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Abstract—Cloud datacenters are increasingly hosting business
workloads. Such long-running, on-demand workloads raise im-
portant challenges in datacenter operation, requiring efficient
online scheduling of workloads with unprecedented characteris-
tics under strict service level agreements (SLAs). In this work,
we propose an approach to manage the risk of not meeting
SLAs. Our approach is based on portfolio scheduling, which is an
online scheduling technique that dynamically selects a scheduling
algorithm from a set (portfolio), subject to a possibly changing
utility function. Ours is the first datacenter-scheduling approach
to consider operational and disaster-recovery risks. Using trace-
based simulation with traces collected from a commercial multi-
datacenter environment, we give evidence that portfolio schedul-
ing is able to mitigate risks significantly better than its constituent
scheduling algorithms and better than datacenter engineers.

Index Terms—Portfolio Scheduling, Datacenter Resource Man-
agement, Risk Management, Risk Tolerance, Operational Risk,
Disaster Recoverability Risk.

I. INTRODUCTION

Attracted by the dual promise of infrastructure efficiency [1]
and widespread uptake [2], large organizations are increas-
ingly using public- and/or private-cloud resources to run their
large-scale business-critical workloads (BCWs). Although the
promises are enticing, hosting BCWs is relatively new, raising
many resource management and scheduling challenges. Partic-
ularly challenging is enforcing for such workloads risk-aware
service-level agreements (SLAs). Traditional datacenters focus
on best-effort execution of workloads [3], [4], which may not
be suitable for risk-aware SLAs and thus could lead to high
financial penalties for cloud operators if SLAs are violated.
In contrast, in this work we address the research question of
How to manage the risk of not meeting SLAs for datacenters
hosting BCWs?

Managing BCWs means adapting to new workload charac-
teristics. According to Shen et al. [5], BCWs are significantly
different from the workloads previously addressed by the
datacenter research community, and in particular from the
computationally intensive parallel and grid workloads, and
from the analytics workloads common at large web-scale
companies (e.g., Facebook and Google). One major difference
is that BCWs are expressed as requests for (non-transparent)
VMs, instead of explicit queries or requests to execute a
specific application, mainly because for datacenter customers
details about their software are too sensitive to reveal.

Fig. 1: Virtualized datacenters hosting BCWs.

The operational model emerging in datacenters hosting
BCWs focuses on long-running virtual machines (VMs)—
instead of single parallel jobs or many short-lived user-requests
to the cloud operator. This means a shift to high reliability and
availability of resources and high resource utilization, from
the traditional focus on short job runtimes. We discuss this
operational model in Section II.

There are many types of risks in hosting BCWs in datacen-
ters: operational risks of requested resources not performing
as promised, reliability risks of resources failing, etc. These
risks affect many datacenter stakeholders: DevOps engineers,
reliability engineers, infrastructure engineers, legal represen-
tatives, capacity planners and business managers, etc.

Meeting complex SLAs in datacenters requires monitoring
and reasoning about diverse operational metrics, to an extent
that exceeds since at least the early 2010s the capabilities of
unassisted engineers [6]. Although many automated schedul-
ing approaches exist, over the past two decades numerous
studies [3], [4] have shown that datacenter schedulers are
brittle—different schedulers will exhibit different periods of
poor performance that in turn lead to unexpected performance
issues, unnecessary resource overload, and even to (cascading)
failures. Instead of trying to develop scheduling policies ca-
pable to address all possible workloads, which is error-prone



and ephemeral [7], it may be possible to dynamically select
active scheduling policies from a pool of available schedulers.

Selecting the active scheduler automatically, while meeting
the SLAs of BCWs and in particular addressing risk, is the
focus of this work. Current approaches in practice leverage
human expertise [4], [6], but lack online automation. Dynamic
selection of schedulers can be done by a meta-scheduler,
such as a portfolio scheduler [8], [7], but currently risk is
not supported by published meta-schedulers. Addressing the
research question, in this work we extend the state-of-the-art
in portfolio scheduling for datacenters with explicit support
for risk management. Our main contribution is three-fold:

1) We extend with support for two types of risk the state-of-
the-art in datacenter portfolio scheduling (Section III).

2) We design two heuristics-based risk-aware scheduling
policies (Section IV). The two new policies address
risk-aware utility functions related to operational and
disaster-recovery risks.

3) Through trace-based simulation, we provide new insight
into the operation of portfolio scheduling in datacen-
ters (Section VI). The experimental setup uses traces
collected from real datacenters (Section V), enabling
the comparison of the portfolio scheduler with both its
constituent policies and with the performance of the real-
world engineers in a commercial datacenter operator.

II. SYSTEM MODEL FOR VIRTUALIZED DATACENTERS
HOSTING BUSINESS-CRITICAL WORKLOADS

We use in this work the system model for virtualized
datacenters hosting BCWs introduced by van Beek et al. [7].
We describe the datacenter and the workload models, in turn.

A. Virtualized Datacenters Architecture

The typical operation of this architecture is depicted in
Figure 1. In the top row (the section labeled “Requests”),
workloads arrive in the system as requests for hosting, one
or several VMs, grouped as vClusters. Datacenter customers
define their own vClusters, including detailed resource speci-
fications (e.g., memory in GB, amount of CPU cores, storage
space in GB), affinities between VMs (e.g., that one VM is
not allowed to be in the same datacenter as another).

Depicted in the bottom row, the physical “Infrastructure”
consists of a collection of inter-connected datacenters that
use commercial off-the-shelf virtualization technology, such
as hypervisors on each node, to host the VMs of BCWs. Each
datacenter consists of several clusters of physical machines
that can host VMs, and a cluster-wide parallel storage system.
A high-speed network operates inside each datacenter; we use
in this work an all-to-all Infiniband model, but a Clos topology
could also be used in our model without changes.

In the middle row, core resource management and schedul-
ing components respond to requests. The system-wide VM
manager orchestrates the placement of VMs on the physical
machines. The System monitor collects the status of each

customer request and system component, at run-time. A non-
traditional component is the system meta-scheduler—the new
Portfolio Scheduler component.

B. Business-Critical Workloads

We focus in this work on large-scale BCWs, which have
the following reported characteristics [5]:

1) Requests arrive in the system not as specifications of
jobs, but as specifications of VMs that will run jobs
(the vClusters introduced in Section II-A).

2) Long run-times—VMs often run for months or years.
In contrast, scientific workloads consist mainly out of
shorter-lived jobs that run for only hours or days.

3) Consequence of point 2, reducing VM-runtime is not a
performance goal here, unlike traditional workloads.

4) Most VMs are small relative to parallel workload jobs—
60% of the VMs use less than 4 cores and 8 GB.

5) Most VMs have very low resource utilization compared
to scientific workloads, that is, over 50% of the VMs
have an average utilization of under 10%.

BCWs have additional important properties:
P1. VMs of BCWs can be consolidated on the same

physical resource, which is a consequence of points 4 and 5
that contrasts with traditional parallel and grid operation.
We define consolidation as the number of VMs sharing the
resources of a the same set of physical machines. Datacenter
operators have to limit consolidation, such that VMs can
perform according to SLAs. For example, rarely more than
10 VMs can be consolidated on the same physical machine.

P2. The operational risk tolerance is low. Even a small
fraction of under-performing VMs quickly leads to an esca-
lated request for engineering time, until the crisis is resolved.
This is unscalable and costly, and can cause bad publicity.

P3. The risk tolerance for (near-)full-datacenter outages
is very low. Disaster-recovery is critical: an hour of downtime
cascading across many VMs will incur high financial penalties
and damage datacenter reputation. Instead, the cloud operator
should recover from disasters quickly, by having other data-
centers absorb the workload of the failed datacenter. (The risk
tolerance for single-VM failures remains high.)

III. PORTFOLIO SCHEDULING FOR MANAGING
OPERATIONAL AND DISASTER-RECOVERY RISKS

To reduce operational and disaster-recover risks in datacen-
ters, in this section we design a risk-aware portfolio scheduler
that selects dynamically the schedulers guiding the placement
of VMs in a (multi-)datacenter environment. We describe the
requirements, our risk-aware portfolio scheduling architecture,
and three risk-aware utility functions, in turn.

Portfolio scheduling is the result of the intuition that it is
very difficult or even impossible [3] to create a single sched-
uler that will always perform well in the modern, dynamic
datacenter. Instead, we posit it is simpler to use a set of
schedulers that work well on a subset of workloads and to
select the right scheduler dynamically. We extend the portfolio
scheduling model described in [8], [7].



Fig. 2: Architecture for risk-aware portfolio scheduling.

A. Requirements When Hosting Business-Critical Workloads

(R1) Mitigate Operational Risk: The placement of VMs must
take into account SLAs regarding service perfomance. The Op-
erational Risk is the risk of not achieving service-perfomance
SLAs. In this work, we use the VM CPU-performance as the
service-performance indicator (see Section III-C).

(R2) Guarantee Disaster Recovery: The placement of VMs
must ensure that workload from a failed datacenter can be
absorbed by the surviving datacenters. The Disaster-Recovery
Risk is the risk of not achieving this type of SLA (see
Section III-C).

(R3) Balance Multiple Optimization Objectives: the sched-
uler must be able to balance multiple SLAs with cloud
operator’s cost-related goals. In this work, we consider the
cost-related goal of high utilization of resources through
consolidation, balanced with the SLA objectives (R1 and R2).

(R4) Adapt Dynamically to New Workloads: The scheduler
must adapt dynamically to new or changing workloads, which
are common in datacenters that host BCWs. The scheduler
should additionally support changing requirements by the
datacenter operators (e.g., new optimization goals).

(R5) Explain decisions to human operators: The scheduler
must explain scheduling decisions to datacenter operators, so
that they can understand why specific policies were selected.
Without this requirement, the portfolio scheduler proposed in
this work will face the lack of adoption encountered by many
other scheduling approaches [4].

B. Risk-Aware Portfolio-Scheduling Architecture

We propose in this section an architecture for risk-aware
portfolio scheduling. The architecture extends the state-of-the-
art in portfolio scheduling for datacenters [8], [7] by adding
support for risk-awareness in each of the traditional stages
of portfolio scheduling, that is, configuration, selection, appli-
cation, and reflection. Specifically, our new architecture uses
new risk-aware utility functions, new risk-aware scheduling
policies (Section IV), and a new method to simulate the
datacenter that considers CPU-contention accurately.

Figure 2 gives an overview of the architecture for risk-aware
portfolio scheduling. The architecture operates the portfolio
scheduler as a multi-stage cycle. As input, the architecture
receives dynamically client-requests for vClusters (see Sec-
tion II-A), which are queued for execution (box labeled
“Workload” at the top of the figure). We describe in the
following the components in the figure that form the multi-
stage cycle of the portfolio scheduler.

Utility Functions represent the optimization requirements
given by datacenter stakeholders (see Section I). Our archi-
tecture is the first to support risk-aware utility functions, such
as operational risk (R1) and disaster-recovery risk (R2). To this
end, Section III-C introduces three risk-aware utility functions
(“OR”, “DRR”, and “DOR” in Figure 2).

Similarly to the creation of utility functions, new in this
work we allow the Portfolio of Policies to consider not
only traditional but also risk-aware scheduling policies. We
introduce in Section IV two new scheduling policies that
respond to requirement (R3).

Addressing (R4), the Datacenter Simulator, the CPU-
Contention Predictor, and the Policy Selection components
all focus on selecting policies from the portfolio. The Dat-
acenter Simulator uses simulation to estimate, independently
for each policy in the portfolio, the performance and risk score
of each policy according to the utility function in use. Each
simulation receives as input live datacenter-performance data,
from the Performance Monitor component.

A key issue is the ability of the simulator to cope with
virtualized environments, in particular to estimate performance
degradation due to consolidation; we address this issue with
a CPU-Contention predictor [9]. Finally, Policy Selection
includes mechanisms to select a policy and the metrics used by
the mechanisms, based on utility functions and on the output
of the simulation process; for example, this component could
be configured by the datacenter operator to select the policy
that minimizes the balanced DOR risk-aware utility function.
Additionally, this component also provides data used later to
explain the decisions (R5).

The VM manager [for] Policy Application applies the policy
selected in the previous stage, and integrates our scheduler
with the existing management tooling of the datacenter infras-
tructure. The Report component is used by datacenter stake-
holders, in particular engineers, for observing the operation
of the portfolio scheduler, understanding it (R5), and possibly
also tuning it. Section VI demonstrates using Reporting over
time, for real-world workloads.

Portfolio schedulers can also include a self-reflection stage,
which we do not extend or adapt in this work, and thus do
not include in Figure 2. This stage uses monitoring data and
possibly also guidelines from datacenter stakeholders, to tune
the other stages dynamically. For example, in the work of Deng
et al. [8], this stage dynamically filters the policies included
in the portfolio, to keep the number of policies sufficiently



low so that the selection step can complete within a matter of
minutes even for tens of policies, thousands of queued jobs,
and thousands of resources. An exploration of this stage falls
outside the focus on risk of this article.

C. Risk-aware Utility Functions

To address requirements R1, R2, and R3, we use three
risk-aware utility functions designed by the authors of this
work in collaboration with the SPEC RG Cloud Group [10].
The Operational Risk utility function addresses the risk of
resource contention due to resource oversubscription. The
Disaster-Recovery Risk utility function expresses the risk of
not being able to recover from a complete datacenter failure.
The SLAs with regard to availability dictate that the non-
failed datacenters should be able to absorb the workloads from
the failed datacenter. Finally, responding to the requirement
for managing multiple risks at the same time, we use DOR,
an utility function that combines the Operational Risk and
Disaster Recovery Risk. We describe each utility function in
the following, in turn.

Operational Risk (OR): Responding to R1, we define OR
as the risk that VMs will not receive the requested amount of
resources. In this work, we consider explicitly CPU resources;
more resources can also be considered [11]. In Equation 1, we
define OR (ro) as the proportion of resource demands (Dt)
that can be met by the used resources (Ut), over a period
time (T ). The values give an intuition of the severity of
performance degradation that VMs may experience, with lower
values interpreted as better.

ro =
1

T

∫
T

Dt − Ut

Dt
dt ∈ (0, 1] (1)

Disaster Recovery Risk (DRR): Requirement R2 describes
the need for guaranteeing the ability to absorb full-datacenter
failures when multiple (n) datacenters are present. DRR
presents the risk for not meeting this requirement, by ex-
pressing to what extend the remaining datacenters can absorb
the workload of the failed datacenter. In Equation 2, we
define DRR of a datacenter in a multi-datacenter infrastructure
as rdi , where the workload in datacenter i is Wi, and E{

i is
the complement empty-space (that is, the empty space in all
datacenters excluding datacenter i). In Equation 3, we use the
geometric mean to combine the normalized score of individual
datacenters into a single value of DRR for an entire multi-
datacenter system (rd).

rdi
=


Wi−E{

i

E{
i

, Wi ≤ E{
i

Wi−E{
i

Wi
, Wi > E{

i

∈ [−1, 1] i ∈ [1, . . . , n]

(2)

rd = n

√∏
i

rdi
+ 1

2
∈ [0, 1] i ∈ [1, . . . , n] (3)

In this work, we consider memory as the dominant resource
when computing Wi and Ei. When hosting BCWs, it is com-

mon to guarantee the reservation of memory resources, which
means that this resource is not over-provisioned and instead is
guaranteed per-VM. Thus, new memory demands cannot be
satisfied if the remaining memory-space is insufficient.

Disaster–Operational Risk (DOR) Combined: Require-
ment R3 emphasizes the need for complex utility functions,
that can be used to construct practical SLAs. We posit that
a combined metric is both necessary and useful. Datacenter
operators need to continuously solve the complex problem
of reducing multiple risks while meeting other datacenter
optimization goals, such as operational cost. Although using
different utility functions to assess the status of each risk and
optimization goal provides detailed information for solving
the complex problem, the sheer volume of this information
makes it impractical for human consumption. Instead, to
facilitate discussing system status and performance, datacenter
stakeholders often require that only a few or even a single
value represents the current risk level of the datacenters. Even
for experts such as DevOps engineers and site reliability engi-
neers, a single value simplifies an already complex monitoring
process, especially useful when immediate action is required
to improve risk levels.

Addressing R3, in this work we design the DOR risk,
which combines the utility functions for both OR and DRR.
In Equation 4, we define the combined utility function, rod, as
a weighted average of the two risk metrics, where wo and wd

are the weights, respectively. We analyze the impact of these
weights on the risk exhibited by the system, in Section VI-C.

rod =
wo · ro + wd · rd

wo + wd
∈ [0, 1] (4)

IV. PORTFOLIO CREATION: NEW SCHEDULING POLICIES

The portfolio scheduler requires for its operation the ex-
istence of a portfolio (set) of scheduling policies. Inspired
by the risk-aware utility functions, in this section we design
two new scheduling policies for placing the VMs of vClusters
to physical datacenter clusters. As customary for this level
of scheduling, we assume that a cluster-level scheduler (e.g.,
VMware’s DRS, Condor, and Mesos) will take the placement
request and actually run the VM on the physical machines of
the cluster. Besides these policies, the portfolio scheduler can
be equipped with many other policies; as described in Sec-
tion V-B, we include seven more policies in our experiments.

The two policies we design aim to balance the contention
on CPU resources, and to maximize the consolidation of VMs
on physical hosts, respectively. Reflecting R3, these policies
align with the SLAs (e.g., service performance) and business
goals (e.g., minimizing the physical footprint and cost) that
datacenter operators face when hosting BCWs.

For simplicity, we present in this section single-VM versions
of our policies. We have implemented and used in Section VI
vCluster (multi-VM) versions, which derive trivially from the
single-VM versions presented here.



Algorithm 1 Mean Contention Duration (MCD)

Input: V a new Virtual Machine, C all the Clusters;
1: P = [] (contention per cluster)
2: for c ∈ C (all clusters) do
3: ε = 0 (the contention)
4: for v ∈ c (all VMs in cluster c) do
5: p = (ΣDv)/|Dv| (mean contention duration for v)
6: ε = ε+ p
7: end for
8: P [c] = ε/|c| (normalize for the number of VMs)
9: end for

10: sort P (in increasing order of mean contention)
11: for c ∈ P do
12: Break if V fits
13: end for
14: if the V fits in no cluster escalate to Engineer
15: return Cluster mapping for VM placement

A. Mean Contention Duration (MCD)

The intuition behind this policy is that co-hosted VMs
should suffer equally from performance degradation due to
contention for resources. This contrasts to having most VMs
not suffer at all, while a few VMs suffer greatly. VMs that
suffer greatly lead to significant SLA violations and thus to
high operational risk (see P2 in Section II-B).

Addressing the intuition, we design the MCD heuristic
policy listed in Algorithm 1. MCD aims to balance long-
term contention, and thus VM suffering, across all clusters.
First, MCD computes the mean duration of the period for
which VMs suffer of contention, per cluster (lines 2–9). In
the simulator, instead of a real-world measurement, contention
(line 5) is estimated (i.e., using the predictor from [9]). Second,
MCD sorts the clusters by mean contention, lowest first (line
10). Finally, MCD places each VM in the cluster with the
lowest contention that can fit the VM (line 11). Because the
datacenter operators have low tolerance for operational risk
(P2), engineers are called in if the algorithm cannot find a
satisfactory answer (line 14).

B. Maximum Consolidation Load (MCL)

This policy starts from the intuition that increasing consol-
idation (see P1) leads to higher profit for the datacenter oper-
ator, because there can be more VMs than physical machines
and physical machines that are not occupied by any VM can
be selectively powered off [12]. For operators, achieving high
consolidation important for reducing operational costs.

We design the MCL heuristic policy listed in Algorithm 2 to
maximize the consolidation of VMs on physical clusters. Per
cluster, MCL calculates (lines 2–5) the gap over time between
requested and actually used resources. Because VMs for
BCWs are often over-provisioned, as indicated in Section II-B,
the cumulative gap is often large. Then, MCL sorts the clusters
by gap, largest-gap first (line 6). Finally, MCL places a new
VM in the cluster with the biggest gap where it fits (lines 7–9).

Algorithm 2 Maximum Consolidation Load (MCL)

Input: V a new Virtual Machine, C all the Clusters;
1: U = [] (unused resources per cluster)
2: for c ∈ C do
3: uv (unused resources for VM v)
4: U [c] = Σuv , v ∈ c (unused resources in cluster c)
5: end for
6: sort U (in decreasing order of unused space)
7: for c ∈ U do
8: Break if V fits
9: end for

10: if the V fits in no cluster escalate to Engineer
11: return Cluster mapping for VM placement
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Fig. 3: Sequence of vCluster arrivals in the real multi-
datacenter workload, over a period of 3 months.

V. EXPERIMENT SETUP

A major contribution of this work is the experimental
analysis of the portfolio scheduler and the impact of the
presented utility functions on the scheduler’s decisions. In this
section, we present the setup of our experiments.

A. Representative Environment and Workload

We use one representative trace of real-world commercial
workloads hosted in a multi-datacenter, multi-cluster infras-
tructure. The workload trace follows for about 3 months
the real operation of the cloud operator, recording both the
business-critical workload and the resulting datacenter-wide
performance metrics. The latter is consequence to decisions
taken by engineers at datacenter-level and by VMware tech-
nology at cluster-level, and is representative for the current
datacenter industry. We use the former as input workload for
our simulations, and the latter as a baseline for comparison
(curve REPLAY in Figures 5b and 6b).

The trace includes a diverse stream of over 160 vClusters,
depicted in Figure 3, to be placed in 12 clusters having
about 200 physical hosts in total. Typically for BCWs, the
input workload combines HPC, web, and many other types of
applications; this leads to various anti-/affinities expressed in
the request, e.g., HPC VMs have a strict requirement to run
on HPC compute nodes in the multi-datacenter environment,
a vCluster running a replicated database requesting to run its
VMs on separate clusters or datacenters, etc. This emphasizes
the need for a dynamic meta-scheduler, as no scheduler has
been shown to support such a wide variety of application types
and restrictions.



B. Portfolio Setup: 2 New + 7 Common Scheduling Policies

For our experiments, we equip the portfolio scheduler with
the 2 new policies we design in this work (Section IV), plus 7
policies commonly used in datacenters. This allows us to see
how both the new policies and the complete portfolio scheduler
perform; if policies are not useful, they will simply not be
selected by the (automated) portfolio scheduler. The 7 common
policies are:

1. First-Fit (FF) is a commonly-used policy, simple but
applicable in many domains of workload scheduling and VM
placement. To place a request, FF chooses the first available
cluster in which the request fits.

2. Type Priority (TP) extends FF to also consider request
types (e.g., HPC), which are then matched against cluster capa-
bilities. This enables specialized clusters to execute efficiently
demanding workloads, such as HPC. TP may be a competitive
policy for matching complex SLAs. In contrast to FF, TP will
try to not place non HPC workloads on HPC clusters.

3. Memory Datacenter Balance (MDB) is a policy that
uses memory utilization to evenly distribute the VMs over
datacenters. MDB is a possible competitor to our new policies
in lowering the DRR in the system.

4-7. Lowest Resource Load (L*) is a family of policies that
attempt to balance over all clusters the loads of a specific
resource, e.g., memory. We consider in this work all four
common resource types, with the specific L* policies: Lowest
CPU Load (LCL), Lowest Memory Load (LML), Lowest
Storage Load (LSL), and Lowest Network Load (LNL).

VI. EXPERIMENT RESULTS

In this section, we analyze how well can the risk-aware
portfolio scheduling architecture meet SLAs for datacenters
hosting BCWs. We conduct three separate experiments: (1)
to analyze whether each policy is useful, that is, each policy
is selected by the portfolio scheduler (in section VI-A); (2)
to analyze the performance of the portfolio scheduler, and
compare the results with the real-world baseline and with
the policies in the portfolio (in Section VI-B); and (3) to
investigate the performance of the portfolio scheduler when
used to balance multiple objectives, which is the realistic
situation in datacenters (in Section VI-C).

We use the setup detailed in Section VI: through trace-based
simulations based on real-world multi-datacenter workloads,
we evaluate the portfolio scheduler when equipped with 9
scheduling policies, and compare it with individual policies
(the state-of-the-art) and with a relevant real-world baseline
(REPLAY in Section V-A).

A. Is each Policy Useful?

The expectation is that the portfolio scheduler will se-
lect different scheduling policies dynamically, responding to
changing workloads or datacenter optimization goals (utility
functions). Our main findings are:

F-A1 All policies are selected for all utility functions.
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PDF
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Fig. 4: Distribution of selected scheduling policies.

F-A2 Using different utility functions results in widely
different distributions of selected policies.

F-A3 MCL and MCD are selected 16-30% of the time.

Figure 4 depicts the fraction of selected policies, for our
new utility functions (OR, DRR, and DOR), and for the utility
function Cluster Load (CL). (CL, which is used the datacenters
from which we have collected the input traces, expresses the
goal of balancing load across clusters and is included to allow
us to compare this work with the state-of-the-art on portfolio
scheduling [7].) The figure breaks down policy-selection as
horizontal bars, one bar for each utility function (setup) that
the portfolio used to select policies. Each horizontal bar
contains a stacked relative histogram, with each individual box
in the bar corresponding to an individual scheduling policy, the
width representing the fraction of times the policy was selected
from the total set of decisions taken by the portfolio scheduler.
For each horizontal bar, high fragmentation indicates that
every policy is important; conversely, a box wider than 50%
of the bar indicates that a policy is predominantly the best.

In Figure 4, across all utility functions, we see a wide
diversity of distributions. FF, LSL, LNL, TP, and our two
policies MCL and MCD all account for over 10% of the
selections for at least one utility metric. We conclude that
each policy is useful, and the portfolio scheduler or any other
method to select among them is highly desirable.

Figure 4 has an interesting outlier, when DRR is the
active utility function. Then, the portfolio scheduler selects
the FF policy about 60% of the time. This explains why,
despite not being designed to address complex performance
and risk metrics, FF is still much used by datacenter engineers.
However, in Section VI-B results indicate that solely selecting
FF will result in much higher DRR risk than our portfolio-
scheduling approach can achieve.

B. Does Portfolio Scheduling Improve System Utility?

Is the portfolio scheduler improving the utility provided by
the system? The main findings are that the portfolio scheduler:

F-B1 Decreases OR by up to 2x vs. individual policies.
F-B2 Decreases OR by up to 1.5x vs. the real-world

baseline of a well-managed commercial datacenter
(REPLAY).

F-B3 Improves DRR significantly compared to just using
FF up to 35%.

F-B4 Improves DRR significantly, up to 40% over
REPLAY.
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Fig. 5: Results for Operational Risk.

1) Operational Risk: Figure 5a depicts how the portfo-
lio scheduler selects different policies, when the OR utility
function is active. We create a new type of graph for this
depiction, which the portfolio scheduler can also use to explain
its decisions to datacenter stakeholders (R5 in Section III-A).
The vertical axis is divided into parallel rows, each repre-
senting the progress (that is, non-/selection) of a different
scheduling policy. For example, the new policies MCL and
MCD occupy the two bottom-most rows. The horizontal axis
depicts progress through the workload: large dots placed on
the rows indicate that a policy has been selected, whereas thick
horizontal bars emerging from the dots indicate the portion of
the workload scheduled by the newly selected policy (wider
bars indicate a higher portion). The last element of this graph is
the set of vertical gray lines, which aims to simplify reading by
marking transitions between consecutively selected policies.
For each transition, datacenter engineers can understand why
it happened, by reading the detailed results comparing the
performance of each policy as estimated in simulation.

Figure 5a depicts numerous transitions. Each scheduling
policy is selected at least once—each row corresponding to
each policy has at least one large dot. In some cases, policies
are selected multiple times in succession. This strengthens the
findings of the previous section.

Figure 5b depicts the evolution of the OR utility-function
value (score), for different scenarios. The curves depicted for
the portfolio scheduler are for the policy actually selected
(“Best Policy”) and, to estimate the impact of each selection
made by the portfolio, for a worst-case scenario of selecting
the worst possible policy in that particular decision moment
(“Worst Policy”). The figure also shows comparisons with the
use of a single policy (we depict only the best-performing:
FF, and our policies MCL and MCD) and with the decisions
taken by the real-world datacenter engineers (“REPLAY”).
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(a) Selected scheduling policies for the DRR utility function.
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Fig. 6: Results for Disaster Recovery Risk.

The portfolio scheduler results in much lower Operational Risk
compared to selecting individual policies (up to 2x better) and
to the REPLAY baseline (up to 1.5x better). More importantly,
the results indicate single policies lead to individual errors
that seem small, but accumulated can cause significantly larger
risk that the continuous selection of best-performing policies.
Thus, using a portfolio scheduler leads to much lower risk of
violating OR SLAs.

We explain why this happens through a concrete example. In
Figure 5b, observe that, at around 50% through the workload,
the worst-scoring policy shows a big spike—one of the policies
performs significantly worse than the best policy. This shows
that portfolio scheduling can effectively alleviate the risk of
scheduling policies performing badly sporadically.

2) Disaster Recovery Risk, Operational Risk, and Cluster
Load: Similarly to OR, for the DRR utility function we depict
the results in Figures 6a and 6b. Overall, we observe that
the approach results in lower risks of violating SLAs with
regards to Disaster Recovery guarantees. Concretely, figure 6b
shows that using the portfolio scheduler can lead to a 40%
improvement over the real-world baseline (REPLAY). Impor-
tantly, this gives evidence that, for a must-fulfill principle (P3),
even when the multi-datacenter is operated by highly trained
engineers—the datacenter operator has a policy to hire only
top-10% engineers in the market—, an automated, risk-aware
portfolio scheduler can offer significant reduction of risk.

Similarly, for both DOR and CL we also investigate the
policy selection and utility function scores. The portfolio
scheduler results are positive, in-between the results for OR
and DRR (for complete results, see technical report [13]).

C. Does Addressing One Risk Influence the Other Risks?

Datacenter operators often combine multiple utility func-
tions (UFs), to optimize for multiple objectives at the same



TABLE I: Maximum utility function (UF) scores for all UFs.

Active UF −→ DOR DOR DOR
Resulting scores ↓ OR DRR 1-1 1-3 3-1 CL R
OR score ×10−2 5 10 5 7 5 7 6
DRR score ×10−2 12 8 11 9 11 12 12
DOR score ×10−3 8 9 8 9 6 9 9
CL score ×10−5 4 16 3 13 10 4 5

time. We analyze, in turn, how setting the portfolio scheduler
to optimize for each UF affects the maximum scores for all
the other UFs; Table I summarizes the results and shows that:

F-C1 DOR can effectively balance DRR and OR.
F-C2 When DOR 3-1 is used, both DOR and OR are very

close to their (minimum) best.
F-C3 Activating CL worsens all the other utility functions.
The results in Table I, when considered column-wise, in-

dicate the influence that selecting an UF (e.g., OR) has on
the other UFs. When considered row-wise, the results allow
comparing for an UF its scores when it is active vs. when other
UFs are active. If we optimize for the Disaster-Recovery Risk
(column “DRR” in Table I), the OR score will increase by
up to 2x compared to the case when OR is active, from 5
to 10 units (risk nearly 2x worse). Conversely, activating OR
increases DRR, from 8 to 12 units. Thus, combining these two
risks into DOR is important.

DOR provides a risk-management trade-off through its wo

and wd weights. The results for DOR wo−wd set, in turn, to
1-1, 3-1, and 1-3, show that the OR and DRR utility functions
can be combined and, depending on the datacenter SLAs and
optimization target, can be balanced. For example, for “DOR
3-1”, increased emphasis put on OR leads to an OR score that
is very close to its achievable minimum.

We also compare with the state-of-the-art UF CL [7], which
balances load distribution for one or more resource types (e.g.,
CPU, Memory, IO). Activating OR actually leads to the best
outcome we have observed for CL. This means that our new
OR utility function has a better long term effect then directly
optimizing for CL. Conversely, activating CL worsens all the
other utility function scores, so the state-of-the-art CL is a bad
predictor for the optimization goals considered in this work.

VII. RELATED WORK

In this section, we survey related research from two main
areas: portfolio scheduling, including applications to computer
scheduling, and risk management in clouds.

Portfolio scheduling originates from the field of fi-
nance [14]. In computational portfolio design [15], extensive
work in the field of artificial intelligence has focused on the
selection and application stages of the portfolio [16], [17].
Much work has focused on speeding up the selection step [18],
[8], whereas here we are concerned primarily with the quality
of the selected policy. Using performance models instead of
simulation has also been shown to facilitate fast selection from
the portfolio of algorithms [18], but no current model captures
accurately datacenters and BCWs.

Closest to our work, portfolio scheduling has been applied to
academic [8] and commercial [19], [7] datacenters. In contrast

to earlier work [8], [19], our work adds the focus on risk
management, which as a new problem greatly extends the
scope of portfolio scheduling in datacenters, and on long-
running VMs, vs. the much shorter jobs considered by the
others. Compared to van Beek et al. [7], our work greatly
extends the problem scope to combined risks, and proposes
many new advancements in scheduling and in experimental
analysis: new policies, new utility functions, new experiments,
new types of plots leading to new types of insights.

Workload scheduling in datacenters and other cloud
computing context: The performance of any portfolio sched-
uler depends on the set of policies included in the portfolio.
Previous work in datacenter and cloud computing schedul-
ing has focused on three classes of policies:resource-related
provisioning (including VM placement), workload-related job
selection, and job-structure-related VM selection.

Deng et al. [8] survey a large number of policies for
VM provisioning. Pires and Baran conduct a comprehensive
survey [20] of policies for VM placement. Traditional work
underlies both job selection [21] and VM selection (policies
often based on bin-packing approaches [22]). Our study com-
plements this body of work with focus on selecting resources
across multiple datacenters, for a new problem domain.

Risk management in clouds includes an increasing body
of work on SLAs between cloud customers and operators.
Following more than a decade of evolution in the context
of grids [23], [24], the state-of-the-art focuses on defining
various system properties and SLA types [25], on negotiating
and brokering SLAs [26], [27], on monitoring for [28] and on
assessing [29], [30] SLA-violations, and on selecting clouds
to minimize them [31] and other aspects of SLA-lifecycle
management [32]. Eyraud-Dubois et al. [33] present the notion
of SLAs and consolidation and show that with dynamic bin-
packing a theoretical global CPU utilization of 66% can be
achieved. Our work also considers resource consolidation and
the associated operational risk, but we additionally investigate
the reliability risk of datacenter disaster and also combined
risks. In previous work on risk management in clouds, we see
the introduction of assessing SLA violations [29] by a cloud
broker and selecting cloud providers by imposing penalties
to their reputation scores if violations occur. Optimis [31]
quantifies risks by evaluating historical SLA violations and
estimates the reliability of the cloud environment under test.
Our work extends the notion of risk management in cloud
systems by introducing utility functions addressing SLAs
which reflect the complexity of the current cloud ecosystems.

VIII. CONCLUSION AND FUTURE WORK

For large enterprises and governments to host their BCWs
in virtualized datacenters, risk management needs to become
a first-class citizen of datacenter resource management and
scheduling. Toward this end, in this work we propose a new
risk-aware portfolio scheduling architecture, which repeatedly
and dynamically selects the scheduler that is estimated to
minimize risk, among a set of schedulers considered in the
portfolio.



Our is the first work to address scheduling that is aware of
the following two types of risks: Operational Risk, which is
the risk of not meeting the SLA performance requirements,
and Disaster Recovery Risk, which is the risk of not being
able to absorb the failure of an entire datacenter in a multi-
datacenter operation. We further extend the state-of-the-art
in portfolio scheduling through the following contributions:
two new risk-aware scheduling policies, and a new method
for selecting at runtime the risk-minimizing scheduling policy
while taking into account the important but difficult to predict
CPU-contention arising from multiple VMs sharing the same
physical machine.

We show through trace-based simulations that use traces
collected from a commercial multi-datacenter cloud operator
(and, in the associated technical report [13], also synthetic
traces) that our risk-aware portfolio scheduling compares
favorably with all its constituent policies, and also with the
real baseline of datacenter operations manually optimized by
expert engineers as recorded by the cloud operator.

In future work, we will extend our contention predictor and
DRR to more resource types. We have created for this work
graphs that explain scheduling decisions in detail, over time.
For the future, we plan to conduct an empirical study to see
how datacenter engineers use these and similar results, and
use the results to improve the explanations given to datacenter
engineers–understanding is believing.
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