
A Bi-objective Scheduling Approach for Energy Optimisation of
Executing and Transmitting HPC Applications in Decentralised

Multi-cloud Systems

Aeshah Alsughayyir and Thomas Erlebach
Department of Informatics
University of Leicester, UK

ayya1@mcs.le.ac.uk, t.erlebach@mcs.le.ac.uk

Abstract—Although cloud computing greatly utilises virtualised
environments for applications to be executed efficiently in low-
cost hosting, it has turned energy wasting and overconsumption
issues into major concerns. Cloud infrastructure is built on a
great amount of server equipment, including high performance
computing (HPC), and the servers are naturally prone to
failures.

In this paper, we report on an energy optimisation ap-
proach for scheduling HPC applications, applied to decen-
tralised clouds system, that takes dataset transmission en-
ergy into account. The optimisation supports combining two
conflicting objectives: minimising energy consumption in con-
junction with the avoidance of application deadline violations
caused by resource failures. Furthermore, we propose two
decision strategies for weighing these conflicting objectives dy-
namically to account for their significance towards producing
an ideal energy efficiency and resource utilisation.

Through our developed simulation and experimental anal-
ysis using real parallel workloads from large-scale systems, the
results illustrate that our approach provides promising energy
savings with acceptable level of resource reliability.

Index Terms—online scheduling, non-preemptive tasks, DVFS
advance reservation

1. Introduction

The advent of cloud computing, although it greatly
supports virtualised environments for applications to be
executed efficiently in low-cost hosting, has turned energy
wasting and overconsumption issues into major concerns.
Cloud infrastructure is built upon a large number of servers,
including high performance computing (HPC) and massive
storage devices, that need huge energy supplies. In addition,
it raises a concern regarding the reliability of resource utili-
sation, as cloud resources are naturally prone to failures [1].

A recent study [2] reports that cloud datacenters con-
sume approximately up to 3% of the total energy consump-
tion around the world, and the consumption is projected
to grow significantly to 1012.02 billion kWh by 2020, a
35% growth [3]. This is due to the increasing need for

cloud services in many sectors, such as the evolution of
eScience and social big data analysis. A figure depicted in
[4] also estimates that the majority of energy in a typical
cloud datacenter is consumed by server computing activities,
while less than 50% is needed for all other components such
as storage and cooling systems.

In line with green cloud computing that recognizes the
necessity of increasing energy efficiency and minimising
global warming as well as air pollution [5], many pioneering
researchers have devoted their studies, surveyed in [6],
to improve the utilisation of cloud resources. To a large
extent, the core factors behind efficient resource utilisation
are the high capabilities of virtualisation techniques [7]
as well as the flexibility of dynamically adjusting voltage
and frequency of processors [8]. These techniques provide
an effective way to save energy as virtualisation enables
a reduction of the number of active physical machines
(relying on Virtual Machine Migration and Consolidation
techniques [6]) and, in turn, sharing bounded resources by
virtually creating further machines or CPUs to potentially
handle large workloads. Dynamic Voltage and Frequency
Scaling (DVFS), however, enhances the energy efficiency
of executing a workload.

Regarding the latter technique, i.e., DVFS, for sup-
porting energy efficiency, the idea is to reduce the sup-
plied voltage for a processor as much as possible while
the desired performance, represented by an execution time
bound, is still achievable [8]. In this setting, determining the
critical frequency when scheduling a task depends mainly
on measuring the status of resource utilisation. We have
discussed in previous work [9] the determination of the best
frequency for scheduling deadline-based tasks depending
on the instantaneous status of the resources. The study
focused on scheduling dependent HPC tasks on a decen-
tralised multi-cloud system using best-effort (non-advance-
reservation) mode, while in this paper we focus on the
advance-reservation setting where the scheduling decision
relies on precise data about resource availability.

To tackle energy-aware task scheduling over geographi-
cally distributed clouds, it is important to pay crucial atten-
tion to the energy consumed by dataset transmission. To our
knowledge, this has not been addressed in the literature yet.

In addition to accounting for the energy consumption from
both processing and dataset transmission while performing
global scheduling, one faces a natural trade-off between en-
ergy minimisation and conflicting objectives such as quality-
of-service optimisation.

In this paper, we propose energy optimisation algorithms
for scheduling HPC applications, applied to decentralised
cloud systems, taking the energy usage of dataset transmis-
sions into account. The optimisation supports the combina-
tion of two conflicting objectives, minimising both energy
consumption and application deadline violation caused by
resource failures. The main contributions of this paper are:
• an energy-aware global scheduling algorithm with ad-

vance reservation (EGS) for allocating HPC applica-
tions to participating clouds, based on DVFS and cost
of dataset transmission;

• an interdependent decision-making algorithm (referred
to as combination rate strategy) to address conflicting
objectives using a statistical approach;

• another decision-making algorithm (referred to as pref-
erence rate strategy) to optimise energy consumption
based on setting an upper limit for the allowed energy
consumption;

• an energy-aware local scheduling algorithm with ad-
vance reservation (ELS) for mapping each task to re-
quired resources.

The remainder of the paper is structured as follows.
In Section 2 we give an overview of related work. Then,
in Section 3, we introduce our system model and give
the problem formulation. Section 4 discusses our proposed
algorithms EGS and ELS. Section 5 describes the evaluation
of our algorithms, before we conclude the paper with an
outlook on future work in Section 6.

2. Related Work

The task scheduling problems taking into consideration
energy-efficiency have been a hot subject of extensive re-
search, see the approaches surveyed recently in [10], [6],
[11]. The biggest difference between all the existing ap-
proaches and ours is that we consider (i) the energy cost
of transferring datasets when globally scheduling applica-
tions over geographically distributed clouds and (ii) the
occupation rate of cloud resources as a factor to minimise
application deadline violations. The novelty here as far as
this paper is concerned is to precisely schedule applications
that consist of dependent tasks, based on a combination
of resource occupation and two energy dimensions: energy
consumed for execution and data transmission.

Apart from considering transmission energy, many ap-
proaches have been suggested to address the objective of
minimising energy consumption from different perspectives
such as datacenter management architecture [12], [13],
scheduling workflows [14], reservation in mobile networks
[15], or scheduling tasks in mixed-criticality systems [8].
In this section, we limit our discussion to closely relevant
work [16], [17], [18] that focuses on the energy consumption

problem for scheduling HPC applications in cloud comput-
ing systems.

Like this paper, the study in [16] also considers schedul-
ing dependent tasks with deadline constraints for a HPC
workflow and the conceptual use of scheduling levels: global
and local. The global scheduling is applied to a distributed
cloud system – their cloud system is centralised while ours is
decentralised – to assign workflows to datacenters, whereas
the local scheduling is for mapping tasks to machines.
They use offline MultiObjective Evolutionary Algorithms
(MOEAs) with the objective of optimising makespan, en-
ergy consumption, and deadline violations. Here, deadline
violation can be accidentally caused by resource failures
(e.g, when servers or network communications are down
for maintenance) or by imprecise scheduling decisions due
to the distributed environment. The latter is not expected
to occur by our scheduler, since we adopt a token-based
reservation schedule.

Wu et al. [17] propose a heuristic scheduling algo-
rithm for heterogeneous computing environments, aiming
to minimise power consumption without influencing the
performance to satisfy a Service Level Agreement (SLA).
In their approach, the minimum and maximum frequencies
need to be specified with submitted tasks as well as SLA.
For a given task, the scheduler repeatedly creates and assigns
VMs from servers that remain within the required perfor-
mance range until the task requirement is satisfied. If the
requirement is still not satisfied, the scheduler turns on idle
servers (if they exist) as required, allowing it to continue
the creation and assignment process of VMs. Their method
clearly has associated overhead costs when the scheduling
fails. On top of this, it has been demonstrated by Juarez
et al. [18] that creating or destroying VMs consumes non-
trivial energy. Additionally, providing thresholds for the
required frequency, in particular the maximum one, may
limit the performance, which seems critical for deadline-
based applications. Compared to their method, our approach
differs in that our local scheduler ELS determines the best
possible frequency to execute each task from the whole
range of frequencies that is supported by the processors.
We rely on both the provided computing volume per VM
and the required number of machines by each task, while
ensuring not to violate the deadline constraint of the whole
application.

A scheduling approach for optimising a bi-objective
function of either energy consumption or makespan in
heterogeneous cloud systems was proposed by Juarez et
al. [18]. They provide a combined cost function with a
weighting factor α that indicates the user preference of
either going for energy-efficiency or execution time. Their
heuristic algorithm ranks tasks of a given Directed Acyclic
Graph (DAG) by estimating the required energy. This is to
determine independent subsets of tasks as a preparation step
before allocating resources. In their method, the consumed
energy is estimated by multiplying the task processing time
by the proportional mean power. Compared to this, our en-
ergy model utilises DVFS where task execution time is mul-
tiplied by its instantaneous consumed energy that comprises

of both the static and the dynamic energy. The decision of
our global scheduler relies on one of the proposed strategies:
preference rate or combination rate strategy. The latter
aims to minimise application deadline violations caused by
resource failures alongside energy optimisation.

3. System Model and Problem Formulation

We consider a decentralised multi-cloud system that
consists of a number of geographically distributed heteroge-
neous clouds, owned by different providers. They participate
in a federated approach. The system consists of a set C of
decentralised clouds, where C = {c1, · · · , ck}, k ∈ N. Each
cloud cj has a homogeneous datacenter, characterised by
six parameters as described in Table 1. The manager server
msj of each cloud relies on three components: a global
scheduler, a local scheduler, and a resource controller. The
latter acts as a resource checker, and is also responsible for
query messages with participating clouds.

app

1 2

3 4

64 tasks

- : Number of VMs

- : Computing Volume

- EST : Earliest Start Time

- LFT : Latest Finish Time

𝒗𝒕

𝒏𝒕

Trigger EGS by A to choose the best cloud for app1

Send app to B and release reservation from A & C2

Trigger ELS by B to execute app3

A

B C

Original cloud for (app)

Apply X
Rate Strategy

PR

PR

PR

64

A

B CChosen cloud

release
PRapp

execute
EALS

EGS - Energy-aware Global Scheduling
ELS - Energy-aware Local Scheduling
PR - Provisional Reservation
DAG - Directed Acyclic Graph

DAG

- Estimated energy
- Communication cost
- Occupation rate

…

query
(app)

query
(app)

Figure 1. Overview of the approach, described in three steps

TABLE 1. CLOUD PARAMETERS OF A HOMOGENEOUS DATACENTER

Parameter Description
msj manager server
nSj number of servers
nCPUj number of physical processors per server
capacity(scj) number of virtual machines per server
[fminj , fmaxj] discrete frequency range of a processor
βj and αj processor power parameters

Figure 1 gives an overview of our system model, illus-
trating the role of global and local schedulers when they
receive a submitted application. Consider the cloud A that
receives an application app with its specific requirements for
execution. We call A ‘original cloud’ for app. The global
scheduler in A sends queries to its local resource and also
to all participating clouds (e.g., to B and C) by its resource

controller. In response to such queries, the local resource
checker of each cloud provides a provisional reservation
PR that consists of estimated energy, communication cost
and resource occupation rate, see B in Figure 1. These PRs
are then analysed by the original cloud A, using the EGS
algorithm, for deciding which cloud provides the best option
for executing app. Assume B is the chosen cloud (see the
bottom left of Figure 1). In this case, A will send messages
to release PR from all unchosen clouds, and concurrently
it sends the whole application app to the chosen cloud
B. Here, the local scheduler of B applies a scheduling
algorithm ELS for mapping tasks to machines, taking into
account app’s requirements and its precedence constraints.
In the remainder of this section, we divide the discussion
of our system model into scheduling framework, energy
models and problem formulation, referring to Figure 1 for
illustration.

3.1. Scheduling Framework

Dynamic scheduling in an advance reservation model,
using the token technique, depends principally on the actual
available slots for a given period of future time. It needs to
ensure that the time frame of an application is scheduled
within the resource capacity, taking into account already
occupied and reserved resources. Apart from the case of
unexpected resource failures, this scheduling model is not
expected to violate deadlines when executing an already
scheduled application due to time or resource conflicts.

Before discussing our scheduling framework, we define
the structure of applications followed in this paper. Con-
sider the top right part of Figure 1, which illustrates the
application as a directed acyclic graph (DAG). Here, an
application appm = (Vm, Em, STm, DLm) consists of a
set Vm of dependent tasks such that Vm = {t1, · · · , tq},
q ∈ N and a set Em of directed edges, each representing
a data dependency between two tasks. The sets of direct
predecessors and successors of a task ti are denoted by
pred(ti) and succ(ti), respectively. STm is the start time
of appm, and DLm is the deadline. The original cloud of
appm is denoted by oappm .

A given task ti(nti , vti , EST ti , LFT ti) ∈ Vm is defined
by four parameters as follows: nti is the required number
of VMs, vti is the computing volume per VM, EST ti is
the task’s earliest start time, and LFT ti is the task’s latest
finish time. As a guide for the scheduler, EST ti and LFT ti
of each task are calculated using (1) and (2), relying on start
time STm and deadline DLm of the submitted application.

EST ti =

{
STm if ti is entry
maxtm∈pred(ti)

(EST tm + etm) otherwise (1)

LFT ti =

{
DLm if ti is exit
mintm∈succ(ti)

(LFT tm − etm) otherwise (2)

Here, etm =
vtm
f is the execution time of tm at the

minimum speed in a list of speeds that contains only the
maximum speed of each cloud.

Our framework for scheduling submitted applications
permits energy optimisation, in the first place, without af-
fecting the desired performance. However, it is required that
the deadline DLm can be met by at least one participating
cloud. In general, each submitted appm can be either sched-
uled and then executed successfully, violated, i.e., scheduled
but failing to get enough resources at execution time, or
rejected.

The framework supports two scheduling strategies
(preference-rate and combination-rate) for deciding the
cloud that provides the best option, discussed in Section 4.
Each cloud, including oappm , that meets DLm should pro-
vide a provisional reservation (PR), consisting of:

i Estimated processing energy for all ti.
ii Estimated data transmission energy for the input, the

output and the disk image of appm.
iii Resource occupation rate from STm to DLm.

Given a set of PRs, the preference-rate strategy first se-
lects a subset of this set by checking the maximum allowable
energy of (i) and (ii) of each PR provided, then it gives
priority to (iii). Combination-rate strategy, however, analyses
(i) ,(ii) and (iii) of all provided PRs by dynamically adjusting
the priority between estimated energy and occupation rate.
Along with energy optimisation, it aims to avoid violation
cases that may be caused by unexpected resource failures.

An application appm is rejected if all clouds provide
a negative PR. This means all clouds do not have enough
resources to schedule appm due to either their capacity limit
or a tight DLm.

3.2. Energy Model

We consider two aspects of the energy consumed by
each appm: execution activities and the dataset transmission
between clouds (if oappm is not the executer one). Each of
these aspects is discussed as follows.

3.2.1. Energy formula for execution activities. Our for-
mula to compute execution energy, based on the processor
details of a cloud site, is presented explicitly in (3). It
calculates the total energy consumption Ecj by a set of
servers S in the cloud site cj as follows:

Ecj =
∑
s∈S

(∑
p∈P (s)

(
(βj +

∑
co∈COp

αjf
3
co)Dp

))
(3)

where P (s) is the set of processors of server s, Dp denotes
the active time of processor p, and fco denotes the frequency
level at which core co ∈ COp for some processor p runs.

The formula (3) accounts for the energy consumption
by executing tasks or even only by the processor being
active. In particular, it is affected by the static energy use
besides the execution activities, i.e., dynamic energy and
leakage current. The processor energy consumption can be
controlled by employing the dynamic voltage and frequency
scaling DVFS technique. It allows adjusting the processor
frequency up or down in order to manage its dynamic energy
and enhance energy saving as much as possible. The lower

the processor frequency is, the less instantaneous energy it
consumes, but incurring a longer execution time.

Figure 2. Energy consumption vs. frequency

However, due to
the convexity of the
energy metric (3),
not all lower fre-
quency levels are
useful for minimis-
ing the energy con-
sumption. We can
define a useless fre-
quency f to be a frequency at which the processor, when
executing a fixed volume of computation, always dissipates
an amount of energy that is larger than the amount of energy
dissipated at the frequency m that minimises the amount of
energy, and if f belongs to the interval [fmin,m). Figure
2 shows an example of the energy consumption per unit of
computation of a dual-core processor with α = β = 60 and
a number of discrete frequency levels in the range [0.17, 2.5],
where the interval of the useless frequencies is [0.17,m).
Despite the fact that these useless frequencies may have an
instantaneous energy consumption that is lower than that of
higher frequencies, they always need more energy in total
for executing a task than some higher frequency that finishes
the task sooner.

Thus, we eliminate useless frequencies as follows. For
each frequency f we compute the amount of energy con-
sumption of a processor for one unit of computation on
each core, which is given by Energy = β+(x∗αf3)

f for a
processor with x cores. We then remove all frequencies
that are smaller than the frequency that minimises this
energy. This elimination, where applicable, helps to reduce
the computation time of the scheduling method that selects
a suitable frequency for executing a task.

Moreover, we calculate the estimated energy consump-
tion by a particular task t as follows. Assume that nt is the
number of VMs assigned to t such that each VM occupies
one core, and these VMs run at frequency f . Then, the total
energy consumption by task t can be expressed as:

Et = (β +N(αf3))× ceil(
nt

N
)× et (4)

where et = vt
f is the execution time of task t at frequency

f , N is the number of cores per processor (assuming also a
single VM per core), and ceil(nt

N) represents the estimated
number of physical processors that are assigned to t.

3.2.2. Energy formula for dataset transmission. The
computation of transmission energy depends mainly on the
cost of wired connections through which the dataset of
a given size is transmitted. The link cost combines the
total consumption of the Internet nodes and cooling, the
transmission lines and amplifiers [19]. When a non-original
cloud (i.e., not oappm) executes an application appm, the
datasets, including the input and the disk image, need to
be transmitted to the executer cloud. Once the execution
of appm is completed, the output will also need to be
transmitted back to the oappm .

Estimating the energy consumption of data transmissions
through the Internet is notoriously difficult, and available
estimates vary by several orders of magnitude [19], [20].
We adopt an estimate of 0.2 kWh for the transmission of
1 GB as this value lies in the middle region of the range
of reported estimates. Furthermore, to account for the effect
that transmissions over longer distances are likely to require
more hops and thus more energy, we assume that the energy
consumption of a data transmission also depends linearly
on the distance over which the data is being transmitted.
We make the assumption that a typical transmission to
which the rate of µ = 0.2kWh/GB applies is a national
transmission over a distance of 500 km, so that the energy
cost of a transmission over a distance D can be obtained by
multiplication with the factor D/500 km. (If a more accurate
estimation of transmission energy costs is available for a
given scenario, it can be incorporated into our scheduling
algorithms in a straightforward way.)

We assume that all datasets of an application will be sent
through the same link. Given a set of delegated applications
whose datasets need to be sent from oappm to the executor
cloud, we estimate transmission energy Tcj as:

Tcj =
∑

appm∈A

(µ× dataSizeappm ×
linkLGappm

500 km
) (5)

where dataSizeappm denotes the total size of the disk
image, the input and output, and linkLGappm expresses the
link-length used for the transmission.

3.3. Problem Formulation

We consider a set of applications A, submitted over time
to different specified cloud sites in a multi-cloud system,
where A = {app1, . . . , appL}, L ∈ N. Cloud cj may
receive y applications, where 0 ≤ y ≤ L. The submission
of appm is unknown beforehand. Each cloud can accept
a received appm if the deadline can be met, or reject it
otherwise. If the appm gets accepted for scheduling, it will
be either executed successfully or violated. Our objective
is to primarily optimise the total energy consumption of all
accepted applications in the entire multi-cloud system with
the avoidance of rejections and application violation cases.

We attempt to minimise the overall energy usage Etotal
that includes (1) the computing energy usage Ecj , (2) the
dataset transmission energy cost Tcj and (3) the penalty cost
for rejecting/violating applications PN cj by cloud cj . Here,
the penalty cost PN for rejecting/violating an application
appm is PN =

∑
t∈appm

Et, where Et is calculated by
equation (4) at the highest performance among all clouds.
Thus, the objective function is as follows.

Minimise: Etotal =
∑

cj∈C(Ecj + Tcj + PN cj)
Subject to:

(1) endT imeappm ≤ DLm ∀ appm ∈ A where appm is
accepted

(2) fminj ≤ fco ≤ fmaxcj
∀ co in servers of cj ∈ C

By this objective function, a scheduling policy that rejects all
applications would have

∑
cj∈C Ecj =

∑
cj∈C Tcj = 0, but

it gets a very high
∑

cj∈C PN cj . The policy that executes
all applications at the highest cloud performance would tend
to have a very low penalty but a high

∑
cj∈C Ecj . The

scheduling policy which will have a better objective value
is the one that finds a good balance.

4. Global and Local Scheduling Algorithms

This paper makes original contributions to optimising
energy consumption when scheduling HPC applications over
distributed multi-cloud systems in two aspects. First of
all, it proposes EGS, an advance token-reservation based
algorithm as a novel global scheduling for allocating a
submitted application to the best cloud in the system. EGS
supports minimising application violation cases based on
the proposed CRS strategy. It considers gathering two en-
ergy costs when globally scheduling an application, which
are (i) execution energy at the CPU level and (ii) dataset
transmission (if applicable) at the network level. Second of
all, ELS focuses on scheduling application tasks locally in
cloud resources using the dynamic voltage and frequency
scaling technique. The designed algorithms are presented in
detail in the remainder of this section.

4.1. EGS: Energy-aware Global Scheduling with
Advance Reservation

As described in Figure 1, EGS takes as input a submitted
application and a set of provisional reservations PRs from
participating clouds to pick the best PR provided. It is
triggered by oappm upon the arrival of all the positive
responses from clouds, i.e., offering the ability of scheduling
the submitted application with meeting its deadline. Each
PR consists of both eEnergyV alue and occupRt and has
a limited token period of validity starting from the time
of response, which enables a cloud provider to release its
resources by cancelling its PR if no confirmation is received
from oappm within the allowed time.

EGS is performed based on one of the two proposed
strategies: PRS or CRS (cf. Section 3.1), explained as fol-
lows:
• Preference Rate Strategy (PRS).

PRS minimises primarily the energy consumption based
on a given preference factor Rt that can be cho-
sen as any fraction in the range [0,1). The idea
is to determine the acceptable energy costs by as-
signing the min(eEnergyV alue) provided as the
lower bound, while choosing min(eEnergyV alue) +
(min(eEnergyV alue) × Rt) as the upper bound. Only
PRs whose eEnergyV alue lies in this range are then con-
sidered, and the strategy then minimises occupRt among
those PRs.
Intuitively, if the given factor Rt == 0, EGS would
always choose the cloud that gives the minimum energy
immediately without considering occupRt. Accordingly,

the applications will be executed at the minimum offered
energy consumption.

• Combination Rate Strategy (CRS).
Unlike PRS, CRS aims to simultaneously satisfy the
minimisation of both the estimated eEnergyV alue and
occupRt. The strategy is inspired by two statistical anal-
ysis concepts that are the standard deviation SD and
the coefficient of variation RSD. The SD for a set of
eEnergyV alue expresses how much the proposed en-
ergy values differ from their mean value, e.g., for a set
Energy = {en1, · · · , ena}, SD can be calculated by (6):

SD =
2

√∑
eni∈Energy |eni − Energy|2

a
(6)

where Energy is the mean of the data set Energy,
calculated by Energy =

∑
en∈Energy en

a . The coefficient
of variation RSD is the ratio of standard deviation to
the mean Energy, and can be expressed as: RSD =
SD/Energy.
To pick the best cloud based on this strategy, the EGS
forms two lists eEnergyList and occRtList with all
proposed eEnergyV alue and occupRt. Here, the RSD
of each list represents the amount of dispersion between
the elements such that low dispersion would refer to very
similar proposed values, which may make no difference
when choosing any element. High dispersion, however,
means that it is important to consider each element as
there is a clear difference between the elements.
Having the RSD from eEnergyList and occRtList, it
makes sense to use these to determine a weight for each
objective in a weighted sum. More precisely, the higher
weight hw will be given to the set of items that are
highly dispersing and the lower weight lw to the other list.
Assume that eEnergyV alue has a higher weight hw, the
EGS will choose the cloud with minimum combined rate
from the list: {(eEnergyV alue1 ∗ hw + occRtList1 ∗
lw), · · · , (eEnergyV aluek ∗ hw + occRtListk ∗ lw)},
where k is the number of received provisional reserva-
tions.

The pseudo code presented in Algorithm 1 and 2 gives a
high-level view of our EGS algorithm. A participating cloud
that is able to schedule an application will provide a PR,
consisting of a positive estimation of eEnergyV alue for
processing and transmitting the dataset, see lines 1-5 of Al-
gorithm 1. A negative eEnergyV alue, however, means that
the provider cloud cannot satisfy the application’s deadline,
and thus the return pr will not be added in the list PRs.
In lines 6-9, the algorithm determines the output of either
rejecting app if none of the clouds can schedule it (i.e.,
PRs == ∅), or selecting a cloud immediately if only one
positive option is found (i.e., PRs.size == 1).

If more than one cloud can execute the app, the decision,
based on either PRS or CRS, of which cloud will execute
it is described in lines 11-12 of Algorithm 1. In lines 13-14,
all unchosen clouds are notified to release their pr.

Algorithm 1 EGS
Energy-aware global scheduling with advance reservation.

Inputs: app is a submitted application to oapp
C = {c1, · · · , ck}, k ∈ N is a set of connected clouds
PRS (preference) and CRS (combination) are rate strategies.

Outputs: A globally scheduled app in ci the best cloud found.
Begin
1: PRs := ∅ is a set of provisional reservations provided from all ci
2: for each msi cloud manager server ∈ C do
3: pr ← msi.makeReservation(app) expanded in Algorithm 2
4: if pr.eEnergyV alue > 0 and pr.Token.isV alid then
5: PRs← pr
6: if PRs == ∅ then
7: set app.isRejected=true
8: else if PRs.size == 1 then
9: set chosenCloud(app, PRs[1])

10: else
11: set pr ← applyDecisionStrategy (PRs, CRS (or PRS))
12: chosenCloud (app, pr)
13: removeFrom (PRs, pr)
14: releasePR (app, PRs)
End

Algorithm 2 makeReservation

Inputs: appm(Vm, Em, STm, DLm).
Outputs: a token that is associated with PR.
Begin
1: CPUcap := is the processors capacity of this cloud.
2: for i := 1 to q do
3: Thr := CPUcap− nti
4: P := is the number of used processors at EST ti .
5: bestIntvl := ∅
6: if Thr < 0.0 then
7: return token := 0.
8: if Thr ≥ P then
9: inPeak := false and startAv := EST ti .

10: else
11: inPeak := true.
12: get all overlapping tasks and form list of start and end points PT =

{pt1, · · · , ptb}, excluding any start point pt where pt ≤ EST ti .
13: for j := 1 to b do
14: if ptj is a start point then
15: P = P + nptj
16: if inPeak = false and (P > Thr or ptj = LFT ti) then
17: try to schedule ti in [startAv, ptj] and get its f
18: if f is the minimum frequency in this cloud then
19: bestIntvl := [startAv, ptj] then break
20: else if [startAv, ptj] is longer than bestIntvl then
21: bestIntvl := [startAv, ptj]
22: inPeak := true
23: else
24: if ptj is an end point then
25: P = P − nptj .
26: if inPeak = true and P ≤ Thr then
27: inPeak := false and startAv := ptj .
28: if bestIntvl 6= ∅ then
29: schedule ti to bestIntvl and update the EST of its succ(ti)
30: calculate the estimated energy consumption Eti .
31: eEnergyV alue = eEnergyV alue+ Eti
32: else
33: return token := 0.
34: calculate occupRt.
35: generate unique token and associate it with the scheduling.
36: return token.
End

4.2. ELS: Energy-aware Local Scheduling
Algorithm

For each task ti in the application app, the ELS algo-
rithm is responsible for assigning ti to servers, processors,
and cores that will execute it, according to the schedule
by Algorithm 2. The ELS is triggered whenever the time
for executing a ti is due to start as it allocates the required
machines to the task for execution. The app will be violated
if ti has failed to execute (e.g., by not getting enough
resources at run time), which means the schedule of all its
succ(ti) will be cancelled.

The goal of Algorithm 3 is to choose the resources in a
way that helps minimising the computing energy consump-
tion. Thus, it initially tries to utilise as many active servers
as possible, in line 4, so as to reduce the cost of activating
ideal servers. It also utilises the active processors that have
free virtual capacity in order to minimise the static energy
consumption, see lines 5-9.

Algorithm 3 ELS
Energy-aware local scheduling with advance reservation.

Inputs: Task ti(nti).
capacity(Sc) the capacity of servers in this cloud.
The list of all servers.

Outputs: Allocating the required machines to ti.
Begin
1: Rn := nti
2: form the list of all active servers activeServersList
3: sort the activeServersList in ascending order of their free capacity.

4: for each server s ∈ activeServersList do
5: form the list of processors that have free capacity CPUsList
6: sort the CPUsList in ascending order of their free virtual capacity.

7: for each processor p ∈ CPUsList do
8: allocate a number of VMs that fulfill Rn if available, or equal

to the number of free VMs otherwise.
9: reduce Rn value by the number of allocated VMs.

10: if Rn = 0 then
11: break
12: if Rn > 0 then
13: activate ceil(Rn/capacity(Sc)) idle servers.
14: allocate the remaining number of required VMs that is equal to Rn.
15: start executing the task ti.
End

5. Experimental Evaluation

This section presents the experiments conducted to eval-
uate the proposed schedulers, concentrating on two aspects:
• Measuring the effect of the proposed schedulers on the

energy saving based on the general objective function
cost (i.e., the total of energy usage plus penalty for
rejected/violated applications). It gives the average reduc-
tion with respect to different application workloads.

• Measuring the impact of resource failures (i.e., failures
that may occur accidentally in the cloud system) on
already scheduled applications. This is to get a rough idea
of how our proposal can contribute to providing a reliable
scheduler.

Finally, this section will discuss the effectiveness of the
proposed strategies, PRS and CRS, for different workloads
of applications with respect to (i) the average reduction of
energy and (ii) the number of HPC application rejections
and violations.

5.1. Configurations

We have used an improved version of our simulation
tool, presented in [9], mainly extended to handle the re-
source reservation technique. The simulation experiments
use a decentralised multi-cloud system of five distributed
clouds around the world. The characteristics of these clouds
including approximate distances between them are shown
in Table 2 and Table 3. In each cloud site, we assume
the capacity of VMs per server is twice the number of its
physical processors, and all the processors support 5 levels
of frequency in [fmin, fmax], where fmin is 37.5% of fmax.

TABLE 2. SPECIFICATION OF THE FIVE CLOUDS USED IN OUR
SIMULATION.

Data Total Performance CPU parameters
center #VMs (TFLOP/s) α β fmax

WestUSA 32000 0.0072 7.5 65 1.8
Germany 32000 0.0096 60 60 2.4
Japan 32000 0.012 4.5 90 3.0
India 32000 0.0128 4.0 90 3.2
Brazil 32000 0.0128 4.4 105 3.2

TABLE 3. APPROXIMATE DISTANCES IN KM BETWEEN THE CLOUD
DATACENTERS.

— WestUSA Germany Japan India Brazil
W — 9094.4 8632.4 13365.2 9058.6
G 9094.4 — 9058.5 6759.7 9442.2
J 8632.4 9058.5 — 5965.9 17389.8
I 13365.2 6759.7 5965.9 — 16201.9
B 9058.6 9442.2 17389.8 16201.9 —

TABLE 4. THREE CATEGORIES OF PARALLEL WORKLOAD
APPLICATIONS.

Category Max. nti # applications # tasks in each app
Low-load 8696 200 64
Mid-load 11384 200 64
High-load 16384 200 64

Table 4 describes three categories of parallel application
workloads extracted from different logs of real large-scale
systems (i.e., LLNL-uBGL-2006-0, LLNL-Thunder-2006-0,
LLNL-Atlas-2006-0, and ANL-Intrepid-2009-1) [21], [22].
The task dependencies are inferred, as in [23], from the
provided start and finish times of executing jobs in each
log.

We assume the deadline to execute a submitted appm is
calculated by its estimated execution time eExecT imeappm ,
extended by 20% in the case of loose deadline, and by
0.1% for tight deadline. For example, the loose dead-
line DLm is calculated as DLm = eExecT imeappm +
(eExecT imeappm × 0.2). Moreover, all tasks of appm are

CPU-bound. The applications are submitted to the multi-
cloud system at different times, and the gap interval between
each two consecutive application submissions is equal to
1000 seconds.

5.2. Experimental Results

To evaluate the EGS and ELS algorithms with both
PRS and CRS strategies, the highest frequency mode is
considered as an upper bound of energy usage. It models
the case when the objective of the cloud providers is to offer
their services at the highest performance. It is also applied
with PRS (referred to as PRS.HF mode) and CRS (referred
to as CRS.HF mode) to attempt minimising energy usage.
We assume that Rt is equal to 0.01 for the PRS strategy
to allow choosing the cloud that gives the minimum energy
immediately without considering occupRt.

In addition to the general objective function as a metric,
the rate of total energy usage is calculated to compare

the different scheduling strategies by
∑

cj∈C(Ecj
+Tcj

)∑
appm∈A′

∑
t∈appm

vt
.

Here, Ecj and Tcj are the amount of energy usage by cloud
cj for execution and transmission activities, A′ is the set of
applications that are successfully completed, and vt is the
computing volume of the executed task t that belongs to a
successfully completed application appm.

0

10

20

30

40

50

60

70

80

90

Low-load Mid-load High-load

C
o

st
 o

f
o

b
je

ct
iv

e
fu

n
ct

io
n

 in
 G

W
h

Application categories

PRS CRS

PRS.Highest Frequency Mode CRS.Highest Frequency Mode

Figure 3. Different scheduling strategies with various workload categories
vs. the objective function.

5.2.1. Effect of the proposed schedulers on energy opti-
misation. Figure 3 shows the total energy cost achieved by
PRS, CRS, PRS.HF and CRS.HF according to the proposed
objective function that is applied on the various workloads.
On the one hand, it is clear from the chart that PRS and CRS
produce a lower energy cost than PRS.HF and CRS.HF in all
cases by an average of about 19.3% and 23.1%, respectively.
On the other hand, the chart shows a considerable difference
in the total energy cost of PRS and CRS, with PRS being
smaller than CRS by about 7.5% in the low-load case.
However, CRS produces total energy cost less than the one
by PRS by about 1.97% with mid-load and about 8.15%

with high-load. This indicates that whenever the workload
gets heavier the CRS strategy produces better results in
terms of total energy cost.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Low-load Mid-load High-load

R
at

e
o

f
to

ta
l e

n
er

gy
 u

sa
ge

Application categories

PRS CRS

PRS.Highest Frequency Mode CRS.Highest Frequency Mode

Figure 4. Different scheduling strategies with various workload categories
vs. the rate of energy usage.

0

23

44

0

21

43

0

16

38

0

16

38

0

5

10

15

20

25

30

35

40

45

50

Low-load Mid-load High-load

N
u

m
b

er
 o

f
re

je
ct

ed
 a

p
p

lic
at

io
n

s

Application categories

PRS CRS

PRS.Highest Frequency Mode CRS.Highest Frequency Mode

Figure 5. Different scheduling strategies with various workload categories
vs. the number of rejected applications.

Considering the rate of the energy consumed by exe-
cuting tasks and transmitting datasets, shown in Figure 4,
the difference between PRS, CRS, PRS.HF, and CRS.HF is
still evident with the various workload categories. Despite
the fact that CRS computed more volume than PRS due to
a lower number of rejected applications with both mid-load
and high-load, as shown in Figure 5, it has a lower rate
of energy usage than PRS by an average of about 24.8%.
Moreover, PRS.HF and CRS.HF produced different rates of
energy usage, although they rejected the same number of
applications with the different workload categories.

5.2.2. Impact of the resource failures on scheduled ap-
plications. Regarding the level of resource reliability while
scheduling, we simulate ELS in scenarios where a per-
centage of servers (growing in increments of 6%) become

0

1

2

3

4

0 6% 12% 18% 24% 30% 36%N
u

m
b

er
 o

f
vi

o
la

te
d

 a
p

p
lic

at
io

n
s

Percent of servers down

Loose deadline
PRS CRS

0

2

4

6

8

10

0 6% 12% 18% 24% 30% 36%N
u

m
b

er
 o

f
vi

o
la

te
d

 a
p

p
lic

at
io

n
s

Percent of servers down

Tight deadline
PRS CRS

Figure 6. Number of violations vs. percentage of down servers

unavailable at runtime. For each execution, the failures are
triggered from time 0, and stay in a failed state until the end
of the simulation. Figure 6 shows the number of violations
occurring due to the increased number of unavailable servers
in all cloud sites for inputs with loose and tight deadlines.
The experiments are performed on 40 submitted applications
that are randomly mixed from the low-load and mid-load
categories. In the case of loose deadlines CRS achieved
a number of violations lower than PRS by an average of
36.1%, while it was about 51.4% lower in the tight dead-
lines case. This reflects the positive effect of the dynamic
consideration of resource rate occupation by CRS compared
to PRS.

5.3. Discussion

The experimental results illustrate that scheduling HPC
applications, focusing on optimising overall energy con-
sumption, is affected by several interdependent factors. The
affecting elements we want to shed light on are the kinds
of applications in terms of their requirements and the status
of resource occupation when an application is received for
scheduling.

In general, scheduling an application to a cloud that
appears better at the submission time may not lead to the
best energy saving result over time. Specifically, in the
case of high-load applications, CRS produces better energy
savings than PRS due to the dynamic technique of balancing
the workloads among all clouds when applicable.

Figure 7 and Figure 8 describe the performance of
all clouds in the system when submitting 200 high-load
applications by running PRS and CRS, respectively. Here,
we can observe the behaviours of resource occupation in
the multi-cloud system. PRS always exploits heavily the
cloud that gives the lowest energy (e.g., see Japan for the
submissions 1 - 20), causing in some cases the applications
scheduled later to be allocated to less efficient clouds. As
CRS tries to balance the level of resource utilisation over all
clouds, it chose firstly Germany which has a higher α (i.e.,
seems to consume higher energy than Japan), then India,
see Figure 8. Considering the overall reduction of energy,
CRS gives better results than PRS for medium to high load
applications. We can list the main findings of our study as
follows:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

U
ti

lis
at

io
n

Time at submitted application

WestUSA Japan Brazil Germany India

Figure 7. Resource utilisation with preference rate Strategy PRS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

U
ti

lis
at

io
n

Time at submitted application

WestUSA Japan Brazil Germany India

Figure 8. Resource utilisation with combination rate strategy CRS

• The best energy cost saving of about 23%, based on
our objective function, is obtained by CRS compared
to its upper bound CRS.HF.

• None of the strategies (i.e., PRS or CRS) proves itself
to be the best with any submitted workloads in terms
of energy efficiency, where PRS shows better results
with low-load compared to CRS.

• Application deadline violations can be avoided for both
tight and loose deadlines with CRS being better than
PRS by an average of 43%.

• As we use token-based reservation, the token validity
time and the arrival-gap of submitted applications are
crucial factors impacting on the number of application
rejections.

6. Conclusion

Approaches to the scheduling of HPC applications with
the goal of energy optimisation should not focus on just
the single parameter of energy consumption but incorporate
different parameters, ranging from CPU usage levels to

data transmissions at network level. In multi-cloud sys-
tems, optimal scheduling for energy efficiency that relies
on resource utilisation needs to pay special attention to
resource reliability. This paper has focused on combining
two different aspects of energy usage while scheduling HPC
applications and has considered simultaneously minimising
application rejections and deadline violations, to support
resource reliability, with energy optimisation.

The conducted experiments using our simulation have
shown that our scheduling approach using the proposed
strategies can reduce energy consumption by an average
of 21% as compared to the upper bound, determined by
the highest performance possible in the cloud-system. The
results have revealed that a significant issue in energy aware
scheduling is that a designed mechanism that depends only
on the absolute minimum energy value to execute an appli-
cation may not necessarily produce the best overall energy
saving in all cases.

Furthermore, the results have shown that there is an
interdependency between using one of the proposed strate-
gies for scheduling decisions and the characteristics of the
submitted applications. Consequently, we plan to further
optimise energy consumption by designing an adaptive al-
gorithm that can dynamically adjust the decision strategy (if
needed) based on the given scheduling problem.

We will be investigating on designing a rescheduling
mechanism, relying mainly on the release of resource reser-
vation, that may help in optimising further energy consump-
tion as well as application rejection cases.

Acknowledgment

The first author would like to thank the department
of computer science in Taibah University in Medina for
partially supporting this work.

References

[1] Y. Sharma, B. Javadi, W. Si, and D. Sun, “Reliability and energy
efficiency in cloud computing systems: Survey and taxonomy,” J.
Network and Computer Applications, vol. 74, pp. 66–85, 2016.

[2] “Gartner’s strategic technology trends for 2017,” 2016. [Online].
Available: http://www.gartner.com/technology/home.jsp

[3] J. Whitney and P. Delforge, “Scaling up energy efficiency across the
data center industry: Evaluating key drivers and barriers. issue paper,”
Natural Resources Defense Council (NRDC), 2014.

[4] X. Wang and Y. Wang, “Energy-efficient multi-task scheduling based
on mapreduce for cloud computing,” in Seventh International Confer-
ence on Computational Intelligence and Security, CIS 2011, Sanya,
Hainan, China, December 3-4, 2011, 2011, pp. 57–62.

[5] R. Buyya, A. Beloglazov, and J. H. Abawajy, “Energy-efficient
management of data center resources for cloud computing: A
vision, architectural elements, and open challenges,” CoRR, vol.
abs/1006.0308, 2010.

[6] T. Kaur and I. Chana, “Energy efficiency techniques in cloud com-
puting: A survey and taxonomy,” ACM Comput. Surv., vol. 48, no. 2,
pp. 22:1–22:46, 2015.

[7] I. Rodero, J. Jaramillo, A. Quiroz, M. Parashar, F. Guim, and S. Poole,
“Energy-efficient application-aware online provisioning for virtual-
ized clouds and data centers,” in International Green Computing
Conference 2010, Chicago, IL, USA, 15-18 August 2010, 2010, pp.
31–45.

[8] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy effi-
cient dvfs scheduling for mixed-criticality systems,” in Proceedings
of the 14th International Conference on Embedded Software, ser.
EMSOFT ’14. New York, NY, USA: ACM, 2014, pp. 11:1–11:10.

[9] A. Alsughayyir and T. Erlebach, “Energy aware scheduling of HPC
tasks in decentralised cloud systems,” in 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing,
PDP 2016, Heraklion, Crete, Greece, February 17-19, 2016, 2016,
pp. 617–621.

[10] I. Pietri and R. Sakellariou, “Mapping virtual machines onto physical
machines in cloud computing: A survey,” ACM Comput. Surv., vol. 49,
no. 3, pp. 49:1–49:30, Oct. 2016.

[11] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud computing: Survey on energy efficiency,”
ACM Comput. Surv., vol. 47, no. 2, pp. 33:1–33:36, Dec. 2014.

[12] J. Guitart, “Toward sustainable data centers: a comprehensive energy
management strategy,” Computing, pp. 1–19, 2016.

[13] A.-C. Orgerie and L. Lefèvre, “Energy-efficient reservation infras-
tructure for grids, clouds and networks,” Energy Efficient Distributed
Computing Systems, pp. 133–162, 2012.

[14] S. Iturriaga, B. Dorronsoro, and S. Nesmachnow, “Multiobjective
evolutionary algorithms for energy and service level scheduling in
a federation of distributed datacenters,” International Transactions in
Operational Research, vol. 24, no. 1-2, pp. 199–228, 2017.

[15] E. J. Vergara, S. Nadjm-Tehrani, and M. Asplund, “Sharing the
cost of lunch: Energy apportionment policies,” in Proceedings of the
11th ACM Symposium on QoS and Security for Wireless and Mobile
Networks, ser. Q2SWinet ’15. New York, NY, USA: ACM, 2015,
pp. 91–97.

[16] S. Iturriaga, S. Nesmachnow, A. Tchernykh, and B. Dorronsoro,
“Multiobjective workflow scheduling in a federation of heterogeneous
green-powered data centers,” in 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), May
2016, pp. 596–599.

[17] C. Wu, R. Chang, and H. Chan, “A green energy-efficient scheduling
algorithm using the DVFS technique for cloud datacenters,” Future
Generation Comp. Syst., vol. 37, pp. 141–147, 2014.

[18] F. Juarez, J. Ejarque, and R. M. Badia, “Dynamic energy-aware
scheduling for parallel task-based application in cloud computing,”
Future Generation Computer Systems, 2016.

[19] V. C. Coroama and L. M. Hilty, “Assessing internet energy intensity:
A review of methods and results,” Environmental impact assessment
review, vol. 45, pp. 63–68, 2014.

[20] V. C. Coroama, D. Schien, C. Preist, and L. M. Hilty, “The energy
intensity of the internet: home and access networks,” in ICT Innova-
tions for Sustainability. Springer, 2015, pp. 137–155.

[21] “Parallel Workloads Archive,” http://www.cs.huji.ac.il/labs/parallel/
workload/index.html, 2005, [Online; accessed 14-May-2017].

[22] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with
using the parallel workloads archive,” J. Parallel Distrib. Comput.,
vol. 74, no. 10, pp. 2967–2982, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2014.06.013

[23] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu, “Online op-
timization for scheduling preemptable tasks on IaaS cloud systems,”
Journal of Parallel and Distributed Computing, vol. 72, no. 5, pp.
666 – 677, 2012.

http://www.gartner.com/technology/home.jsp
http://www.cs.huji.ac.il/labs/parallel/workload/index.html
http://www.cs.huji.ac.il/labs/parallel/workload/index.html
http://dx.doi.org/10.1016/j.jpdc.2014.06.013

