeY, hence we

turned to PVS, an interactive theorem prover for higher-order

logic, to prove the properties in their most general form.

Similarly to KeY, special purpose data types have been

defined in PVS to represent permissions and the properties

as PVS lemmas. Due to space restrictions we do not quote

these definitions, however, the complete PVS formalisation

and all property proofs are available on-line [11]. Generally,

all the properties are proven correct by structural induction

on the form of the permission and subsequent unfolding

of appropriate definitions. Noteworthy, properties 9 and 10

required well-founded induction to tackle the on-the-fly

merging of slices when applying the returnPerm function.

VII. APPLICATION IN REASONING ABOUT CONCURRENT

PROGRAMS

So far we only discussed the permission expressions in

isolation and stated that each such expression refers to some

memory location of the program to be verified. To reason

about actual programs we need to establish a connection

between permission expressions and the memory model of

the verification logic. Below we sketch how this is done for

the KeY verifier and what needs to be considered in general.

We then use this connection to verify another example that

compares symbolic permissions with the fractional ones.

171

In the KeY logic, memory is represented as an explicit

heap variable that maps objects’ fields (i.e., memory loca-

tions) to their values. The heap program variable is special

in the sense that it is subject to all matters associated

with program memory change and framing. In particular,

when proof obligations for establishing the correctness of

a method contract are generated they include formulae

ensuring that the framing conditions are satisfied. These

formulae are quantifications over the memory locations on

the heap following the dynamic frames approach [16].

The essence of adding support for permissions in KeY

is to add a second permission heap that, instead of the

program memory values, keeps the permissions to all mem-

ory locations that the program operates on. All the existing

machinery of KeY for operating on the regular heap variable

scales to the operation on an arbitrary, but fixed number

of heaps simultaneously [17]. What remains is to lift this

extension to the specification language JML∗, KeY’s version

of JML [7]. Essentially, we do this by allowing one to state

the heap variable that a given expression refers to explicitly

in JML∗ specifications, with convenience expressions on top

of it. A very simple example of this is the following:

//@ requires \writePerm(\perm(this.o));
//@ ensures this.o == p;
//@ assignable<heap> this.o;
//@ assignable<permissions> \nothing;
public void method(Object p) { this.o = p; }

The value for this.o on the permission heap (accessed with

the \perm operator) has to be a write permission for the

current thread (\writePerm). The assignable clauses state

how the two heaps change. On the memory heap this.o is

changed. The permission heap is unchanged as the program

only uses the permission to this.o, but does not make

any permission transfers for this location. Note that both

assignable clauses are necessary as KeY, with or without

the permission extension, always requires explicit dynamic

frames, i.e., permissions are employed only to specify data

non-interference and not implicit framing. Finally, no per-

missions for the object reference p are necessary as it is not

a location. This example verifies automatically with KeY.

For the overall soundness of our reasoning we also

have to show self-framing of specifications with respect to

permissions, i.e., specifications should refer only to locations

they have at least a read permission to. Conceptually this

is rather straightforward in our approach and uses the same

principle as showing data dependency contracts in KeY [16].

Shortly, one shows that a formula does not change its val-

uation when locations outside of the set of the dependency

frame are anonymised. Here the dependency frame are the

locations that we can show at least a read access for in a

given context. In the short example above the dependency

frame is this.o defined by the write permission in the

precondition and none of the formulas in the specification

mention other locations. The permission expression itself

over this.o is self-framed by definition. We are in progress

of working out the fine details of permission self-framing

and related matters, completing the implementation in KeY,

and writing a follow-up paper on this subject.

Apart from that, our implementation in KeY is fully

functional, our second example from Sect. II can also be

specified and verified with KeY. We have also specified and

verified a more complex version of this example, a plotter

with two filter threads from [18]. Both of these examples

are available on-line [11]. Here we take the opportunity to

describe yet another example, our version of the motivating

read-write lock example from [13] where constraints are

used to combine fractions with counting permissions and to

mitigate the need to use concrete rational numbers (though

reasoning about symbolic rational numbers is still required).

This example shows some fine points of specifying with

our permissions and the conceptual difference between our

approach and the classical fractions approach.

The code and our specification for the read-write lock

example from [13] is shown in Fig. 7. We slightly refactored

the original code and in-lined the shared variable read and

writing statements to save space, however, it preserves the

crucial difficulty of the original example (the full example

that uses delegated and specified read and write methods is

available at [11]). The lock and unlock methods are assumed

to have an implementation providing a simple exclusive

access lock. Through the use of the rds field this is turned

into a counting read-write lock to access or change the

shared val field. When rds is strictly positive only reading

is possible, when it is 0 writing can occur. The difficulty in

the example comes from the fact that the lock essentially

only protects the rds field itself, while val is read when the

lock is actually not acquired but when rds is guaranteed to

be positive (l. 21 in Fig. 7). Writing of val is done within

the scope of the lock when rds is equal to 0 (l. 14).

In [13] the access to val is guarded by a lock with a

1 − rds ∗ ε fraction which by reference to rds provides

sufficient permissions when reading and writing occurs. In

our specification we provide the information on how the

permissions are flowing depending on the value of rds when

the lock is used. Upon acquiring the lock all currently

available permissions to val and the complete permission

to rds (also ords, see below) are transferred to the currently

running thread (ls. 31–33). Upon release all permissions are

returned to the lock (ls. 40–42), however, when the value of

rds is noticed to have been strictly increased since the call

to lock, a spliced part of the permission to val is transferred

again to the current thread to enable reading (l. 43).

The remaining parts of the lock and unlock specification

is additional book-keeping and consistency checks. In par-

ticular, the ords ghost field records the value of rds when

the lock is acquired to establish the lock usage scenario

as described above. We also state that when the lock is

successfully acquired, then the permission to rds and ords

172

completely belonged to the lock. Note that information about

fields such as rds only can be given in the postcondition of

lock (e.g., l. 29) when the lock is already acquired and a

corresponding permission is present.3 In the precondition of

lock there are not sufficient permissions to specify anything

about rds (for unlock the inverse situation occurs). In fact,

we require that the calling thread does not have any access

to rds which is expressing that the lock is not currently

acquired by the current thread. A similar specification is to

be found for methods doRead and doWrite and in particular

in the loop invariant of doWrite which states that the lock

is not acquired outside of the loop. Finally, the diverges
clause specifies that doWrite may possibly not terminate.

VIII. CONCLUSIONS AND FUTURE WORK

We discussed a symbolic permission system for concur-

rent reasoning that improves over the established fractions

approach in at least two ways. First, we mitigate the need to

reason about fractional numbers that is considered difficult in

first-order reasoning [3]. Second, we introduced mechanisms

that allow us to reason about complex permission flow

scenarios where multiple threads and synchronisation objects

are involved. This is illustrated by an example program

where two different threads simultaneously join a single

thread. With our new permissions, the KeY verifier is already

able to verify concurrent programs, including the quoted

example [11]. We attribute the relative ease of reasoning with

our new permissions to the explicit approach, i.e., not hiding

or assuming information in the verification context, like it is

commonly done in separation logic-based verification meth-

ods [19]. Our explicit approach in verification has proven

itself efficient also in our preceding work [17]. To enable

fully flexible reasoning about arbitrary multi-threaded Java

programs, we are currently working on the generation of the

complete and sound proof obligations in KeY Java dynamic

logic, and on optimising our permission system for lemma-

based reasoning in KeY. Although already functional, the

latter is particularly important to enable suitable abstractions

in specifications with permissions.

Related Work: Apart from fractional style permissions

first described in [1] the literature also describes counting

permissions and tree permissions as alternatives. As de-

scribed in [20], counting permissions simply use a counter

instead of a fraction and are considered complementary

to fractional permissions, which are not suitable for some

synchronisation mechanism, like semaphores. We briefly

related to the work on constrained abstract fractional per-

missions [13] in the previous section. Tree permissions [2]

are also close to our work, in that they use a dedicated

data type to abstract away irrelevant information. However,

tree permissions are only a direct abstraction of fractions,

3On the more conceptual level this is actually stating that lock may block
execution – we can only talk about the lock state once lock has successfully
returned.

public class ReadWrite {
2 private int val;

private int rds; //@ private instance ghost int ords;
4

//@ requires !\readPerm(\perm(rds));
6 //@ ensures !\readPerm(\perm(rds));

//@ assignable<heap,permissions> rds, ords, val;
8 //@ diverges true;

public void doWrite() {
10 boolean done = false;

//@ loop invariant !\readPerm(\perm(rds));
12 //@ assignable<heap,permissions> rds, ords, val;

while(!done) {
14 lock(); if(rds==0){ val++; done=true; } unlock(); } }

16 //@ requires !\readPerm(\perm(rds));
//@ ensures !\readPerm(\perm(rds));

18 //@ assignable<heap,permissions> rds, ords, val;
public int doRead() {

20 lock(); rds++; unlock(); // read ”lock”
int r = val;

22 lock(); rds−−; unlock(); // read ”unlock”
return r; }

24

//@ requires !\readPerm(\perm(rds));
26 //@ ensures \old(\readPerm(\perm(val))) ==> rds>0;

//@ ensures \writePermObj(this, \old(\perm(rds)));
28 //@ ensures \writePermObj(this, \old(\perm(ords)));

//@ ensures rds >= 0 && ords == rds && (rds == 0 ==>
↪→ \writePermObj(this, \old(\perm(val))));

30 //@ ensures \readPermObj(this, \old(\perm(val)));
//@ ensures \perm(rds) == \transPerm(false, this, \ct, 0,

↪→ \old(\perm(rds)));
32 //@ ensures \perm(ords) == \transPerm(false, this, \ct, 0,

↪→ \old(\perm(ords)));
//@ ensures \perm(val) == \transPerm(false, this, \ct, 0,

↪→ \old(\perm(val)));
34 //@ assignable<permissions> rds, ords, val;

//@ assignable ords;
36 public native void lock();

38 //@ requires rds >= 0 && \writePerm(\perm(rds));
//@ requires \writePerm(\perm(ords));

40 //@ ensures \perm(rds) == \retPerm(\ct, this,
↪→ \old(\perm(rds)));

//@ ensures \perm(ords) == \retPerm(\ct, this,
↪→ \old(\perm(ords)));

42 //@ ensures \old(rds) <= \old(ords) ==> \perm(val) ==
↪→ \retPerm(\ct, this, \old(\perm(val)));

//@ ensures \old(rds) > \old(ords) ==> \perm(val) ==
↪→ \transPerm(true, this, \ct, 0, \retPerm(\ct, this,
↪→ \old(\perm(val))));

44 //@ assignable<heap,permissions> rds, ords, val;
public native void unlock();

46 }

Figure 7. The read-write example specified with symbolic permissions.

and by using only two tokens to mark the tree nodes,

they only differentiate between the current thread and all

other threads, i.e., they cannot identify each single thread

separately. Moreover, transfer histories are not recorded

causing similar problems as with rational fractions when

specifying complex permission flows.

Not many implemented verification systems that we

know of actually support permission-based reasoning. Veri-

Fast [21] does, it is based on separation logic and imple-

173

ments fractional style permissions. Another such tool would

be the Chalice system [22], which is based on implicit

dynamic frames, and deals with permissions also in the

fractional fashion providing strong, but limited means of

permission abstraction [12]. Finally, our own automated

VerCors toolset [5] implements our version of separation

logic with permissions for Java [6] and uses Silicon [8] as

a back-end verifier.

ACKNOWLEDGEMENT

The work presented in this paper is supported by ERC

grant 258405 for the VerCors project.

REFERENCES

[1] J. Boyland, “Checking interference with fractional permis-
sions,” in Static Analysis Symposium, ser. LNCS, R. Cousot,
Ed., vol. 2694. Springer, 2003, pp. 55–72.

[2] R. Dockins, A. Hobor, and A. W. Appel, “A fresh look
at separation algebras and share accounting,” in 7th Asian
Symposium on Programming Languages and Systems, ser.
LNCS, Z. Hu, Ed., vol. 5904. Springer, 2009, pp. 161–177.

[3] X. B. Le, C. Gherghina, and A. Hobor, “Decision procedures
over sophisticated fractional permissions,” in 10th Asian Sym-
posium on Programming Languages and Systems, ser. LNCS,
R. Jhala and A. Igarashi, Eds., vol. 7705. Springer, 2012,
pp. 368–385.

[4] A. Amighi, S. Blom, M. Huisman, W. Mostowski, and
M. Zaharieva-Stojanovski, “Formal specifications for Java’s
synchronisation classes,” in Conference on Parallel, Dis-
tributed, and Network-Based Processing, A. L. Lafuente and
E. Tuosto, Eds. IEEE Computer Society, 2014, pp. 725–733.

[5] A. Amighi, S. C. Blom, M. Huisman, and M. Zaharieva-
Stojanovski, “The VerCors project: Setting up basecamp,”
in 6th Workshop Programming Languages meets Program
Verification. ACM, 2012, pp. 71–82.

[6] C. Haack, M. Huisman, and C. Hurlin, “Reasoning about
Java’s reentrant locks,” in 6th Asian Conference on Program-
ming Languages and Systems, ser. LNCS, G. Ramalingam,
Ed., vol. 5356. Springer, 2008, pp. 171–187.

[7] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design
of JML: A behavioral interface specification language for
Java,” SIGSOFT, vol. 31, no. 3, pp. 1–38, Mar. 2006.

[8] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwer-
hoff, and A. J. Summers, “Viper: A verification infrastructure
for permission-based reasoning,” ETH Zürich, Tech. Rep.,
2014.

[9] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification
of Object-Oriented Software: The KeY Approach, ser. LNAI.
Springer, 2007, vol. 4334.

[10] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype
verification system,” in 11th International Conference on
Automated Deduction (CADE), ser. LNAI, D. Kapur, Ed., vol.
607. Springer, June 1992, pp. 748–752.

[11] Symbolic Permissions On-line. http://wwwhome.ewi.utwente.
nl/∼mostowskiwi/permissions/.

[12] S. Heule, K. R. M. Leino, P. Müller, and A. J. Summers,
“Abstract read permissions: Fractional permissions without
the fractions,” in Verification, Model Checking, and Abstract
Interpretation 2013, ser. LNCS, R. Giacobazzi, J. Berdine,
and I. Mastroeni, Eds., vol. 7737. Springer, 2013, pp. 315–
334.

[13] J. Boyland, P. Müller, M. Schwerhoff, and A. J. Summers,
“Constraint semantics for abstract read permissions,” in For-
mal Techniques for Java-like Programs (FTfJP). ACM, 2014.

[14] C. Haack and C. Hurlin, “Separation logic contracts for a
Java-like language with fork/join,” in Algebraic Methodol-
ogy and Software Technology, ser. LNCS, J. Meseguer and
G. Rosu, Eds., vol. 5140. Springer, 2008, pp. 199–215.

[15] D. Harel, D. Kozen, and J. Tiuryn, Dynamic Logic. MIT
Press, 2000.

[16] P. H. Schmitt, M. Ulbrich, and B. Weiß, “Dynamic frames
in Java dynamic logic,” in Formal Verification of Object-
Oriented Software Conference, ser. LNCS, B. Beckert and
C. Marché, Eds., vol. 6528. Springer, 2011, pp. 138–152.

[17] W. Mostowski, “A case study in formal verification using mul-
tiple explicit heaps,” in IFIP Joint International Conference
on Formal Techniques for Distributed Systems, ser. LNCS,
D. Beyer and M. Boreale, Eds., vol. 7892. Springer, 2013,
pp. 20–34.

[18] A. Amighi, S. Blom, S. Darabi, M. Huisman, W. Mostowski,
and M. Zaharieva-Stojanovski, “Verification of concurrent
systems with VerCors,” in 14th International School on For-
mal Methods for the Design of Computer, Communication and
Software Systems: Executable Software Models, ser. LNCS,
M. Bernardo, F. Damiani, R. Hähnle, E. B. Johnsen, and
I. Schaefer, Eds., vol. 8483. Springer, 2014, pp. 172–216.

[19] J. C. Reynolds, “Separation logic: A logic for shared mutable
data structures,” in 17th IEEE Symposium on Logic in Com-
puter Science. IEEE Computer Society, 2002, pp. 55–74.

[20] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson,
“Permission accounting in separation logic,” in Principles
of Programming Languages, J. Palsberg and M. Abadi, Eds.
ACM, 2005, pp. 259–270.

[21] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx,
and F. Piessens, “Verifast: A powerful, sound, predictable, fast
verifier for C and Java,” in NASA Formal Methods, ser. LNCS,
vol. 6617. Springer, 2011, pp. 41–55.

[22] K. R. M. Leino, P. Müller, and J. Smans, “Verification
of concurrent programs with Chalice,” in Foundations of
Security Analysis and Design, A. Aldini, G. Barthe, and
R. Gorrieri, Eds. Springer, 2009, pp. 195–222.

174

