
Analyzing the Efficiency of Hybrid Codes

1st Judit Giménez

Technical University of Catalonia

Barcelona Supercomputing Center

Barcelona, Spain

0000-0002-2501-2791

2nd Estanislao Mercadal

dept. of Computer Science

Barcelona Supercomputing Center

Barcelona, Spain

0000-0002-1835-8671

3rd Germán Llort

dept. of Computer Science

Barcelona Supercomputing Center

Barcelona, Spain

0000-0002-7345-0841

4th Sandra Mendez

dept. of Computer Science

Barcelona Supercomputing Center

Barcelona, Spain

0000-0002-5793-1928

Abstract—Hybrid parallelization may be the only path for most
codes to use HPC systems on a very large scale. Even within
a small scale, with an increasing number of cores per node,
combining MPI with some shared memory thread-based library
allows to reduce the application network requirements. Despite
the benefits of a hybrid approach, it is not easy to achieve an
efficient hybrid execution. This is not only because of the added
complexity of combining two different programming models, but
also because in many cases the code was initially designed with
just one level of parallelization and later extended to a hybrid
mode. This paper presents our model to diagnose the efficiency
of hybrid applications, distinguishing the contribution of each
parallel programming paradigm. The flexibility of the proposed
methodology allows us to use it for different paradigms and
scenarios, like comparing the MPI+OpenMP and MPI+CUDA
versions of the same code.

Index Terms—Efficiency model, Hybrid parallelization, Scala-
bility efficiency, Performance analysis

I. INTRODUCTION

A large number of HPC codes are only based in MPI,

but as the number of cores per node increases on the new

architectures, extending the applications to a hybrid execution

with MPI+X allows to reduce their network requirements

compared with a pure MPI run. In the case of an architecture

with accelerators, a hybrid approach is the only way to use all

the available computing resources.

Even more important than using all the available resources is

to make an efficient use of these resources. The BSC efficiency

model [1] allows to diagnose how efficiently a parallel code

is running with respect to some basic fundamental factors like

load balance or data transfer, as well as pointing out which

factor(s) may limit the application scalability. The efficiency

model characterizes both the application and the platform

(hardware and software stack) based on the computing regions

and the time spent in the parallel runtime. While the efficien-

cies on the computations require using one of the executions

as a base run (typically the smaller core-count run) and are

computed as a scaling efficiency, the parallel efficiency allows

to diagnose an isolated run based on the time spent in the

parallel runtime, considered as the overhead paid to run in

parallel. The original BSC model is described in detail in the

Background section.

This model has been demonstrated to be very useful for MPI

applications and in general for parallel applications that only

exploit one level of parallelism. In the case of hybrid codes the

current approach provides the analysis only at the hybrid level.

But it is important to determine which of the components and

which factors for these components are causing a higher loss

of efficiency. This paper presents a solution to separate the

contribution of each programming model when analyzing the

efficiency of a hybrid parallel code.

The methodology we propose in this paper follows the phi-

losophy of the BSC performance tools [3] targeting flexibility

and simplicity. We maintain the small set of key factors of

our initial model, characterizing causes of inefficiency that are

common to all parallel paradigms instead of targeting specific

inefficiencies of a given programming model. The proposed

model enables to use the same methodology and metrics for

different scenarios like MPI+OpenMP and MPI+CUDA; as

well as for hybrid codes with a hierarchical approach, i.e.,

threads are blocked or idle during the MPI calls; and more

dynamic codes with a task-based approach at the thread level,

where the communications may be scheduled on any of the

threads while the rest of the threads are computing.

The model has been sucessfully validated with controlled

test cases where we can easily forecast what we want the

model to report. We have also used the model to compare

the executions of a well-known benchmark running with

MPI+OpenMP and MPI+CUDA. Finally we describe the

insight provided when assesing the performance of a real

application that uses MPI for a distributed execution and

accelerators to speed the computations.

The rest of this paper is organized as follows: Section 2

presents as background the BSC efficiency model, Section

3 describes the methodology and proposed model, Section 4

details the validation and experimentation, Section 5 presents

related work, and finally Section 6 covers conclusions and

future work.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current 
or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 
DOI 10.1109/ISPDC51135.2020.00014



II. BACKGROUND

The BSC efficiency model is based on a multiplicative

speedup model [4]. The global efficiency is defined by two

performance factors expressed in (1).

Global Eff = Par Eff · Comp Eff (1)

Where parallel efficiency (Par Eff ) exposes the ineffi-

ciency caused by the time spent in the parallel runtime and

computation scalability efficiency (Comp Eff ) characterizes

inefficiencies scaling the computing regions.

To formulate the efficiencies, we denote T as the execution

time, P as the number of MPI processes of a parallel applica-

tion, and Usefuli as the computation time outside the parallel

runtime for the i process with i ∈ [1, P ].
Par Eff defined in (2) is the percentage of time in

Useful computation, and it can also be expressed as the

product of two efficiencies: load balance efficiency (LB Eff )

evaluates the distribution of computations across processes,

and communication efficiency (Comm Eff ) characterizes

the communication time not caused by global unbalance

between processes ((3) and (4)).

Par Eff =

∑P

(i=1) Usefuli

P · T
= LB Eff · Comm Eff (2)

LB Eff =

∑P
(i=1) Usefuli

P

max({Useful1, .., UsefulP })
(3)

Comm Eff =
max({Useful1, .., UsefulP })

T
(4)

Comm Eff captures two causes of communication time:

1) temporal unbalance or serializations that are compensated

along time and 2) real waiting time due to data transfer. These

can be measured with two metrics: serialisation efficiency

(Ser Eff ) and transfer efficiency (Transfer Eff ). To ob-

tain these two sub-metrics, we use the Dimemas [5] simulator

with an ideal network (zero latency and infinite bandwidth) to

isolate the serialization efficiency from the transfer efficiency

represented in (5) and (6) respectively.

Ser Eff =
max({Useful1, .., UsefulP })

Tideal

(5)

Transfer Eff =
Tideal

T
=

Comm Eff

Serial Eff
(6)

Using a similar approach, the computation scalability effi-

ciency (Comp Eff ) that characterizes inefficiencies scaling

the computations can be decomposed in three factors: instruc-

tions scaling, IPC (instructions per cycle) scaling and clock

frequency scaling allowing to identify the main source(s) of

scaling problems [6].

This efficiency model has been adopted by the POP Center

of Excellence [2] were it has been applied to analyse more than

two hundred parallel codes. The Performance Optimisation

and Productivity Centre of Excellence in HPC promotes best

practices in performance analysis and parallel programming

providing performance assesment and optimisation services for

academic and industrial code(s) in all domains.

III. HYBRID MODEL DECOMPOSITION

As we have seen, the global efficiency of an application

is characterized by the efficiency of the parallelization (par-

allel efficiency) and the efficiency scaling the computations

(computation scalability). There is no need to decompose

the computation scalability metric and it can be measured

as in the original model. Our goal is to split the parallel

efficiency and its first level components (load balance and

communication efficiencies) between the two programming

models. For clarity, the rest of this section describes the

methodology using MPI and OpenMP as the two programming

models of the hybrid code, despite the same efficiency model

can be used with CUDA, OpenCL, POSIX Threads, etc.

The metrics at the hybrid level are computed like in the

previous model, using as input a per-thread profile of the total

time inside and outside the parallel run-times. To formulate

the efficiencies we denote T as the execution time, P as the

number of MPI processes, t as the number of threads per

MPI rank , and Usefuli,j as the computation time outside the

parallel run-times for the thread j of process i with i ∈ [1, P ]
and j ∈ [1, t]. In the hybrid scenario, the parallel efficiency

is defined by (7) and similarly we can define the hybrid load

balance and communication efficiencies.

Hybrid Par Eff =

∑P,t

(i=1,j=1) Usefuli,j

P ∗ t · T
(7)

Figure 1 plots the hierarchy of metrics for an MPI +

OpenMP hybrid code. The blue boxes correspond to the

original model and the green boxes to the extended model

proposed in this paper. The light blue lines that connect

blue boxes with the green boxes identify new decompositions

of previous factors. The extended model allows to compute

each of the 3 efficiencies (parallel efficiency, load balance

and communication efficiency) for the three programming

paradigms (hybrid, MPI and OpenMP).

The 3-level hierarchy can be traversed through two or-

thogonal paths, classifying first by model factor (hybrid load

balance vs. hybrid communication efficiency) or distinguishing

first the impact of each programming model component (MPI

vs. OpenMP). Despite these partial views are possible, our

recommendation is to look at the nine metrics as the two paths

provide complementary insight. The bottom of the hierarchy,

common for both paths, are the factors per programming

model component.

The model was initially designed for hierarchical codes

where MPI is the outer level, with all ranks having the same

number of threads. While evaluating the hierarchical approach,

we identified how to adapt the model to be valid when there are

different number of threads per MPI rank. With some further

adjustments, our approach is also applicable when more than

one thread of each MPI rank calls MPI or to non-hierarchical

codes where the non-communicating threads are active while



Fig. 1: Hybrid efficiency model.

the communications take place. In this section we describe the

hierarchical model in detail as well as a very brief description

of our plans for the non-hierarchical codes.

A. Hierarchical Codes

Hierarchical codes are the most frequent scenario for HPC

codes. In many cases the initial parallelization was done with

MPI and later the computation phases of the MPI code are

parallelized with a second programming model. Typically,

while some MPI processes are communicating, their threads

are either in the idle loop (when MPI is called from a region

not parallelized with OpenMP) or blocked (if it occurs within

a parallel). For this scenario it is reasonable to consider

that MPI is the only responsible for those time intervals, as

improvements in the MPI part would also automatically reduce

the threads waiting time.

To explain our approach we can consider we have a rect-

angular space that delimits our execution (N resources x T

time) and we have to classify each sub-rectangle either as

computing or inside a parallel runtime. It can be seen as the

typical timeline reported by most trace-based tools. The left

side of Figure 2 shows one example of activity timeline where

blue corresponds to computing, red to MPI, yellow to OpenMP

library and white to the idle loop.

The left side of the image corresponds to the hybrid

classification where we consider both MPI and OpenMP run-

times as overheads. If we want to consider only the MPI

component, we can recolor the rectangular space with a coarse

granularity defined by the MPI ranks where the MPI activity

delimits the MPI regions and the rest of the space is considered

computation from the MPI point of view as it is displayed in

the right side of Figure 2.

With the assumptions that only one thread per MPI rank

communicates and that the number of OpenMP threads is the

same for all the MPI ranks (in our experience this is the most

frequent configuration), the same efficiencies are obtained if

we only consider the MPI ranks (OpenMP master threads),

ignoring the activity of all the other threads.

The equations (8), (9) and (10) compute the efficiencies for

the MPI component and are based on an MPI profile applied

only to the threads that communicate through MPI (in this

hierarchical case, the master thread). From the point of view

of an MPI profile, each rank can be either inside the MPI

library, or computing (outside MPI).

MPI Par Eff =

∑P

(i=1) OutsideMPIi,1

P · T
(8)

MPI Comm Eff =
max({OutsideMPI1,1, .., OutsideMPIP,1})

T
(9)

MPI LB Eff =

∑P
(i=1) OutsideMPIi,1

P

max({OutsideMPI1,1, .., OutsideMPIP,1})
(10)

The metrics for the OpenMP component are computed

considering that any loss of efficiency that cannot be justified

by the MPI component is due to the OpenMP parallelization.

This means that all the inefficiencies in the regions where there

are no MPI calls have to be blamed to OpenMP. As a result, the

OpenMP component efficiencies are simply the ratio between

the hybrid efficiency and the MPI component efficiency (11),

(12) and (13). We should remark that this approach does not

require that MPI is called from outside the parallel regions.

OpenMP Par Eff =
Hybrid Par Eff

MPI Par Eff
(11)



Fig. 2: Example of a hybrid timeline (left) and its MPI classification (right).

OpenMP Comm Eff =
Hybrid Comm Eff

MPI Comm Eff
(12)

OpenMP LB Eff =
Hybrid LB Eff

MPI LB Eff
(13)

In the infrequent case where the number of threads per

MPI rank is different, the MPI efficiencies have to be rescaled

taking into account the number of threads on each MPI rank

(as the area each rank is responsible for would depend on its

number of threads). For instance, assuming ti is the number

of threads for rank i, the MPI component efficiencies can be

computed using (14), (15) and (16)

MPI Par Eff =

∑P

(i=1) OutsideMPIi,1 · ti

P · T ·
∑P

(i=1) ti
(14)

MPI LB Eff =

∑P
(i=1) OutsideMPIi,1·ti

P ·

∑
P
(i=1)

ti

max({OutsideMPIi,1, ..., OutsideMPIP,1})
(15)

MPI Comm Eff =
max({OutsideMPIi,1, ..., OutsideMPIP,1}

T
(16)

The approach used to compute the efficiencies of the second

component allows us to apply the same methodology with

other programming models. Isolating first the MPI component,

means blaming first to MPI, so when a given MPI rank is

delayed, the corresponding waiting time is computed as MPI

ineficiency despite the source of the delay may be inside

OpenMP. The justification for this time distribution is that all

MPI waiting time may be improved modifying the MPI part,

and it is important to capture that insight.

B. Non-hierarchical Codes

There are applications with two levels of parallelism that are

not hierarchical, for example, hybrid codes where OpenMP is

using a task-based approach. It may be the case where MPI

is called from one of the tasks that it may even be executed

by a different thread on each iteration. This is also the case

of a parallel do approach where different threads may

call to MPI. Or it can be the case of an MPI+CUDA code

where the communications take place overlapped with the

GPU executing some kernels. In these scenarios, we have

to blame MPI only for the MPI time plus the time other

threads are waiting that the MPI is completed. We are currently

working on the formulation as well as on identifying codes

with that kind of hybrid parallelization.

IV. EXPERIMENTS

In this section we describe some of the experiments carried

out to validate and to explore the results of our methodology.

A. Validation

The goal of the experiments described in this section is to

validate that different scenarios of load unbalance were cor-

rectly reported by the model pointing either to MPI, OpenMP

or both.

It has been done using a simple hybrid code running with

6 MPI ranks with 4 OpenMP threads each. The code at high

level is:

Code not parallelized with OpenMP (C1)

MPI communication

OpenMP Parallel loop (C2)

MPI communication

Giving different weights and unbalances to the two compu-

tation phases (C1 and C2) we generated different scenarios

of load unbalance symptoms. As C1 is a serial code not

parallelized with OpenMP it always contributes to OpenMP

efficiencies. Unbalancing C1 or C2 between MPI ranks we can



generate MPI unbalance and unbalancing C2 between threads

generates OpenMP unbalance.

1) Large serial computation: For this run we configured C1

to represent close to 60% of the computing time and generated

a balanced C2. Figure 3a shows the timeline of the computing

phases for this configuration. The view displays the duration

of the computations as a gradient (from light green low value

to dark blue high value). Both C1 and C2 computations are

colored in blue, while the light green regions correspond to

small computations in the initialization and communication

phases. The metrics reported by the proposed model are

described in Table 3b. We can see that the model points to

an unbalance problem in the OpenMP part that corresponds

to the serial code not parallelized with OpenMP (C1).

(a) Timeline

Hybrid MPI OpenMP

Parallel efficiency 47.07 95.97 49.05

Load Balance efficiency 52.09 98.87 52.69

Communication efficiency 90.37 97.06 93.11

(b) Efficiency Metrics (%)

Fig. 3: Large serial computation test.

2) Unbalanced OpenMP loop: In this case we reduced

the weight of the serial computation phase (C1) to less than

15% and generated unbalance in the OpenMP parallel loop

(C2) where the master thread has significantly less work.

Figure 4a shows the timeline of the computing phases for

this configuration. The metrics reported by the proposed

model are described in Table 4b. We can see that the model

points to a non-severe unbalance in the OpenMP component

that measures the work distribution considering both C1 and

C2. The OpenMP communication inefficiency captures the

unbalance that compensates during the execution: in C1 the

slave threads are waiting for the master thread and in C2 the

master threads wait while the slaves are computing.

3) Unbalanced MPI + serial OpenMP: For this case we

maintain the original weight of the serial computation phase

(C1) and generate unbalance between the MPI ranks for the

OpenMP parallel loop (C2). Figure 5 shows the timeline of

the computing phases and the metrics reported by the model.

We can see that the model points to unbalance problems both

in MPI (due to C2) and in OpenMP (due to C1).

4) Unbalanced MPI: In this test we refine the previous

analysis focusing only on the C2 region as an approach that

can be used to identify the distribution of the unbalance

between C1 and C2. Figure 6a shows the timeline of the

(a) Timeline

Hybrid MPI OpenMP

Parallel efficiency 70.79 99.43 71.20

Load Balance efficiency 81.66 99.89 81.75

Communication efficiency 86.69 99.54 87.09

(b) Efficiency Metrics (%)

Fig. 4: Unbalanced OpenMP loop test.

(a) Timeline

Hybrid MPI OpenMP

Parallel efficiency 43.68 69.12 63.19

Load Balance efficiency 48.46 70.01 69.22

Communication efficiency 90.14 98.6 91.42

(b) Efficiency Metrics (%)

Fig. 5: Unbalanced MPI + serial OpenMP test.

computing phases for this configuration. We can see that when

we apply the model only to C2 it points to unbalance in MPI,

confirming the OpenMP unbalance reported in the previous

test is concentrated in C1.

(a) Timeline

Hybrid MPI OpenMP

Parallel efficiency 55.95 59.83 93.51

Load Balance efficiency 58.78 61.20 96.05

Communication efficiency 95.19 97.74 97.39

(b) Efficiency Metrics (%)

Fig. 6: Unbalanced MPI test.

5) Preempted run: This test was a non-intentional run of

the large serial computation test where the execution of one

of the MPI ranks was preempted. As we did not filled the

node and we did not run in exclusive mode, the preemption

may be caused by another job running on the same node.



We consider interesting to investigate the diagnosis for this

unexpected perturbed run. Figure 7 shows the timeline of the

computing phases and the metrics reported. The model points

to unbalance problems in MPI (due to the delay created in

MPI waiting for the preempted rank to finish) and problems

of communication in OpenMP (due to the large gap in the

OpenMP runtime while the rank was preempted). We consider

this is the correct diagnosis as it points to the problem of the

preemption in OpenMP as well as its impact in MPI.

(a) Timeline

Hybrid MPI OpenMP

Parallel efficiency 18.04 38.17 47.26

Load Balance efficiency 42.48 45.54 93.28

Communication efficiency 42.48 83.81 50.69

(b) Efficiency Metrics (%)

Fig. 7: Preempted run test.

B. Lulesh analysis

One of the benefits of our model is that it can be used

to analyze different hybrid parallelizations. In this section we

compare the execution of Lulesh [7] running on two BSC

systems: Marenostrum4 [8] and CTE-Power [9] to select the

platform in which we will do the scaling test. For the first

analysis we used one node on each machine (Marenostrum4

8 MPI x 6 OpenMP, CTE-Power 8 MPI x 4 CUDA devices).

The run of 100 iterations takes between 8 and 9 seconds on

each machine but while the initialization in Marenostrum4 is

only 90µs, initialization and finalization with CUDA is around

90% of the execution time (close to 8 seconds), so the core

computation (the iterative loop) is 10x faster in CTE-Power.

Nevertheless, the efficiencies analysis using our model re-

ports that the run in Marenostrum4 is much more efficient.

While MPI+OpenMP hybrid parallel efficiency is 77%, it goes

down to less than 20% in MPI+CUDA.

The MPI component parallel efficiency has closer values

with 95% in MPI+OpenMP vs. 83% in MPI+CUDA. The

differences in the MPI component parallel efficiency are due

to a worst MPI load balance that is 88% in the execution of

MPI+CUDA and goes up to 96% in the MPI+OpenMP run.

There are two reasons for the low CUDA parallel efficiency:

First, the CPU spends most of the time either configuring or

waiting for the device. This is common for many CUDA codes

where all the computations are ported to the GPU and the CPU

main role is to feed work to the accelerator. Second, the Lulesh

implementation uses 10 streams per MPI rank and there is

not much overlap of the kernels executed in different streams.

The traces revealed that less than 10% of the time there are

multiple streams running simultaneously. If we accumulate

the streams for each rank, the useful time in the devices

increases to 65%. Considering the accumulated metrics, the

model highlights low CUDA component commmunication

efficiency caused by time in the cudaConfigureCall

and cudaStreamSynchronize calls. This insight suggests

that we should increase the ratio between the kernel execution

and the configuration and synchronization calls.

The analysis of the MPI+OpenMP configuration points

to the OpenMP communication efficiency with a value of

88%. Looking at the traces we identifed a phase between

the functions CalcMonotonicQRegionForElems and

MPI_Allreduce where small parallel regions are repeated

in a loop, which suggests to move the pragma to an outer level

to reduce the overhead of the frequent fork-join synchroniza-

tion.

In summary, despite the MPI+CUDA run is much faster, the

MPI+OpenMP run does a better usage of the resources. Both

runs report a similar behaviour with respect to MPI.

As a result of the previous analysis, we select MareNos-

trum4 for our scaling test. Lulesh default behavior is weak

scaling, this allow us to significantly increase the scale using

the same input parameters. As Lulesh requires a cube number

of MPI ranks, we selected as target the cube of 6 (216).

Keeping the previous configuration of 6 OpenMP per MPI

rank, the scale of the run goes up to 1296 cores (previous run

used 48 cores). Table I collects the nine efficiencies of the two

runs to evaluate in detail the scaling behaviour.

TABLE I: Lulesh MPI+OpenMP scaling efficiencies (%)

48(8x6) 1296(216x6)

Hybrid Parallel efficiency 77.28 64.57
Hybrid Load Balance efficiency 88.93 77.14
Hybrid Communication efficiency 86.90 83.06

MPI Parallel efficiency 95.00 84.38
MPI Load Balance efficiency 96.27 86.57
MPI Communication efficiency 98.68 97.48

OpenMP Parallel efficiency 81.35 76.52
OpenMP Load Balance efficiency 92.38 89.81
OpenMP Communication efficiency 88.06 85.21

Increasing 27x the number of cores reduces the hybrid

parallel efficiency from 77% to close to 65%. The factor

that reports a higher impact (reduction) at hybrid level is

the load balance. With respect to the distribution between

the two programming models there is a higher penalty in

MPI. This is expected because we have not changed the ratio

of OpenMP threads per MPI rank. What is maybe not so

expected is that the degradation is related with load unbalance.

MPI communication efficiency are very similar in both runs

indicating there is no problem of scaling in the transfer of data.

Looking at the trace we can identify that the MPI unbalance

is concentrated in the two largest computation phases.

C. Application analysis

This methodology was used in the POP Audit for Tsunami-

HySEA [10], the numerical model of the HySEA family de-



Fig. 8: Scaling of the main component efficiencies for Tsunami-HySEA.

signed for quake generated tsunami simulations. Programmed

with MPI+CUDA, we ran in the BSC CTE-Power scaling from

4 CPUs + 4 GPUs to 64 CPUs + 64 GPUs using the Pacific

ocean input.

We select as relevant metrics the global efficiency and the

hybrid and MPI parallel efficiencies, plotting their scaling

values in Figure 8. The gap between the top of the image and

the MPI parallel efficiency corresponds to the loss of efficiency

caused by MPI, the area between the two parallel efficiencies

is the impact of the CUDA component and the region between

the hybrid parallel efficiency and the global efficiency indicates

the efficiency scaling the computations.

Looking at this plot we can say that MPI is the programming

model with a higher impact on the loss of efficiency (close to

35%) despite their contribution to the global parallel efficiency

does not degrade with the scale drawing almost an horizontal

line except for 8 CPUS + 8 GPUs.

The GPU part shows a lower impact but increasing with

the scale, being closer to the MPI contribution on the largest

configuration. Finally, the computations have the smaller con-

tribution despite they also reflect a small degradation with the

scale. So, the higher loss of efficiency is on the MPI layer, but

the scaling problems are related to the CUDA parallelization

and with a very small impact, the scaling of the computations.

The analysis of the MPI parallel efficiency components

indicated that the main source of loss of efficiency is load

balance (with values around 75%). Analysing the unbalance

in the traces, we can see that it is a structured unbalance that

is maintained in all the iterations, suggesting it is due to the

work distribution, and that improving the initial distribution

would improve the execution of all the iterations.

The analysis of the GPU component identifies that the main

problem is due to the communications, and the traces revealed

it is caused by the increase on the cudaMemcopy runtime call

used to copy data from and to the device. The cudaMemcopy

call represents 24% of the execution time on the CPUs with

the largest configuration. The GPU kernels show a reasonable

scaling between 10x to 14x with 16x more resources, being

this small reduction of the scaling the source of degradation

detected in the computation scalability.

The feedback provided by this analysis was considered very

useful by the code owner that is currently working on a new

improved version.

V. RELATED WORK

Several solutions have been proposed to model the behavior

of parallel applications and measure the efficiency. The most

common approach is to build specific models for a particular

paradigm. Sun et al. [11] introduced a method to predict

the performance of MPI programs. Based on random forest

machine learning they predict the performance by considering

a number of factors such as values of variables, counters

of branches, loops and MPI runtime features related to the

data size and the number of targets of MPI calls. Similarly,

we rely on MPI instrumentation, but our model focuses on

the percentage of execution time of the computation phases

delimited by calls to the MPI runtime.

Dietrich et al. [12] defines common inefficiency patterns

for computation offloading models such as CUDA, OpenCL,

OpenACC, and OpenMP target. By using pattern analysis

techniques they identify that the most common offloading

inefficiencies are the early wait-for-device operations and the

device idle time. While these metrics focus on particular

sources of offloading problems, our model provides more

general efficiency metrics that describes common problems

for different paradigms, and more importantly, are reported

for each component of a hybrid parallelization.



Targeting hybrid models, Wu and Taylor [13] present a

performance modeling framework based on memory band-

width contention time and a parameterized communication

model to predict the performance of OpenMP, MPI and

hybrid applications. They propose an additive hybrid model

for MPI+OpenMP applications. In contrast, our hybrid model

is multiplicative for MPI+X applications, where X might be

different paradigms such as GPU, OpenMP and others.

Other authors use empirical approaches not focusing on

the parallel paradigm. Calotoiu et al. [14] proposed a method

to generate empirical scaling models from a limited set of

performance measurements as a function of an arbitrary set

of input parameters. This approach builds models tailored

to each target application based on specific parameters, and

requires multiple experiments to consider all combinations

of parameters. The PMaC tool suite creates scaling models

of parallel applications based on modeling single-processor

performance considering features related to processor and

network architecture, and was extended to model accelerators

[15]. Goldsmith et al. [16] describe the behavior of programs

by measuring their empirical computational complexity, fitting

a model that predicts performance as a function of workload

size. While the previous works explored the direction of

performance modeling or prediction based on specific ap-

plications and system characteristics, our approach aims at

modeling and decomposing the efficiency of an application

into a small set of metrics that reflect the common causes of

inefficiency for each component of hybrid parallel programs.

This is extremely useful to characterize the performance

behavior of an application at different stages of optimization

and tuning, as well as to easily compare performance across

different processes, machines, or execution scenarios.

As a summary, the main novelty of our work is to provide

a generic multiplicative model to measure the efficiency of

hybrid applications’ executions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present a model to characterize the ef-

ficiency of hybrid codes, being able to determine the con-

tribution of each programming model. The model is based

on fundamental factors inherent to all parallel programing

models: time outside the parallel libraries (parallel efficiency),

work distribution (load balance) and synchronization between

processes/threads that is not caused by the global unbalance

(communication efficiency).

These fundamental factors are intuitively identified in a

message passing approach like MPI, nevertheless the met-

rics can be mapped into any parallel paradigm, for instance

OpenMP communication efficiency identifies both temporal

unbalances that are compensated along time as well as time

on the OpenMP library caused by locks or due to the selected

scheduling. We base our approach on what programming mod-

els have in common, instead of focusing on their specificities.

Despite the model was initially developed targeting hierar-

chical hybrid codes, the same approach can be used when there

is more overlap between the two programming models. We are

currently working on the required extensions to support them.

VII. ACKNOWLEDGMENTS

This work has been partially developed under the scope

of POP CoE which has received funding from the Euro-

pean Union´s Horizon 2020 research and innovation pro-

gramme (under grant agreements No. 676553 and 824080),

and with the support of the Comision Interministerial de

Ciencia y Tecnologı́a (CICYT) under contract No. PID2019-

107255GB-C22. We also want to acknowledge the ChEESE

CoE and the EDANYA group from Universidad de Málaga

(www.uma.es/edanya) that granted us permission to report on

the Tsunami-HySEA analysis.

REFERENCES

[1] Rosas, C., Gimnez, J., Labarta, J.: Scalability prediction for fundamental
performance factors. Supercomputing Frontiers and Innovations (2014),
https://superfri.org/superfri/article/view/7

[2] POP: POP Center of Excellence, https://pop-coe.eu
[3] BSC Performance Tools, https://tools.bsc.es
[4] Casas, M., Badia, R., Labarta, J.: Automatic analysis of speedup of

mpi applications. In: Proceedings of the 22Nd Annual International
Conference on Supercomputing. pp. 349–358. ICS ’08, ACM (2008),
http://doi.acm.org/10.1145/1375527.1375578

[5] Dimemas, https://tools.bsc.es/dimemas
[6] Wagner, M., Mohr, S., Giménez, J., Labarta, J.: A Structured Approach

to Performance Analysis. In: Niethammer, C., Resch, M.M., Nagel,
W.E., Brunst, H., Mix, H. (eds.) Tools for High Performance Computing
2017. pp. 1–15. Springer International Publishing, Cham (2019)

[7] Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Tech.
Rep. LLNL-TR-641973 (August 2013)

[8] MareNostrum 4 overview. https://www.bsc.es/support/MareNostrum4-
ug.pdf

[9] CTE-Power overview. https://www.bsc.es/support/POWER CTE-ug.pdf
[10] Macas, J., Castro, M., Ortega, S., Escalante, C., Gonzlez-Vida, J.:

Performance Benchmarking of Tsunami-HySEA Model for NTHMPs
Inundation Mapping Activities. Pure and Applied Geophysics 1(37)
(2017), https://doi.org/10.1007/s00024-017-1583-1

[11] Sun, J., Zhan, S., Sun, G., Chen, Y.: Automated performance modeling
based on runtime feature detection and machine learning. In: 2017
IEEE International Symposium on Parallel and Distributed Processing
with Applications and 2017 IEEE International Conference on Ubiqui-
tous Computing and Communications (ISPA/IUCC). pp. 744–751 (Dec
2017). 10.1109/ISPA/IUCC.2017.00115

[12] Dietrich, R., Tschüter, R., Juckeland, G., Knüpfer, A.: Analyzing offload-
ing inefficiencies in scalable heterogeneous applications. In: Kunkel,
J.M., Yokota, R., Taufer, M., Shalf, J. (eds.) High Performance Com-
puting. pp. 457–476. Springer International Publishing, Cham (2017)

[13] Wu, X., Taylor, V.: Performance modeling of hybrid
mpi/openmp scientific applications on large-scale multicore
supercomputers. J. Comput. Syst. Sci. pp. 1256–1268 (2013),
http://dx.doi.org/10.1016/j.jcss.2013.02.005

[14] Calotoiu, A., Beckinsale, D., Earl, C.W., Hoefler, T., Karlin, I., Schulz,
M., Wolf, F.: Fast multi-parameter performance modeling. In: 2016 IEEE
International Conference on Cluster Computing (CLUSTER). pp. 172–
181 (Sep 2016). 10.1109/CLUSTER.2016.57

[15] Meswani, M.R., Carrington, L., Unat, D., Snavely, A., Baden, S.,
Poole, S.: Modeling and predicting performance of high performance
computing applications on hardware accelerators. In: 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops
PhD Forum. pp. 1828–1837 (May 2012). 10.1109/IPDPSW.2012.226

[16] Goldsmith, S.F., Aiken, A.S., Wilkerson, D.S.: Measuring empiri-
cal computational complexity. In: Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering. pp. 395–404. ESEC-FSE ’07, ACM (2007),
http://doi.acm.org/10.1145/1287624.1287681


