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Abstract—Modern high performance computing (HPC) sys-
tems exhibit a rapid growth in size, both “horizontally” in the
number of nodes, as well as “vertically” in the number of
cores per node. As such, they offer additional levels of hard-
ware parallelism. Each level requires and employs algorithms
for appropriately scheduling the computational work at the
respective level. The present work explores the relation between
two scheduling levels: batch and application. To understand and
explore this relation, a novel simulation approach is presented
that bridges two existing simulators from the two scheduling
levels. A novel two-level simulator that implements the proposed
approach is introduced. The two-level simulator is used to
simulate all combinations of three batch scheduling and four
application scheduling algorithms from the literature. These com-
binations are considered for allocating resources and executing
the parallel jobs from a workload of a production HPC system.
The results of the scheduling experiments reveal the strong
relation between decisions taken at the two scheduling levels
and their mutual influence. Complementing the simulations, the
two-level simulator produces abstract parallel execution traces,
which can visually be examined and illustrate the execution of
different jobs and, for each job, the execution of its tasks at node
and core levels, respectively.

Keywords-High performance computing; Batch level schedul-
ing; Application level scheduling; Two-level scheduling; GridSim;
Alea; SimGrid; SimDag; OTF2; Vampir.

I. INTRODUCTION

Maximizing cluster utilization, minimizing job execution
time and job waiting time are key optimization metrics for
successful management and operation of modern high perfor-
mance computing (HPC) clusters [1]. Scheduling of different
jobs at the cluster level affects the cluster utilization and
the job waiting time. Scheduling of different tasks within an
application affects its execution time. Scheduling is known to
be an NP-Complete [2] problem. Therefore, in the literature,
a large number of heuristics have been proposed for job and
application scheduling. Each of these heuristics has its own
advantages in terms of the achieved performance. The state-
of-the-art job and application scheduling algorithms are no
longer sufficient to exploit individually all available parallelism
of modern and future HPC systems. Modern (and future)
HPC systems (will) exhibit massive parallelism at different
hardware levels. Each of these hardware parallelism levels
uses a corresponding scheduling technique that manages and
schedules its computational load. For instance, batch, appli-

cation, and thread level scheduling techniques exist at the
cluster, node, and core levels, respectively. It is important to
examine the relation between the different scheduling levels
to take full advantage of the different hardware and software
parallelism levels of modern HPC systems. For instance,
making the individual schedulers at the batch and application
levels aware of each other’s decisions enables them to work
in concert for an optimized execution of applications and
improved utilization of the underlying resources. The focus
of this work is on exploiting multi-level parallelism through
scheduling [3].

Simulation-based approaches are widely used in the liter-
ature for studying various aspects of single level scheduling.
Yet, to the best of our knowledge, no simulators exist that
support the study of two levels of scheduling. The main
contributions of this work are: (1) Introduces a novel generic
simulation approach by bridging two existing simulators from
batch and application scheduling levels; (2) Develops and
evaluates a new two-level scheduling simulator based on
GridSim [4] and SimGrid [5]; and (3) The novel two-level
simulator generates standard open trace format (OTF2) [6]
traces that allow visualization of the execution of jobs and
tasks on allocated resources.

In this work, combinations of three BLS algorithms,
First Come First Serve (FCFS), Earliest Deadline First (EDF),
and Shortest Job First (SJF) [7] and four ALS algo-
rithms, static chunking (STATIC), self scheduling (SS) [8],
guided self scheduling (GSS) [9], and factoring (FAC) [10],
are performed to explore the relation between BLS and ALS
during operation. These combinations are used to schedule
two real workloads from HPC production systems. Certain
customizations are applied to these batch workloads to en-
vision the missing information that is necessary to simulate
ALS. The results which are presented in this paper cover only
one workload while the complete set of the results is available
online1.

This paper is structured as follows: In Section II, the most
relevant work in the literature is discussed. In Section III-A,
a generic simulation approach for connecting two simulators
of different scheduling levels is introduced. Based on this
approach, in Section III-B, a new two-level simulator for

1https://drive.switch.ch/index.php/s/tAlBHGWiWW1vyhZ



BLS and ALS is proposed. In Section IV, the results of
executing the workload of a production HPC system with
several combinations of BLS and ALS algorithms using the
proposed two-level simulator are discussed. The information
needed to reproduce this work is presented in Section V.
Finally, in Section VI, the conclusions of this work and its
potential future work are outlined.

II. RELATED WORK

Implementing, comparing, verifying, and validating a
scheduling solution for HPC production systems involves
numerous technical details and steps. Therefore, simulation
approaches have been widely used to examine the performance
of different scheduling algorithms. Consequently, the crux of
this section is to highlight the most relevant and influential
simulators used for simulating scheduling of problems at the
levels considered herein: batch and application scheduling,
respectively.

Simulation of BLS algorithms: One popular simulation
toolkit is GridSim [4]. It facilitates simulation of grids, clus-
ters, and single processing elements. It offers support for a
broad range of heterogeneous resources including shared and
distributed memory architectures. GridSim is built on top of a
reliable discrete event simulation library called SimJava [11].
The GridSim toolkit is fully implemented in Java which
promotes its portability and extensibility.

Simulation of ALS algorithms: SimGrid [5] is a
widely used simulation toolkit for ALS. SimGrid sup-
ports the development of parallel and distributed appli-
cations in heterogeneous/homogeneous parallel and dis-
tributed environments. Recent releases of SimGrid have three
different interfaces: MetaSimGrid (MSG), SimDag (SD),
and Simulated MPI (SMPI) for simulating applications
as a group of concurrent processes, applications as di-
rected acyclic graphs (DAGs), and for running unmodified ap-
plications written using the message passing interface (MPI),
respectively.

Due to the reliability and the active support community of
the two toolkits, GridSim and SimGrid, they are used to build
a large number of notable simulators, such as Alea [12] and
Batsim [13]. Alea and Batsim are the most relevant simulators
to the current work, and are used for the BLS and ALS
simulations, respectively.

Alea [12] [14] is a well-known simulator, developed on
top of the GridSim toolkit. It extends GridSim and improves
certain of its limitations. For instance, it supports reading of
jobs files written in the standard workload format (SWF) [15]
and reading of platform files instead of defining the simulated
platform within the code. Alea provides a group of data
structures that enhance job and resource modeling. It also
implements a set of scheduling algorithms and gives the
opportunity to integrate other scheduling algorithms. It can
be considered a suitable candidate for BLS simulations. In the
present work, simulations at the BLS level are performed with
Alea.

Batsim [13] is one of the most recent SimGrid-based simu-
lators. It is based on the separation of concerns between system
simulation and scheduling algorithms using two main compo-
nents: batsim main and batsim decision. The main component
is responsible for simulating the computational resources and it
uses the SimGrid simulation toolkit underneath. The decision
component is responsible for the scheduling decisions at the
resources management level and it can be implemented in
any programming language. Batsim depends on a Unix socket
layer to allow communication between its two components.
An approach similar to the Batsim communication approach
that depends on Unix sockets is used in this present work.

The GridSim and SimGrid toolkits are preferably used (not
restricted) to support batch and application level scheduling,
respectively. Certain research efforts are described below that
studied extensions of one of these two simulation toolkits to
support the simulation of other scheduling levels.
ALS simulation based on a BLS simulation toolkit: In [16],
the authors prove the ability of extending Alea to support
ALS algorithms. The authors extended Alea to support ALS
algorithms, such as STATIC, SS, GSS, and FAC. The work
in [16] carried over all the Alea’s advantages to the ALS
domain, such as application tasks being expressed in the SWF
format and the effect of system failures being examined with
different ALS techniques. However, the simulator provided
by [16] supports ALS algorithms in such a way that it can
no longer support BLS algorithms.
BLS simulation based on an ALS simulation toolkit:
Simbatch [17] is a SimGrid-based simulator. Simbatch uses
the MSG interface of SimGrid to support simulations and
development of BLS algorithms. Simbatch’s uniqueness comes
from the fact that it swaps the focus of SimGrid from the ALS
perspective to the BLS perspective.

All aforementioned simulators and simulation toolkits are
designed to support single level scheduling simulations, such
as at the BLS or ALS. However, to explore the relation be-
tween multiple levels of scheduling, simulators are needed that
can combine the required methods, tools, and techniques from
the single levels. In [18], the concept of combining resource
allocation (RA) with dynamic loop scheduling (DLS) was
first proposed, under the name of “CDS”, a combined dual-
stage RA and DLS approach. CDS is a two-stage framework
that maximizes the probability that applications complete by
common deadline under certain levels of variation in the
resources availability to compute and variation in system input.
The RA techniques used in [18] were initially simplistic and,
subsequently, more sophisticated in [19].

As a preliminary step for the work in the present paper,
the original Alea simulator [12] has been redesigned and
reimplemented to support ALS algorithms in addition to BLS
algorithms, in [3]. Moreover, in [3] a new simulator based on
the SimGrid-SD interface [5] was designed to support BLS
algorithms in addition to ALS algorithms. These two simu-
lators showed similar results in terms of total execution time
for the simulated batches and applications at BLS and ALS,
respectively. In the case of large batch workloads, the extended



Alea simulator showed improved performance in terms of
total simulation time, while the SimGrid-SD-based simulator
showed improved performance in the case of applications that
contain large numbers of tasks. The simulators presented in [3]
support only single level scheduling: BLS or ALS.

Attempting to simultaneously simulate the two levels of
scheduling using the simulators in [3] revealed certain tech-
nical challenges. In particular, both simulators are based on
discrete events. Each maintains an individual simulation clock,
updated according to the events occurring at the scheduling
level they simulate. Extending any of the two simulators to
support multiple simulation clocks involves numerous changes
that may affect the functionality of simulation toolkit used
to build that simulator. Another challenge is related to the
initialization functions GridSim.init and SD_init of
GridSim and SimGrid-SD, respectively. These functions were
designed to be called one time at the beginning of the simula-
tion. Thus, multiple calls would cause simulation errors during
execution. In certain cases, the SimGrid-SD-based simulator
would require multiple calls to SD_init to reinitialize the
simulation environment, when the simulator is launched for a
different application.

In the present work, a novel simulation approach is pro-
posed to develop two-level simulators. The proposed approach
overcomes the challenges encountered in [3] by bridging
scheduling simulators from two levels, in such a way that
each remains responsible for simulating a specific schedul-
ing algorithm at a certain level of hardware and software
parallelism. Bridging simulators according to the proposed
approach aims to minimize the changes in the single-level
simulation toolkits. Minimal changes in the simulation toolkits
constitutes an advantage for obtaining the support of the user
community and to naturally maintain compatibility with the
new toolkit releases.

III. THE PROPOSED TWO-LEVEL SIMULATION APPROACH

As discussed in Section II, numerous simulators exist for
scheduling in parallel and distributed systems. Each simulator
has its own capabilities and limitations. It becomes necessary
to define a set of objectives for the proposed two-level simu-
lation approach, to crystallize its capabilities and limitations.
Objectives of the proposed approach
(i) Preserve the current level of user involvement, to avoid that
users learn new APIs or new simulation toolkits to perform
their simulations.
(ii) The scheduling algorithms in the literature, at either of
the BLS or ALS levels, can be easily ‘plugged’ into the new
simulator.
(iii) The approach exploits parallel computing systems with
shared and/or distributed memory to reduce the overall simu-
lation run-time.

A. Bridging simulators via a connection layer

As shown in [3], different simulators for parallel and dis-
tributed systems support simulation of scheduling algorithms
at different levels of scheduling, i.e., BLS and ALS. However,

certain simulators have a strong potential to support simula-
tion of scheduling algorithms at certain levels of hardware
parallelism. For instance, at the grid or cluster level, GridSim
has the capability to implement and simulate BLS algorithms,
while SimGrid has advantages to implement and simulate ALS
algorithms. The two-level scheduling idea proposed in this
work is, therefore, based on simultaneously executing two
simulators where each simulates a certain level of scheduling,
both simulators feeding each other with their scheduling
decisions when needed throughout execution. Fig. 1 illustrates
an example in which the BLS simulator simulates a batch
of jobs and requires as input three important parameters: the
set and characteristics of the batch jobs, the set and character-
istics of the cluster resources, and the BLS algorithm. The BLS
simulator decides which cluster resources should be allocated
to execute a certain job from the batch at a certain time. This
decision is fed into the ALS simulator, instantiated for the
particular job, with the specifications of the three parameters:
tasks of particular job, description of allocated resources,
and the ALS algorithm. The arrows in green color denote
the connection layer between the two levels of scheduling.
The illustrative example in Fig. 1 is extended in Fig. 2
(described later in Section III-B), in which the BLS simulator
is Gridsim-Alea and the ALS simulators are instances of
SimGrid-SD.

B. The two-level simulator

The proposed approach meets objectives (i) and (ii) stated
earlier in this section, due to the fact that users are free to
select any two simulators for the two levels of scheduling
and the scheduling algorithms are easily ‘plugged’ in. This
approach helps users to leverage their expertise on the use of
certain simulation toolkits. The proposed approach depends on
simultaneously running several simulation instances as sepa-
rate processes. Moreover, these instances can simultaneously

BLS simulator instance

Jobs 
specifications

Resources
specifications

BLS
algorithm(s)

Tasks 
of job Ji

Resources RJi 
assigned to job Ji

ALS simulator instance i

Simulation results
of job Ji on resources RJi

ALS
algorithm(s)

Usage reports for
entire platform

Usage reports for 
resources RJi 

Legend
Simulator input/output
Bridging messages

Fig. 1. Bridging between simulator instances for allocating resources RJi to
job Ji using a certain BLS algorithm and executing Ji on RJi according to a
given ALS algorithm.



TABLE I. Notation

Symbol Description
N Number of batch jobs
M Number of cluster resources

J
Set of batch jobs
{Ji | 0 ≤ i<N}

R
Set of cluster resources
{Rj | 0 ≤ j<M}

RJi
Set of resources allocated to job Ji
RJi ⊆ R,RJi 6= ∅, 0 ≤ i<N

AT
Set of jobs arrival times
{ATi | 0 ≤ i<N}

FT
Set of jobs finishing times
{FTi | 0 ≤ i<N}

ST
Set of jobs starting times
{STi | 0 ≤ i<N}

LJi
Length of job Ji (in GFLOP),
where 0 ≤ i<N

TJi
Set of all tasks belonging to job Ji,
where 0 ≤ i<N

LTk
Length of task Tk (in GFLOP) of job Ji,
where 0 ≤ k<|TJk| and 0 ≤ i<N

Υ
Task variation factor
0 ≤ Υ<1

T ideal
par

Time to complete all jobs of a certain workload,
where each job has a number of equal size tasks,
max(FT )−min(AT ) | Υ = 0, ∀Ji ∈ J

TΥ
par

Time to complete all jobs of a certain workload,
where the sizes of tasks within each job vary
according to Υ
max(FT )−min(AT ) | 0<Υ<1, ∀Ji ∈ J

run on shared and/or distributed memory systems. Thus, the
proposed approach also meets objective (iii) stated earlier. All
the results obtained within this work are based on running a
new proposed two-level simulator on a multi-core processor
with shared memory, described below.

Based on the approach discussed in Section III-A, a
new two-level simulator is designed and implemented by
connecting and integrating two different simulators. The
GridSim-based simulator, Alea [12], is used to simulate BLS
algorithms, while the SimGrid-SD-based simulator [3] simu-
lates ALS algorithms. Although both simulation toolkits are
well-known and have an active support community, connecting
them has not yet been attempted and poses certain implemen-
tation challenges.

The first challenge is interfacing two different programming
models: object-oriented and structured programming used for
developing the GridSim-Alea (in Java) and the SimGrid-SD
(in C) simulators, respectively. The second challenge is
synchronizing the independent simulation clocks of the
simulators instances. Both simulation toolkits are based on
discrete events, and each keeps its own discrete simulation
clock that is only advanced when an internal event occurs.
The third challenge is merging the output results generated
by the multiple instances of the two simulators to enable a
proper informative presentation.

To address these challenges, a connection layer (as a part
of the proposed two-level simulator) was designed to pro-
vide the following functions: (i) Manage simulator instances,
(ii) Synchronize the clocks of the simulator instances, and

(iii) Exchange necessary information regarding jobs, tasks, and
other execution parameters.

To illustrate the use of the connection layer, consider
the following scheduling scenario: A batch J consists
of four jobs {J0, J1, J2, J3}. Each job consists of three
tasks. In each job, the sum of the lengths of the first
two tasks is equal to the length of the third task, i.e.,
LT1 + LT2 = LT3. A cluster R consists of five homogeneous
resources {R0, R1, R2, R3, R4}. The set of resources required
by job Ji is denoted RJi, 0 ≤ i<4. The following resource as-
signments are requested: RJ0 = {R0, R1}, RJ1 = {R2, R3},
RJ2 = {R2, R4}, and RJ3 = {R0, R4}. The arrival time of
job Ji is ATi, 0 ≤ i < 4, where AT0 = AT1 = 0 and
AT2 < AT3. The finishing time of job Ji is FTi, 0 ≤ i < 4,
and FT0 = FT1 > AT3 > AT2. FCFS and STATIC are used
as BLS and ALS, respectively.

Since AT0 = AT1 = 0, the connection layer manages the
BLS and ALS simulator instances by starting two separate
instances of the SimGrid-SD-based simulator to simulate the
execution of jobs J0 and J1 on RJ0 and RJ1, respectively, us-
ing STATIC. Given that FT1 > AT2 and RJ1 ∩RJ2 = {R2},
the connection layer holds the simulation of J2 until the
SimGrid-SD-based simulation instance for J1 reports its com-
pletion. Since AT3 > AT2, J2 starts before J3, and, thus,
the connection layer holds the simulation of J3 until the
SimGrid-SD-based simulation instances for J0 and J2 re-
port their completion, given that RJ3 ∩RJ0 = {R0} and
RJ3 ∩RJ2 = {R4}. Therefore, the time at which simulation
of J3 begins depends on the times at which the simulation
of J0 and J2 completes. The finishing times of J0 and J2 are
dominated by the scheduling decisions of the ALS algorithms.
Recall that for jobs J0 and J2, the sum of the lengths of
the first two tasks equals the length of the third task. Due
to using STATIC as ALS and having homogeneous resources,
load imbalance will arise in executing the three tasks of J0 and
J2 on the sets of resources RJ0 and RJ2 that are assigned to
J0 and J2. As a consequence, the BLS scheduler, FCFS, needs
to delay the beginning of the execution of J3. The influence
between BLS and ALS becomes visible via the fact that
STATIC as ALS not only affects the individual performance
of J0 and J2, but also the performance achieved by FCFS
as BLS for scheduling the other jobs in the batch. In this
scenario, if the FCFS algorithm passed certain information to
the STATIC algorithm to prioritize the release of resources, the
STATIC algorithm would assign the smallest chunk of tasks
to the resources needed to be released for other jobs, such as
R0 and R4.

To support this type of scenarios, the connection layer
synchronizes the running simulators using two strategies:
simulation suspend/resume and event injection, as illustrated
in Fig. 2. A simulation suspend/resume entity registered in
GridSim-Alea, is used to suspend and resume the BLS sim-
ulation. It performs a busy loop that ends if and only if all
running instances of the SimGrid-SD-based simulator report
their completion and results. Due to the fact that the suspend
entity is a registered GridSim entity, its busy loop can pause
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Fig. 2. Two-level scheduling consisting of a single BLS and several ALS
simulation instances. The connection layer synchronizes the independent sim-
ulation clocks of the GridSim-Alea-based and SimGrid-SD-based simulators.

the simulation clock of the GridSim-Alea-based simulator until
the busy loop ends.

The internal synchronization events in Fig. 2 created by the
BLS communication manager are used to update the simula-
tion suspend/resume entity. Thus, the suspend/resume entity
can incrementally inject the execution reports of the run-
ning SimGrid-SD simulation instances into the GridSim en-
gine (see Fig. 2) and end its busy loop when there are
no more running SimGrid-SD simulation instances. The
simulation suspend/resume entity injects the execution reports
as GridSim events. Therefore, the GridSim engine is able
to use them to advance its simulation clock. Fig. 2 depicts
the independent simulation clocks of the GridSim-Alea-based
and SimGrid-SD-based simulators and their synchronization
by connection layer. The connection layer uses socket-based
communication and application arguments to exchange the in-
formation between the GridSim-Alea-based simulator and the
SimGrid-SD-based simulator instances. The connection layer
launches SimGrid-SD-based simulator instances as indepen-
dent application processes, and passes certain parameters as
application arguments to each launched process. For example,
it sends the port number on which it expects to receive the
ALS simulation results.

IV. EXPERIMENTS AND RESULTS

To explore the relation between BLS and ALS algorithms
in HPC systems and its impact on the batch and application
execution, this work considers real workloads from production
HPC systems. These workloads are selected from the parallel
workload archive2 (PWA) [20]. The PWA is a public archive
containing detailed information on 38 workloads of large scale
parallel machines from around the world, collected between
1993 and 2015. The workloads are provided in the standard
workload format (SWF). A workload may exist in two ver-
sions: cleansed and raw. The cleansed version is a minor
modification of the raw version to guarantee self-consistency.
The founders of PWA recommend to use the cleansed version,
when available.

In this work, the cleansed version of the CEA CURIE
is used and referred to as W1. The W1 workload contains
312,000 jobs and spans 20 months from February 2011 to
October 2012. In all experiments reported herein, a simulated
platform that consists of four hosts is used. Each of the
hosts has a processor that contains 64 cores. The maximum
performance of one host is 3 tera floating point operations
per second. A fully connected network topology is used to
connect the four hosts. The network model used herein is
an InfiniBand model with a link bandwidth and latency of
50 gigabits per second and 500 nanoseconds, respectively.

A. Workload customization

The workloads from the PWA only keep information rel-
evant for batch level scheduling, such as job ID, submis-
sion time, wait time, allocated resources and user ID. For the
purpose of this work, additional details regarding the applica-
tion level are important and needed, such as the characteristics
of the application each job represents, the number of parallel
tasks within the application, the resource usage by each task,
etc. These details are necessary for performing application
level scheduling in the present work. Since this information
is not present in the PWA workloads, certain assumptions are
made about the applications:
(i) All jobs in the workload are computationally-intensive.
Consequently, all communication or I/O tasks that may exist in
the original jobs are not considered in this work. This assump-
tion is not a limitation of the proposed approach. It is simply
used to convert the existing workloads to one of the possible
cases where jobs are computationally-intensive, as such jobs
are among the main incentives for using HPC systems. Other
forms of jobs, such as communication-intensive, I/O-intensive
and combinations thereof will be considered in future work.
(ii) Although the number of tasks and length of each task are
application-dependent, this work considers the case of ideal
parallelism: all available hardware parallelism is exploited,
execution is perfectly load balanced, communication is vir-
tually instantaneous, and the resources allocated to tasks are
identical. This work considers the case of ideal parallelism as
an important baseline case.

2http://www.cs.huji.ac.il/labs/parallel/workload/



In addition, other cases are generated and examined by in-
troducing variation at the task length level using the task vari-
ation factor Υ. By considering job Ji and its allocated set of
resources RJi, the elements of the set TJi of tasks of job Ji
can be randomly generated according to a probability distribu-
tion with mean µ = LJi

|RJi| and standard deviation σ = µ×Υ.
Workloads from the PWA store the execution time and the

number of resources requested by each job. The PWA also
states certain detailed about the hardware platform where the
workloads were obtained from. Based on his information,
an estimate about each job length (in giga floating point
operations) can be obtained by multiplying the minimum per-
formance of request resources(in giga floating point operations
per second) to the job execution time (in seconds). The job
length LJi is deduced by accumulating the length of the
generated tasks, until LJi become greater than or equal to
the estimate.

Many researchers modeled the arrival, finishing, execution
times, and number and type of requested resources of different
jobs in the context of HPC. Few efforts exist that can be used
to model (with certain adaptations) the number of tasks and the
task length within HPC applications.In the present work, for
simplicity, the task lengths are generated according to normal
distribution with the aforementioned µ and σ parameters.
Future work will consider other models to generate the task
lengths within jobs of a given workload.

B. Analysis of the relation between BLS and ALS algorithms

To explore the relation between BLS and ALS algorithms,
experiments were performed following two different strategies.
The first strategy supports a coarse-grain analysis of the rela-
tion between BLS and ALS, examining the effect of changing
the ALS algorithms on the BLS performance, measured as the
makespan of the entire batch workload. The second strategy
supports a fine-grain analysis of the relation between BLS and
ALS that examines the effect of changing the ALS algorithm
in one job on the starting time of its successor job(s) in the
batch.

In this work, combinations of three BLS algorithms FCFS,
EDF, and SJF [7] and four ALS algorithms STATIC, SS [8],
GSS [9], and FAC [10] are considered. To perform the
experiments for the coarse-grain analysis, jobs of the most
intensive 24 hours in terms of job arrival time have been
selected from W1. The most intensive 24-hour interval of W1

is referred to as W 24
1 . A Java-based tool was developed as part

of this work and used to extract the jobs of the most intensive
period of 24 hours from a given workload.

As discussed in Section IV-A, the task length variation
factor Υ is used to vary the length of tasks within a cer-
tain job to represent more realistic jobs. Fig. 3 shows the
parallel execution time of W 24

1 when executing the twelve
BLS-ALS combinations in two different cases. In the first
case, Υ = 0 and corresponds to T ideal

par . In the second case,
Υ ∈ {0.1, 0.15, 0.2, 0, 25} and leads to different values of
TΥ

par denoted as T 0.1
par , T 0.15

par , T 0.2
par ,and T 0.25

par , respectively.
In the case of Υ = 0, the results represent the best case
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Fig. 3. Effect of changing the task variation factor Υ from 0 to 0.25 on the
parallel execution time for the twelve combinations of selected BLS and ALS
algorithms for the jobs within W 24

1

scenario in which all submitted jobs are perfectly optimized
for their allocated resources. Although such a scenario is
highly desirable at the cluster operation and at the user levels,
it is difficult to be encountered in practice. The results of
Fig. 3 show the effect of increasing Υ from 0 to 0.25 for the
twelve BLS-ALS combinations. One can infer that increasing
Υ leads to an increase in the total parallel execution time
regardless of the BLS-ALS combination that has been used.
The increase in the parallel execution time of the workload
is not constant for different BLS-ALS combinations. Certain
BLS-ALS combinations showed the ability to better absorb the
effect of increasing Υ than others. Further analysis is needed
to understand this behavior and pinpoint its root-cause(s).

The results in Fig. 4 show the ratio between the parallel
execution time TΥ

par and the ideal parallel execution time

T ideal
par , respectively. The ratio

TΥ
par

T ideal
par

can be used to characterize
the sensitivity of the system performance to given BLS-ALS
combinations.

To perform a fine-grain analysis, the connection layer be-
tween GridSim-Alea-based and SimGrid-SD-based simulators
was extended with an additional task: to collect all text-based
traces generated from the SimGrid-SD-based simulator and to
combine them into a single text-based trace file. The main
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Fig. 4. The ratio between TΥ
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par for the twelve combinations of
selected BLS and ALS algorithms for the jobs within W 24
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challenge associated with this task is that each instance of the
SimGrid-SD-based simulator does not have the global view of
the entire batch workload simulation. For instance, to simulate
jobs J1 and J2 on the sets of resources JR1 and JR2 at times
t1 and t2, respectively, the connection layer runs two instances
of the SimGrid-SD-based simulator. Each SimGrid instance,
however, simulates its corresponding job as Ji on the set of
resource JRi at time tx.

In this work, a tool was used to convert the collected text-
based traces to binary traces in the OTF2 [6] format. Using
OTF2 traces with the Vampir [21] trace visualizer, we are able
to visualize for the first time, to the best of our knowledge,
the cluster utilization from the node to the core level and
from batch level to application level scheduling, as shown in
Fig. 5. A snapshot captured from Vampir is included in Fig. 5
and shows the execution of three out of 1,700 running jobs,
namely J1542, J1543, and J1544, from the W 24

1 workload. The
execution was performed with a combination between FCFS
as BLS and GSS as ALS. The tasks of the three jobs utilize
host 1. The other three hosts are also utilized by the three jobs.
Due to the limited space, the execution of the three jobs on
hosts 0, 1, and 2 are collapsed and not shown. Fig. 5 illustrates
a case of severe load imbalance of certain jobs, its effects
on the starting times of subsequent jobs in the batch, and,
consequently, the effects on the entire system performance and
utilization.

Scalability is an interesting aspect of the proposed two-level
simulation approach, in terms of increasing number of jobs
and, consequently, in terms of increasing the number of

Severe load imbalance within one job causes delayed start of next job  

Job	1542 Job	1543 Job	1544

Fig. 5. Snapshot of the Vampir visualization tool showing the generated
OTF2 trace of the proposed two-level scheduling simulator. Tasks of the same
job are represented using horizontal bars of the same color, while the white
space between the job bars represents the idle state of the allocated cores. The
scheduling algorithms shown herein are FCFS and GSS at BLS and ALS,
respectively. Jobs are obtained from workload W 24

1 . This snapshot spans
the execution time between 44,017 and 44,150 out of 88,441 seconds total
execution time.
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Fig. 6. The simulation wall clock time of the two-level simulator on an
increasing number of simulated jobs from W1.

simultaneous ALS instances. An initial scalability assessment
of the two-level simulator is presented in Fig. 6. In these
experiments, the simulation wall clock times are reported for
executing an increasing number of jobs (from 1,000 to 16,000)
from the W1 workload.

The simulation wall clock is defined as the total time re-
quired by the two-level simulator to simulate the execution of
all jobs of a given workload and their tasks. The experiments
were conducted with the least performing BLS-ALS combi-
nation, i.e., FCFS-STATIC, with Υ = 0.25. selected from the
results in Fig. 3. The results reveal a linear relation between
the increase in the number of simulated jobs and simulation
wall clock time consumed by the two-level simulator.

V. REPRODUCIBILITY OF THIS WORK

To ensure reproducibility of this work, apart from the infor-
mation in Section IV about the workloads and the simulated
platform considered in this work, the code of the proposed
two-level simulator is developed under LGPL license, and is
publicly available3. Under the same LGPL license, the devel-
oped Java-based tool used for extracting the jobs correspond-
ing to the most intensive time period is also available upon
request. Table II summarizes the software and the hardware
specifications of the platform on which the proposed two-level
simulator has been compiled and executed.

VI. CONCLUSION AND FUTURE WORK

With the growing complexity of modern and future HPC
systems, parallelism becomes more massive and available

TABLE II. Characteristics of the platform used for conducting experiments

Software
Operating system OS X 10.11.5
Required libraries
for build

GridSim v.5Alea v.4
SimGrid v.3.13

Compilers for SimGrid, clang v.7.3.0
for GridSim, javac v.1.8.0.91

Hardware
Processor model Intel Core i7
Processor frequency 2.5 GHz
RAM (DDR4) 16 GB

3https://c4science.ch/diffusion/3130/



at additional hardware levels. As a consequence, efficient
exploitation and scheduling at these levels of parallelism is
required. It is, therefore, important and necessary to explore
the relation between different levels of scheduling to enhance
the performance and utilization of modern HPC systems as a
whole and not only at individual scheduling levels. This work
can be considered as an important first step in this direction.
The proposed two-level simulation approach, connects simu-
lators from two scheduling levels (BLS and ALS) and showed
its validity to explore the relation between BLS and ALS.
Based on the proposed approach, a novel two-level simulator
was proposed and successfully used to simulate combinations
of three BLS and four ALS well-known algorithms from the
literature. The choice of ALS not only affects the performance
of the applications for which it was employed, but also the
performance of the chosen BLS for the other jobs in the batch.

The proposed two-level simulator also generates execution
traces in binary format. This enables the visual analysis of the
job execution at the batch level and task execution within each
job at the application level. Such an analysis can help identify
severe load imbalance and execution “hotspots”. This type
of insight is an important advantage for the development of
future multi-level scheduling algorithms. The first evaluations
of the proposed two-level simulator indicate its usefulness and
scalable performance with the number of simulated jobs. It was
able to simulate 16,000 jobs and their tasks at BLS and ALS
levels in less than 261 seconds.

Further work is needed and planned to deepen the under-
standing of the relation between different levels of scheduling
in modern large-scale HPC systems. It is important to under-
stand the root-cause behind certain BLS-ALS combinations
being able to better absorb the effect of variable job and task
lengths than others.
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F. Wolf, “Open Trace Format 2: The Next Generation of Scalable Trace
Formats and Support Libraries,” in Proceedings of the International
Conference on Parallel Computing (ParCo), pp. 481–490, April 2011,
Ghent, Belgium.

[7] Z. R. M. Azmi, K. A. Bakar, M. S. Shamsir, W. N. W. Manan, and
A. H. Abdullah, “Scheduling Grid Jobs Using Priority Rule Algorithms
and Gap Filling Techniques,” International Journal of Advanced Science
and Technology, vol. 37, pp. 61–76, 2011.

[8] P. Tang and P.-C. Yew, “Processor Self-Scheduling for Multiple-Nested
Parallel Loops,” in Proceedings of the International Conference of
Parallel Processing (ICPP), pp. 528–535, January 1986, Urbana, USA.

[9] C. D. Polychronopoulos and D. J. Kuck, “Guided self-scheduling: A
practical scheduling scheme for parallel supercomputers,” IEEE Trans-
actions on Computers, vol. 100, no. 12, pp. 1425–1439, 1987.

[10] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: A method for
scheduling parallel loops,” Communications of the ACM, vol. 35, no. 8,
pp. 90–101, 1992.

[11] F. Howell and R. McNab, “A Discrete Event Simulation Library for
Java,” in Proceedings of the 1st International Conference on Web-based
Modeling and Simulation, p. 6, January 1998, California, USA.
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