
The University of Manchester Research

Dynamic Tuning for Parameter-Based Virtual Machine
Placement
DOI:
10.1109/ISPDC2018.2018.00015

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Mosa, A., & Sakellariou, R. (2018). Dynamic Tuning for Parameter-Based Virtual Machine Placement. In
Proceedings - 17th International Symposium on Parallel and Distributed Computing, ISPDC 2018 (pp. 38-45).
Article 8452018 IEEE. https://doi.org/10.1109/ISPDC2018.2018.00015

Published in:
Proceedings - 17th International Symposium on Parallel and Distributed Computing, ISPDC 2018

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:23. Apr. 2024

https://doi.org/10.1109/ISPDC2018.2018.00015
https://research.manchester.ac.uk/en/publications/90217142-9bb4-463c-8601-b9975a572687
https://doi.org/10.1109/ISPDC2018.2018.00015


Dynamic Tuning for Parameter-based Virtual
Machine Placement
Abdelkhalik Mosa and Rizos Sakellariou

School of Computer Science
The University of Manchester

Manchester, UK
{abdelkhalik.mosa,rizos}@manchester.ac.uk

Abstract—Virtual machine (VM) placement is the process that
allocates virtual machines onto physical machines (PMs) in cloud
data centers. Reservation-based VM placement allocates VMs
to PMs according to a (statically) reserved VM size regardless
of the actual workload. If, at some point in time, a VM is
making use of only a fraction of its reservation this leads to
PM underutilization, which wastes energy and, at a grand scale,
it may result in financial and environmental costs. In contrast,
demand-based VM placement consolidates VMs based on the
actual workload’s demand. This may lead to better utilization,
but it may incur a higher number of Service Level Agreement
Violations (SLAVs) resulting from overloaded PMs and/or VM
migrations from one PM to another as a result of workload
fluctuations. To control the tradeoff between utilization and the
number of SLAVs, parameter-based VM placement can allow
a provider, through a single parameter, to explore the whole
space of VM placement options that range from demand-based
to reservation-based. The idea investigated by this paper is to
adjust this parameter continuously at run-time in a way that a
provider can maintain the number of SLAVs below a certain (pre-
determined) threshold while using the smallest possible number
of PMs for VM placement. Two dynamic algorithms to select
a value of this parameter on-the-fly are proposed. Experiments
conducted using CloudSim evaluate the performance of the two
algorithms using one synthetic and one real workload.

Index Terms—Cloud computing; resource utilization; virtual
machine placement; virtual machine consolidation

I. INTRODUCTION

Cloud data centers house Physical Machines (PMs) or
servers that host Virtual Machines (VMs) and associated
components. Appropriate cloud management software (e.g.
OpenStack [1], OpenNebula [2] or Eucalyptus [3]) can manage
a large pool of resources, which, in addition to PMs, may
include storage or networking resources. One of the tasks of
the cloud management software is to assign VMs to PMs, a
process which is known as VM Placement [4]. For example,
the NOVA component of OpenStack uses the NOVA Filter
Scheduler [5] to allocate VMs to PMs. The Nova-scheduler
receives a VM request and determines where (that is, on what
PM) it should run.

Mapping VMs to PMs statically does not fit well with the
dynamic nature of large cloud data centers. As an illustration,
the PMs in a cloud data center may be exposed to several
changes over time. These may include deallocation of existing
VMs, allocation of new VMs, fluctuations in the workload
of the individual VMs, and so on. Also, some VMs may

remain idle for prolonged time periods. In such a dynamic
environment, mapping VMs to PMs statically may lead to PM
underutilization; in fact, this is one of the leading causes of
energy waste in cloud data centers [6]. Trying to increase PM
utilization, some form of dynamic reallocation of the VMs
becomes necessary to adapt to the diverse changes in cloud
data centers and reduce overall energy consumption.

The dynamic reallocation of VMs can be either reservation-
based or demand-based [7]. In reservation-based placement,
VMs are assigned to PMs based on the requested (by the user)
VM size (CPU, memory and bandwidth capacities) regardless
of the actual utilization. Reservation-based placement may
react to VM deallocation or new VM allocations by migrating
VMs between PMs. Nevertheless, it does not respond to
fluctuations of the workload, which means that VM resources
may be reserved regardless of actual use. In contrast, VM
reallocation based on the actual workload demand, rather
than the reserved VM size, may potentially improve a PM’s
utilization. The improvement in utilization can be achieved
by migrating VMs from underutilized (according to actual
workload utilization) PMs. This migration process may help
switch some PMs into one of the power saving modes
whenever possible. However, such a migration, and demand-
based placement in general, may result in Service Level
Agreement Violations (SLAVs). A Service Level Agreement
(SLA) defines the Quality of Service (QoS) requirements (e.g.
availability of VMs) in the form of a contractual document
between the service provider and the customer [8], [9]. An
SLA violation (SLAV) occurs when previously agreed upon
SLA requirements are not met. A common source of SLAVs is
a result of VM migration due to the aggressive consolidation
of VMs. This means that there is a trade-off between the
utilization of PMs and SLAVs where better PM utilization
may lead to a high number of SLAVs, whereas a low number
of SLAVs may imply worse PM utilization.

In previous work [10], parameter-based placement has been
proposed as a strategy that can generate a number of alterna-
tive allocations (beyond demand-based and reservation-based
allocation) by means of setting the value of a single static
parameter, α, which becomes an input to the VM placement
problem. At the two ends of the range of values that this pa-
rameter α may take, 0 corresponds to demand-based allocation
and 1 corresponds to reservation-based allocation. In principle,



the former will increase the number of SLAVs but should lead
to better utilization than the latter. As the workload fluctuates
over time, the main question that arises, from the cloud
provider’s point of view, is how to optimize utilization (and
minimize energy consumption) without exceeding a certain
number of SLAVs.

The question formulated above translates to the problem of
dynamically calculating the values of this static parameter, α,
in parameter-based allocation. This implies that the values of
α should be chosen on the fly in such a way that the overall
number of SLAVs does not exceed a certain threshold. This
problem is addressed in this paper where two algorithms are
proposed to allow a cloud provider to maintain the number of
SLAVs within a certain threshold, at the same time optimizing
utilization (also minimizing energy consumption), by dynam-
ically choosing appropriate values of the parameter α on the
fly.

The remainder of this paper is structured as follows: Sec-
tion II reviews related work and Section III describes the
problem and its characteristics. Then, Section IV presents the
parameter-based VM placement and two dynamic approaches
for calculating a value for the parameter α. Section V evaluates
the proposed algorithms and Section VI concludes the paper
and suggests some possible future directions.

II. RELATED WORK

For recent surveys of the virtual machine allocation problem
in cloud environments we refer to [4], [11]. In brief, the VM
placement decision may be either static or dynamic. In static
VM placement, the VM placement decision is made once
during the initial placement of the VMs and the VM-to-PM
mapping is never changed during the whole lifetime of the
VM. In dynamic VM placement, the VM-to-PM mapping is
usually reassessed periodically.

In reservation-based placement, heuristics such as first fit
decreasing (FFD) or best fit decreasing (BFD), may be typ-
ically used to find a good static VM-to-PM mapping, as in
[12] or [13], respectively. The goal of this mapping may be
to minimize energy consumption (e.g. [13], [14]) or balance
the load while considering communication costs (e.g. [15]).
Wolke et al. [7] have analyzed simple bin packing algorithms
for the initial placement of the VMs.

In demand-based VM placement, the decisions to change
the VM-to-PM mapping are based on the changes in the cloud
data center. Demand-based VM placement algorithms may aim
to minimize energy consumption (e.g. [13], [16]–[19]) while
the reallocation may be power-aware as in [20]. A dynamic
VM placement controller may consider different management
objectives, such as energy efficiency, load balancing, fair
allocation, or service differentiation (e.g. [21]). The decision
making policy for the dynamic reallocation of the VMs may
be based on heuristics, as in [13], [22], [23], or it could be
based on a utility function, as in [17], [24]. Dynamic VM
placement solutions may incur a high number of SLAVs (in
case of demand-based placement), or they may result in high
energy waste (in case of reservation-based placement).

Parameter-based placement [10] explores VM placement
solutions that can be perceived as solutions in the search space
between demand-based and reservation-based placement. It
gives the cloud provider additional flexibility to find a better
trade-off between energy consumption (hence utilization) and
the number of SLAVs. However, the parameter-based solution
proposed in [10] relies on a static choice for the parameter
α. As the workload fluctuates, one will need to recalculate
appropriate values of α at each scheduling interval (meaning
every time the VM-to-PM mapping is reassessed) to use as an
input to the VM placement solution. This paper contributes
two dynamic algorithms that can estimate the value of α for
parameter-based VM placement on the fly.

III. BACKGROUND AND PROBLEM DEFINITION

A cloud provider offers VMs of different sizes, and the
cloud management software maps VMs to PMs in a way that
can save energy consumption while minimizing SLAVs. Two
types of controllers may be used for VM placement: initial or
dynamic VM placement controllers.

An initial VM placement controller receives VM placement
requests and maps VMs to PMs based on the reserved VM
size; this is equivalent to reservation-based placement and
graphically highlighted in Fig. 1. Then, at each scheduling
interval (in our evaluation, later in this paper, this is chosen to
be every five minutes), the dynamic VM placement controller
tries to optimize the current allocation based on the cloud
provider’s objectives.

Fig. 1. Initial VM Placement

The dynamic VM placement controller reallocates VMs to
PMs in the event of one of these two conditions:

1) Detection of an overutilized PM: Aggressive consolida-
tion of VMs leads to overload situations for PMs. SLA
violations due to PM overutilization (SLAVO) represent
the time during which a PM is overutilized. A PM
is overutilized when the PM utilization is higher than
the maximum utilization threshold. SLAVO happens
when the resource demand (this is bounded by a VM’s
capacity) of all hosted VMs is greater than the allocated
resources. Equation 1 describes how to calculate SLAVO
for PM i:

SLAV Oi =
toi
tai
, (1)



where toi is the time period during which PM i is
overutilized for one of its resource types (CPU, memory
or bandwidth) and tai is the total time during which PM
i is active (running).
Equation 2 computes the average SLAVO value for all
PMs in a data center.

SLAV O =
1

N

N∑
i=1

toi
tai

(2)

The dynamic placement controller reacts to a PM’s
overload situation by migrating one or more VMs from
the overloaded PM to any of the suitable active (running)
PM(s); alternatively, it may switch inactive PMs on to
migrate a VM to, as shown in Fig. 2.

Fig. 2. Migrating a VM from an overutilized PM

2) Detection of an underutilized PM: A PM may be consid-
ered as underutilized when PM utilization is less than a
predefined minimum utilization threshold. The dynamic
placement controller reacts to an underutilized PM by
migrating all VMs from the underutilized PM to other
PM(s) whenever possible and switch that PM off or into
a power saving mode, as shown in Fig. 3.

Fig. 3. Migrating VMs from underutilized PMs

The time required for the migration of a VM between
two PMs depends on the available network bandwidth and
the VM’s memory utilization [25]. Equation 3 estimates the
migration time of VM j supposing that the image and data of
VMs are stored on a storage area network. In Equation 3, tmj

is the time required to migrate VM j; dramj and abwj represent
VM j’s memory demand and the available network bandwidth,
respectively.

tmj =
dramj

abwj
. (3)

The migration of a VM, either because of underutilization or
overutilization, results in SLA violations due to VM migration

(SLAVM). Equation 4 estimates the SLAVM due to VM
migration.

SLAVM =
1

m

m∑
j=1

dcpudj

dcpuj

, (4)

where dcpudj is the VMj’s under-allocated CPU demand due to
migration, dcpuj is the total CPU demand by VMj and m is
the total number of VMs.

Once the dynamic VM placement controller detects that
some VMs require migration, it will try to find suitable PMs
for the VMs migrated from both overutilized and underutilized
PMs. The dynamic VM placement controller suffers from uti-
lization inefficiency or it incurs a high number of SLAVs when
it adopts either reservation-based or demand-based placement,
respectively. In contrast, a parameter-based VM placement
controller may allocate VMs based on the actual demand plus
an additional margin (slack). In Section IV, we explore such a
parameter-based VM placement solution through two proposed
algorithms that calculate the value of the parameter α on the
fly.

IV. DYNAMIC PARAMETER-BASED VM PLACEMENT

Parameter-based VM placement considers vertical scaling
(i.e., resizing the VM), by scaling a VM’s allocated resources
(CPU, memory, bandwidth) up or down. In this paper, we
assume that there is a predefined (by the provider) SLAVs
threshold that defines a quantity for the number of SLAVs
that should not be exceeded. The proposed parameter-based
VM placement algorithms scale up a VM’s allocated resources
(bounded by the VM’s maximum size) when the number of
SLA violations exceeds the SLAVs threshold. On the other
hand, the proposed algorithms will scale down the allocated
resources when the number of current SLA violations is lower
than the SLAVs threshold. Calculating the rate of scaling up
or down is an integral part of the problem (and our proposed
algorithms). This calculation is used to adjust the value of the
parameter α, which acts as an autonomic knob that attempts
to fine tune the resources allocated to each VM.

Parameter-based VM placement explores the space between
the resources required for the actual workload (demand-based
allocation) and the resources required for a VM at full capac-
ity (reservation-based allocation). Fig. 4 shows the space in
which parameter-based placement operates compared to both
reservation-based and demand-based placement approaches.
Parameter-based allocation adds an extra margin (slack) to the
resources required to meet actual demand to accommodate
some later sudden increase of the workload. This margin can
be calculated based on the current value of the parameter α,
as shown in Equation 5, which specifies how much is going
to be allocated to VMj at time t.

arjt = α · (crj − drjt) + drjt, (5)

where arjt is the resources of type r (CPU, memory, band-
width) that will be allocated to VMj at time t; crj is the
capacity of resource r per VMj (VM’s size according to the
reservation) and drj t is the total demand of resource r at time



Fig. 4. Reservation vs demand vs parameter-based placement

t. Setting α to 0 will only allocate resources based on the
current demand (in which case arjt < crj), whereas setting α
to 1 means that the full VM size is allocated (in which case
arjt = crj ). This means that:

α =

{
0, demand-based placement
1, reservation-based placement

For the parameter-based VM placement solution, we have
used a modified version of the best fit decreasing algorithm
(BFD) from [10]. This algorithm allocates VMs to PMs using
the value of parameter α to check whether a PM is suitable to
host a VM or not. At each scheduling interval, the parameter-
based VM placement solution dynamically migrates selected
VMs from the overutilized PMs as well as all VMs from
the underutilized PMs. When an overloaded PM is detected,
the placement algorithm will start by selecting VMs with the
minimum memory utilization to migrate as this minimizes the
overall migration time.

Adopting a parameter-based VM placement solution that
keeps using the same value of α will not allow the cloud
provider to set an SLAVs threshold that should not be
surpassed. Such a statically predefined value of α cannot
guarantee a number of SLAVs less than an SLAVs threshold
(unless α is set to 1, or close to 1). This is because the number
of SLAVs depends on both the current value of α (and hence
the VM-to-PM placement) and the nature of the workload.
Therefore, it becomes a challenge to compute the parameter
α at each scheduling interval so that the resulting number
of SLAVs does not exceed the SLAVs threshold (without
underutilizing the resources). In what follows, two approaches
that can dynamically estimate the value of α in two different
ways, namely, instantaneous and window-based, are presented.
They correspond to different methods to increase or decrease
the value of α at each scheduling interval.

A. Instantaneous

The instantaneous approach estimates the value of the
parameter α based on the current value of the number of
SLAVs and its difference from the SLAVs threshold. The aim

is to change promptly the rate of increase or decrease of the
allocated resources (in this paper, we are only considering
CPU resources) to adapt to workload fluctuations. Thus, we
hope to reduce the number of SLAVs whenever this number
exceeds the SLAVs threshold by increasing the value of α.
Conversely, the value of α is decreased when the number
of current SLAVs is lower than the SLAVs threshold. The
changes in the value of α should drive efficient PM utilization
without exceeding the predefined SLAVs threshold.

The instantaneous approach estimates a new value of α
on the basis of the difference between the current number
of SLAVs and the SLAVs threshold. To give a slight boost
when this difference is close to zero, we take the square root
of the difference; this seems to enable the algorithm to adapt
promptly and makes it less sensitive to the initial value of the
parameter α.

The instantaneous approach is summarized in Algorithm 1,
which computes the value of the parameter α using the square
root of the difference between the current number of SLAVs
and the SLAVs threshold.

Algorithm 1 Estimating α using an instantaneous approach
1: currentSlav ← getCurrentSlav();
2: requiredSlav ← The non-exceeding SLAV threshold;
3: α← get current value of α;
4: if (currentSlav ≥ requiredSlav) then
5: sqrtRate ←

√
currentSlav− requiredSlav;

6: α = min(1, α+sqrtRate);
7: if (currentSlav < requiredSlav) then
8: sqrtRate ←

√
requiredSlav− currentSlav;

9: α = max(0, α−sqrtRate);
10: return α;

B. Window-based

In the window-based approach, we make some use of
the previous values for the number of SLAVs in addition
to the current value (only the current value is used by the
instantaneous approach). Thus, we look at a window of a
specified size into the history of SLAVs to identify a trend (if
there is one) with the preceding SLAVs (for example, whether
the number of SLAVs is increasing or decreasing) to help
estimate a more fine-grained value of α. As an illustration,
in Fig. 5, the number of SLAVs at timei+2 (SLAVti+2) is
higher than the SLAVs threshold, and the number of SLAVs
is increasing over Window 1, which is the area between timei
and timei+2. Consequently, we should increase the allocated
resources by increasing the value of α at a high rate to
reduce the number of SLAVs as soon as possible. Nevertheless,
when the current number of SLAVs is lower than the SLAVs
threshold and the number of SLAVs is increasing, as shown
over Window 2 in Fig. 5, then we should decrease the value
of the parameter α by a small rate to ensure less energy
consumption through better utilization. The opposite happens
when the number of SLAVs is decreasing over the specified
window of the SLAVs history.



Fig. 5. Using a window of SLAVs history to estimate α

Algorithm 2 describes the window-based approach that
makes use of the previous values of SLAVs to calculate α. In
Algorithm 2, we keep the history of SLAVs in the slavHistory
array and save the selected history in the window array, which
will include the previously stored values of SLAVs for the
given window size. Then, we check whether the number of
current SLAVs is greater or less than the SLAVs threshold.
When the number of current SLAVs is greater than or equal
to the SLAVs threshold and the number of SLAVs is not
increasing, then we increase α by a small value as shown
in Line 11. However, we increase α by a higher value when
the number of SLAVs is increasing (in which case we use the
square root, as shown in Line 15). On the other hand, when the
number of the current SLAVs is less than the SLAVs threshold
and the number of SLAVs is not decreasing, then we reduce
α by a small value as shown in Line 19. Same as before,
we decrease α by a higher value when the number of current
SLAVs is less than the SLAVs threshold, and the number of
SLAVs is decreasing as shown in Line 23.

V. EVALUATION

A. Simulation Environment and Workload

We have implemented and evaluated the proposed algo-
rithms using the widely used CloudSim simulation toolkit [26].
The simulated cloud data center has 800 PMs that run 1033
VMs. This setting is embedded in CloudSim and was chosen
to correspond to the environment of real (PlanetLab) workload
traces also used in our experiments. There are two types of
PMs in the data center, namely, HP ProLiant ML110 (2 cores
at 1860 MHz each) and HP ProLiant ML110 G5 (2 cores at
2660 MHz each) and can host four different VM types. For the
detection of overutilized PMs, we have used a static overuti-
lization threshold of CPU utilization; a PM is considered to
be overutilized when CPU utilization is 100%. Whenever an

Algorithm 2 Estimating α using a window-based approach
1: currentSlav ← getCurrentSlav();
2: requiredSlav ← The non-exceeding SLAV threshold;
3: α← get current value of α;
4: slavHistory[] ← stores previous SLAVs values;
5: slavHistory.add(currentSlav);
6: windowSize ← set window size;
7: window[] ← selectedHistory(slavHistory, windowSize);
8: if (currentSlav ≥ requiredSlav) then
9: for (i = 0; i < len(window); i++ ) do

10: if (window[i] > window[i+1]) then
11: α = min(1, α+(currentSlav − requiredSlav));
12: return α;
13: else
14: continue;
15: α=min(1, α+

√
currentSlav− requiredSlav );

16: else
17: for (i = 0; i< length(window); i++) do
18: if (window[i] < window[i+1]) then
19: α = max(0, α−(requiredSlav − currentSlav));
20: return α;
21: else
22: continue;
23: α=max(0, α−

√
requiredSlav− currentSlav );

24: return α;

overutilized PM is detected, we choose to migrate VMs with
the minimum memory for migration from the overutilized PM
to minimize the total migration time. The simulation works for
a full day, and the dynamic reallocation of the VMs takes place
every five minutes of simulated time (scheduling interval).
Moreover, for the purposes of Algorithm 2, we have used a
window of size two to capture the trend of previous SLAVs
and check whether the number of SLAVs is increasing or
decreasing.

To evaluate the proposed algorithms, we have used real
workload traces from the PlanetLab platform [27] and syn-
thetic workload traces. The PlanetLab workload traces repre-
sent the CPU utilization of the running VMs every five minutes
(reallocation/scheduling interval). In the experiments, we have
used the traces collected on 20 April 2011. For the synthetic
workload, we randomly generate CPU utilization every five
minutes based on a uniform random distribution with values
in the range between zero and one.

B. Performance Metrics

We have used two performance metrics to measure the
performance of the proposed approaches; namely, energy
consumption and SLA violations (SLAVs). The energy con-
sumption metric estimates the energy consumed for all running
PMs in the cloud data center using CloudSim’s SPECpower
benchmark [28] to estimate energy consumption based on the
actual CPU utilization. Table I, from [29], shows the energy
consumption, in Watts, at different utilization levels.



Fig. 6. Energy to SLAV using the synthetic workload

TABLE I
ENERGY CONSUMPTION (IN WATTS) AT DIFFERENT CPU UTILIZATION

LEVELS [29]

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

To calculate the number of SLA violations (SLAVs) in the
data center, we used the SLAV metric, introduced in [29],
which is a composite metric that considers two sources of
violations. These two sources are violations resulting from
overutilization of PMs (SLAVO) and violations resulting from
the migrations of the VMs (SLAVM). Equation 6 describes
how the number of SLAVs is calculated.

SLAV = SLAV O × SLAVM (6)

Here, SLAV O corresponds to SLAVs from overutilization of
PMs (computed according to Equation 2 in Section III), while
SLAVM estimates the performance degradation due to VM

migrations (computed according to Equation 4 in Section III).

C. Experimental Results

We have conducted experiments to evaluate the estimation
of α for the parameter-based VM placement solution using
both the instantaneous approach and the window-based ap-
proach. For each of the two approaches, we have computed:
(i) the amount of energy consumed by all PMs to allocate the
VMs without exceeding the predefined SLAVs threshold, and
(ii) the resulting value of SLAV. To run the two algorithms,
we have to set an initial value for the parameter α in the
algorithms. We have used four different initial values for α,
from the list [0.2, 0.4, 0.6, 0.8], so that we can cover the range
between zero (demand-based), and one (reservation-based),
and test any sensitivity that each algorithm may have to the
initial value of α.

For each type of workload, we have set six different SLAVs
thresholds. For the synthetic workload, the chosen SLAVs
thresholds are 0.1, 0.05, 0.01, 0.005, 0.003 and 0.001. We
have started with 0.1 as the number of SLAVs resulting from



Fig. 7. Energy to SLAV using the PlanetLab traces

demand-based placement (i.e., α = 0, when number of SLAVs
is expected to be highest) is 0.1063. For the PlanetLab traces,
the chosen SLAVs thresholds are 0.05, 0.03, 0.01, 0.005, 0.003
and 0.001. We have started with 0.05 as the number of SLAVs
resulting from demand-based placement is 0.0542.

1) Experiment 1: Using a Synthetic Workload: Fig. 6 shows
the amount of energy consumed and the resulting SLAVs
based on the specified SLAVs threshold by running both
the instantaneous and the window-based approaches using
the synthetic workload. In each plot of Fig. 6, the X-axis
represents the resulting SLAVs, and the Y-axis represents the
amount of energy consumed to allocate the VMs to comply
with the specified SLAVs threshold. The dotted vertical line
represents the SLAVs threshold. Each point represents energy
consumption to the number of SLAVs (cf. Equation 6) using a
different initial value of α (initial α: 0.2, 0.4, 0.6 and 0.8). By
and large, Fig. 6 demonstrates that the window-based approach
performs better than the instantaneous approach as it can meet
the SLAVs threshold while consuming less energy. However,

for high values of SLAV thresholds, as in Fig. 6 (a), both
approaches are somewhat sensitive to the initial value of α as
shown in the spread of the points. Moreover, Fig. 6 (b), (c),
(d), (e) and (f) show that the window-based approach becomes
less sensitive to the initial value of α as the SLAVs threshold
gets smaller, in contrast to the instantaneous approach.

2) Experiment 2: Using a PlanetLab Workload: This ex-
periment aims to test the behaviour of both the instantaneous
and window-based approaches using real workload traces from
PlanetLab instead of the synthetic ones. Fig. 7 shows energy
and SLAVs achieved by the two approaches. Fig. 7 still
confirms that the window-based approach performs generally
better than the instantaneous approach, resulting in less energy
consumption for the specified SLAVs threshold. However,
Fig. 7 demonstrates that the window-based approach generally
becomes more sensitive to the initial value of α when the
average utilization is very low (this may be because with
PlanetLab traces the average workload is less than 13% of
the maximum as opposed to an average of about 50% with



the synthetic workload). Furthermore, the results suggest that
the window-based approach produces better results when the
SLAVs threshold is set to smaller values. All in all, both
experiments demonstrate that, as expected, the window-based
approach can estimate the parameter α in a way that provides
better results.

VI. CONCLUSION AND FUTURE WORK

This paper investigates parameter-based VM placement,
which aims to explore VM placement approaches that are in
between the traditionally used demand-based and reservation-
based placement. Two different approaches to estimate the
value of the parameter α (used in parameter-based placement)
on the fly, having as an objective not to exceed a certain
SLAVs threshold, were proposed. One approach uses an in-
stantaneous calculation to adapt the value of α, based on the
distance between the number of current SLAVs and the SLAVs
threshold, while another, window-based, approach makes use
of recent history for the number of SLAVs. Comparing the
two proposed algorithms, it appears that the window-based ap-
proach achieves better results than the instantaneous approach.
This may be attributed to the more sophisticated strategy (and
perhaps more conservative choices) used to select the rate with
which to increase or decrease the value of α in the algorithm.

A list of possible directions for future work includes: (i) An
investigation of different algorithms for estimating the value of
the parameter α on the fly. For example, one can estimate the
value of the parameter α based on a predicted behaviour for the
workload. (ii) Further evaluation of the algorithms proposed
on this paper using additional workload traces that might have
different patterns.

ACKNOWLEDGMENT

The first author would like to acknowledge the support of
the Egyptian Government during his PhD program.

REFERENCES

[1] “OpenStack,” https://www.openstack.org/, accessed: 2018-04-26.
[2] “OpenNebula,” https://opennebula.org/, accessed: 2018-04-26.
[3] “Eucalyptus,” https://github.com/eucalyptus/eucalyptus/wiki, accessed:

2018-04-26.
[4] I. Pietri and R. Sakellariou, “Mapping virtual machines onto physical

machines in cloud computing: A survey,” ACM Computing Surveys
(CSUR), vol. 49, no. 3, p. 49, 2016.

[5] “Openstack docs: Nova filter scheduler,”
https://docs.openstack.org/developer/nova/filter scheduler.html,
accessed: 2018-04-26.

[6] Nrdc.org, “America’s Data Centers Consuming and Wasting
Growing Amounts of Energy,” 2015. [Online]. Available:
http://www.nrdc.org/energy/data-center-efficiency-assessment.asp

[7] A. Wolke, B. Tsend-Ayush, C. Pfeiffer, and M. Bichler, “More than bin
packing: Dynamic resource allocation strategies in cloud data centers,”
Information Systems, vol. 52, pp. 83–95, 2015.

[8] C. A. Lee and A. F. Sill, “A design space for dynamic service level
agreements in openstack,” Journal of Cloud Computing, vol. 3, 2014.

[9] M. Maurer, I. Brandic, and R. Sakellariou, “Enacting SLAs in clouds
using rules,” in European Conference on Parallel Processing (Euro-Par).
Springer, 2011, pp. 455–466.

[10] A. Mosa and R. Sakellariou, “Virtual machine consolidation for cloud
data centers using parameter-based adaptive allocation,” in Proceedings
of the Fifth European Conference on the Engineering of Computer-Based
Systems. ACM, 2017, p. 16.

[11] Z. Á. Mann, “Allocation of virtual machines in cloud data centers
— a survey of problem models and optimization algorithms,” ACM
Computing Surveys (CSUR), vol. 48, no. 1, p. 11, 2015.

[12] L. Shi and B. Butler, “Provisioning of requests for virtual machine sets
with placement constraints in IaaS clouds,” IFIP/IEEE International
Symposium on Integrated Network Management (IM 2013), pp. 499–
505, 2013.

[13] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing,” Future Generation Computer Systems, vol. 28, no. 5, pp.
755–768, 2012.

[14] N. Quang-Hung, P. D. Nien, N. H. Nam, N. H. Tuong, and N. Thoai,
“A genetic algorithm for power-aware virtual machine allocation in
private cloud,” in Information and Communication Technology-EurAsia
Conference. Springer, 2013, pp. 183–191.

[15] M. G. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zam-
benedetti Granville, and R. Boutaba, “On tackling virtual data center
embedding problem,” in Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium on. IEEE, 2013, pp. 177–
184.

[16] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and M. Marwah, “Hybrid
resource provisioning for minimizing data center SLA violations and
power consumption,” Sustainable Computing: Informatics and Systems,
vol. 2, no. 2, pp. 91–104, 2012.

[17] A. Mosa and N. W. Paton, “Optimizing virtual machine placement for
energy and sla in clouds using utility functions,” Journal of Cloud
Computing, vol. 5, no. 1, 2016.

[18] F. Farahnakian, A. Ashraf, T. Pahikkala, P. Liljeberg, J. Plosila, I. Porres,
and H. Tenhunen, “Using ant colony system to consolidate vms for green
cloud computing,” IEEE Transactions on Services Computing, vol. 8,
no. 2, pp. 187–198, 2015.

[19] D. More, S. Mehta, P. Pathak, L. Walase, and J. Abraham, “Achieving
energy efficiency by optimal resource utilisation in cloud environment,”
in Cloud Computing in Emerging Markets (CCEM), 2014 IEEE Inter-
national Conference on. IEEE, 2014, pp. 1–8.

[20] J. V. Wang, C.-T. Cheng, and K. T. Chi, “A power and thermal-
aware virtual machine allocation mechanism for cloud data centers,” in
Communication Workshop (ICCW), 2015 IEEE International Conference
on. IEEE, 2015, pp. 2850–2855.

[21] F. Wuhib, R. Yanggratoke, and R. Stadler, “Allocating Compute and Net-
work Resources Under Management Objectives in Large-Scale Clouds,”
Journal of Network and Systems Management, pp. 1–26, 2013.

[22] L. Shi, B. Butler, D. Botvich, and B. Jennings, “Provisioning of
requests for virtual machine sets with placement constraints in iaas
clouds,” in Integrated Network Management (IM 2013), 2013 IFIP/IEEE
International Symposium on. IEEE, 2013, pp. 499–505.

[23] M. A. Khoshkholghi, M. N. Derahman, A. Abdullah, S. Subramaniam,
and M. Othman, “Energy-efficient algorithms for dynamic virtual ma-
chine consolidation in cloud data centers,” IEEE Access, vol. 5, pp.
10 709–10 722, 2017.

[24] J. Simo and L. Veiga, “Partial utility-driven scheduling for flexible
sla and pricing arbitration in clouds,” IEEE Transactions on Cloud
Computing, vol. 4, no. 4, pp. 467–480, 2016.

[25] W. Dargie, “Estimation of the cost of vm migration,” in Computer Com-
munication and Networks (ICCCN), 2014 23rd International Conference
on. IEEE, 2014, pp. 1–8.

[26] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[27] “Planetlab workload traces,” https://github.com/beloglazov/planetlab-
workload-traces, accessed: 2018-04-26.

[28] “Specpower ssj 2008,” https://www.spec.org/power ssj2008/, accessed:
2018-04-26.

[29] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in cloud data centers,” Concurrency
and Computation: Practice and Experience, vol. 24, no. 13, pp. 1397–
1420, 2012.


