
On-the-fly Optimization of Parallel Computation
of Symbolic Symplectic Invariants

Joseph Ben Geloun1, Camille Coti1, Allen D. Malony2

1 LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE

{joseph.bengeloun,camille.coti}@lipn.univ-paris13.fr
2 University of Oregon
malony@cs.uoregon.edu

Abstract. Group invariants are used in high energy physics to define
quantum field theory interactions. In this paper, we are presenting the
parallel algebraic computation of special invariants called symplectic and
even focusing on one particular invariant that finds recent interest in
physics. Our results will export to other invariants. The cost of perform-
ing basic computations on the multivariate polynomials involved evolves
during the computation, as the polynomials get larger or with an increas-
ing number of terms. However, in some cases, they stay small. Tradition-
ally, high-performance software is optimized by running it on a smaller
data set in order to use profiling information to set some tuning param-
eters. Since the (communication and computation) costs evolve during
the computation, the first iterations of the computation might not be
representative of the rest of the computation and this approach cannot
be applied in this case. To cope with this evolution, we are presenting
an approach to get performance data and tune the algorithm during the
execution.

1 Introduction

Many scientific applications that run in parallel on high-performance computing
(HPC) systems display a regular execution behavior whose performance is rel-
atively stable during the course of the computation, thereby making it possible
to empirically analyze and model for post-mortem tuning purposes. While per-
formance can certainly depend on parallelism degree, problem size, and other
factors, if the algorithms used generate computational work that is predictable,
repeatable, and does not vary in unknown manners during execution, there is a
good chance that static optimizations and judicious configuration settings will
be effective.

Now suppose that this is not the case. Consider an application whose com-
putational behavior is more irregular and even non-deterministic, whose state
defines the amount and type of work to be done next, where execution depen-
dencies change as a result, and when termination is subject to varying conditions

ar
X

iv
:2

00
3.

01
08

1v
1

 [
cs

.D
C

]
 2

 M
ar

 2
02

0

that are difficult to assess. Now imagine that the problem size is also a factor
in how the application unfolds. Such an application can cause havoc in relation
to performance observation, analysis, and improvement. More to the point, it
raises serious concern whether a post-mortem methodology even applies.

In such a scenario, it might be fair to argue that the performance problem
becomes less a matter static code optimization and more an issue of dynamic
management of resources and parallelism at runtime. In the presence of chang-
ing execution behavior and varying computational demands, it becomes more
necessary to address concurrency and resource interactions dynamically in order
to control inefficiences that manifest themselves at runtime. If the performance
is not predictable from run to run, post-mortem empirical analysis will prove
even further inadequate.

In this paper, we look at group invariants and their use in high energy physics
to define quantum field theory interactions. In particular, we present the par-
allel algebraic computation of special invariants called symplectic and focus on
one particular invariant that finds recent interest in physics. In successful, our
results will export to other invariants. Interestingly, the cost of performing ba-
sic computations on the multivariate polynomials involved evolves during the
computation, as the polynomials get larger or with an increasing number of
terms. However, in some cases, they stay small. Since the (communication and
computation) costs change during the computation, the first iterations of the
computation might not be representative of the rest of the computation. Hence,
traditional techniques of tuning performance based on prior profiling runs with
smaller data sets is unlikely to prove fruitful.

To cope with this evolution, we are presenting an approach to observe per-
formance online and make adaptive optimization decisions on-the-fly during the
execution. In particular, we focus on the control of parallelism degree as in-
formed by monitoring the concurrency availability, execution overheads, and
workload balance. When we identify execution states offering opportunities for
performance improvement, adaptive control policies are engaged and evaluated.

Our contributions are found both in the parallel algorithm and implementa-
tion of symbolic symplectic invariants computations, as well as the on-the-fly op-
timization methodology and its development. We show results that demonstrate
the ability to scale the problem, delivering outcomes heretofore unachieved, while
maintaining good speedup returns. The paper begins with a more formal de-
scription of the problem. We then discuss the parallelization approach and the
runtime performance observaton and control. Experimental benchmarks and per-
formance results are presented, with the paper concluding with summary obser-
vations and future directions.

2 Simplectic Invariants

2.1 Group invariants and tensor models

In high energy physics, one ordinarily uses group invariants to define quan-
tum field theory interactions. More recently, particularly among the attempts of

quantizing gravity, tensor models [1,15] have extensively addressed classical Lie
group (unitary and orthogonal) invariants in their construction. Tensor models
belong to an active domain that stems from the proposal of making random and
discrete the space or spacetime and the study of their continuum limit. They nat-
urally generalize, in higher dimension, the so-called matrix models [14] focusing
on gravity in 2D.

The physics behind tensor models strongly rests on their rich combinatorics.
Indeed, the interactions of tensor models, that are tensor contractions, corre-
spond to classical Lie groups invariants and encode in terms of edge-colored
graphs. With complex tensors, one deals with U(N)⊗d (unitary) invariants [9].
Meanwhile, for the real tensors, these interactions map to O(N)⊗d (orthogonal)
invariants [12]. The enumeration of these Lie group invariants was addressed in
a series of works [4,5,2]. As upshots of these analyses, the enumeration rules of
tensor invariants shows new correspondences with branched covers in algebraic
geometry and topology, and, using representation theoretic formulae, the same
counting expresses in terms of the famous Kronecker coefficient, an object of
paramount importance in computational complexity theory [17,16,8].

Alongside with the orthogonal and unitary groups, one of the most prominent
classical Lie groups is certainly the symplectic group Sp(2N). Given the afore-
mentioned results, a natural question follows: what are the enumeration rules
satisfied by the symplectic invariants? This question is far from being purely
formal. Indeed, some recent problems in condensed matter/black hole physics
[11] show that the symplectic group plays therein an important role. Thus, the
systematic study of the Sp(2N) invariants becomes urgent for physics.

The calculation of symplectic invariants, as opposed to unitary and orthog-
onal invariants, contains sign factors due to the symplectic matrix J that they
involve. Therefore, nothing prevents that a given tensor contraction yields an
identically vanishing invariant. It is therefore pertinent to test at small order in
N , and small order in the number of tensor contracted, if a symplectic invari-
ants is simply not zero. Something important that one must bear in mind is that
the invariant is a polynomial of formal (real) variables made out of the tensor
components. Any program aiming at evaluating these invariants should perform
formal calculus.

At rank d = 3, one contraction of 4 tensors is particularly interesting for
physicists: the so-called complete graph contraction (for instance see [12]). This
invariant may not exist for the symplectic group. One of the purposes of the
present work is to show that up to order 2N = 8, this invariant is not identically
null.

2.2 Basics on polynomial symplectic invariants

We set up now our notation. The definition of polynomial symplectic invariants
requires the real 2N × 2N symplectic matrix J which expresses in blocks

J =

(
0 IN
−IN 0

)
, J2 = −I2N , (1)

where IN , for all N , is the identity matrix of MN (R). A matrix K ∈ Sp(2N)
obeys KJKT = J, and KTJK = J .

A rank-d real tensor T , with components Tp1,...,pd
, pc = 1, . . . , 2Nc, trans-

forms under the fundamental representation of ⊗d
c=1Sp(2Nc), if for fixed Nc,

if the group Sp(2Nc) acts on the index pc such that the transformed tensor
satisfies:

TK
q1,...,qd

=
∑

p1,...pd

K(1)
q1p1

. . .K(d)
q1p1

Tp1,...,pd
, (2)

where K(c) ∈ Sp(2Nc), c = 1, . . . , d. For simplicity, in the rest of this work, we
assume Nc = N , for all copies.

The interactions of Sp(2N) tensor models consists in the contractions of an
even number of tensors T where the contraction metric is precisely the matrix
J . It is not complicated to show that they are invariant under the fundamental
representation of Sp(2N)⊗d.

Among these invariants, there is a particular physical interest in the following
contraction of four tensors:

T 4 =
∑

a1,a2,...,a6

∑
ā1,ā2,...,ā6

Ja1ā1
Ja2ā2

Ja3ā3
Ja4ā4

Ja5ā5
Ja6ā6

× Ta1,a2,a3
Ta4,a5,ā3

Tā4,ā2,a6
Tā1,ā5,ā6

(3)

with, for all i, ai and āi ranging from 1 to 2N . On the left-hand side of the
equality, T 4 is mere notation for that invariant, that can be represented by the
complete graph.

We will see the most naive way of implementing the evaluation of tensor
contractions in section 3.1. However, with 12 nested loops, it is computationally
complex and time expensive. Hence, we need to extract algebraic properties that
reduce this complexity.

Using the properties of the matrix J , the above sum reduces to

T 4 =

6∏
l=1

[N∑
al=1

2N∑
āl=N+1

Jalāl
+

2N∑
al=N+1

N∑
āl=1

Jalāl

]
Ta1,a2,a3Ta4,a5,ā3Tā4,ā2,a6Tā1,ā4,ā6

=
∑

I⊂{1,2,...,6}

∏
l∈I

[N∑
al=1

2N∑
āl=N+1

Jalāl

]∏
l/∈I

[2N∑
al=N+1

N∑
āl=1

Jalāl

]
×Ta1,a2,a3Ta4,a5,ā3Tā4,ā2,a6Tā1,ā4,ā6

=
∑

I⊂{1,2,...,6}

(−1)6−|I|
∏
l∈I

[N∑
al=1

N∑
āl=1

δāl,al+N

]∏
l/∈I

[N∑
al=1

N∑
āl=1

δal,āl+N

]
×Ta1,a2,a3Ta4,a5,ā3Tā4,ā2,a6Tā1,ā4,ā6 . (4)

That sum breaks in 26 sub-sums. Fortunately, we use the symmetry of the pattern
Ta1,a2,a3

Ta4,a5,ā3
Tā4,ā2,a6

Tā1,ā4,ā6
itself to further reduce these terms. Indeed,

because the indices of the tensor are distinguished, colors 1 and 4, 2 and 5,
and, 3 and 6, might be exchangeable. A different possible symmetry exchange is
among the elements of the couples (al, āl). The sum (4) boils down to 64/4= 16
sums. An algorithm that computes this approach is given in section 3.2.

3 Parallel Computation

Our goal is to implement the invariant calculations describe above with algo-
rithms whose performance will scale with increasing parallelism. The challenge
is not only to have efficient implementation of the tensor element operations, but
to manage parallel execution with low overhead and good load balance. First we
consider algorithms to perform the invariant calculations. Then we look at their
parallelization.

3.1 Naive algorithm

The most naïve implementation of the contraction described in section 2.2 is sim-
ply a sum of all the elements of the tensor, multiplied by those of the symplectic
matrix. The algorithm consists of 12 nested loops, and given by Algorithm 1.

Algorithm 1: Naive invariant computation.
Input: J: symplectic matrix
Input: T: tensor
Output: Tens: invariant
Tens = 0 ;
for a1← 0 to size by 1 do
for a2← 0 to size by 1 do
for a3← 0 to size by 1 do
A = T[a1][a2][a3];
for b1← 0 to size by 1 do
TAB = J[a1][b1];
for b2← 0 to size by 1 do
for b3← 0 to size by 1 do
TABB = TAB * A*T[b1][b2][b3];
for c1← 0 to size by 1 do
for c2← 0 to size by 1 do
TABC = TABB * J[a2][c2];
for c3← 0 to size by 1 do
TABCC = TABC * T[c1][c2][c3] * J[b3][c3];
for d1← 0 to size by 1 do
TABCD = TABCC * J[c1][d1];
for d2← 0 to size by 1 do
TABCDD = TABCD * J[b2][d2];
for d3← 0 to size by 1 do
Tens = Tens + TABCDD * T[d1][d2][d3]*J[a3][d3];

While there is a high degree of concurrency because of the independence of the
operations, the sheer dimensionality of the algorithm (size12) results in signifi-
cant computational scaling challenges as size increases.

3.2 Exploiting algebraic properties

Clearly, the complexity of the algorithm given in section 3.1 is too high. Luckily,
in the particular case of the symplectic matrix we are considering here (see
section 2.2), this complexity can be reduced significantly. The algorithm given
by Algorithm 2 consists of 6 nested loops, instead of 12. Moreover, each loop is
rolling over size/2 elements instead of size.

3.3 Parallel algorithms

We can see that in both algorithms 1 and 2, the iterations of the loops are in-
dependent from each other, and the final result is a linear combination of the
result of each iteration. Hence, their parallelization might appear straightfor-
ward. However, these algorithms all rely on basic operations (additions, multi-
plications) on multivariate polynomials. Such operations have a complexity that
depends on the size of the polynomials. There exist several libraries to perform
such operations on symbolic variables, such as GiNaC [3], Piranha [6] and its
successor Obake [7]. We have measured the time taken by the multiplication of
a multivariate polynomial by a constant and the addition of two polynomials
that have half of their unknowns in common. The result is presented in Figure
1. Indeed, we can see that the size of the polynomial has a strong impact on the
computation time of these basic operations.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 5
0

0

 1
0

0
0

 1
5

0
0

 2
0

0
0

 2
5

0
0

 3
0

0
0

 3
5

0
0

Ti
m

e
 (

s)

Polynomials size

Addition

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0 5
0

0

 1
0

0
0

 1
5

0
0

 2
0

0
0

 2
5

0
0

 3
0

0
0

 3
5

0
0

Ti
m

e
 (

s)

Polynomials size

Multiplication

Fig. 1: Cost of basic polynomial operations.

As a consequence, we need to be careful about how we design a parallel
algorithm to perform the work. For instance, one strategy could be to statically
decompose the iteration of the outer loops into equal parts. The strategy might
be reasonable based on the idea of computing intermediate sums in parallel and
then gathering them to produce the final sum. However, even though subparts
of the loops might be of equal lengths with respect to number of iterations to

Algorithm 2: Invariant computation using symmetries of the invariant
and algebraic properties of the symplectic matrix.

Input: J: symplectic matrix
Input: T: tensor
Output: Tens: invariant
Tens=TE=T1=T2=T3=T4=T5=T12 =
T13 = T14 = T16 = T23 = T24 = T26
= T123 = T126 = T134 = 0;

N = size/2;
for a4← 0 to N by 1 do
A4 = a4 + N;
for a2← 0 to N by 1 do
A2 = a2 + N;
for a6← 0 to N by 1 do
A6 = a6 + N;
W1 = T[a4][a2][a6];
W2 = T[a4][A2][a6];
W3 = T[a4][a2][A6];
W4 = T[A4][A2][a6];
W5 = T[a4][A2][A6];
W6 = T[A4][a2][A6];
W7 = T[A4][A2][A6];
for a1← 0 to N by 1 do
A1 = a1 + N;
for a5← 0 to N by 1 do
A5 = a5 + N;
Z1 = T[a1][a5][a6];
Z2 = T[A1][a5][a6];
Z6 = T[A1][a5][A6];
t5 = W3*T[a1][A5][a6];
tE = W4*T[A1][A5][A6];
t1 = W3*Z2;
t13 = t1;
t2 = W5*Z1;
t23 = t2;
t3 = W3*Z1;
t4 = W6*Z1;
t12 = W5*Z2;
t14 = W6*Z2;
t134 = t14 ;
t16 = W1*Z6;
t24 = W7*Z1;
t26 = W2*T[a1][a5][A6];
t123 = W5*Z2;
t126 = W2*Z6;
for a3← 0 to N by 1 do
A3 = a3 + N;
TE+=tE*T[a1][a2][a3]*T[a4][a5][A3];

T5+=t5*T[A1][A2][A3]*T[A4][a5][a3];

X7Y5=T[a1][A2][A3]*T[A4][A5][a3];

T1 += t1*X7Y5;
T16 += t16*X7Y5;
T2+=t2*T[A1][a2][A3]*T[A4][A5][a3];

T3+=t3*T[A1][A2][a3]*T[A4][A5][A3];

T4+=t4*T[A1][A2][A3]*T[a4][A5][a3];

T12+=
t12*T[a1][a2][A3]*T[A4][A5][a3];

T13+=
t13*T[a1][A2][a3]*T[A4][A5][A3];

T14+=
t14*T[a1][A2][A3]*T[a4][A5][a3];

T23+=
t23*T[A1][a2][a3]*T[A4][A5][A3];

T24+=
t24*T[A1][a2][A3]*T[a4][A5][a3];

T26+=
t26*T[A1][a2][A3]*T[A4][A5][a3];

T123+=
t123*T[a1][a2][a3]*T[A4][A5][A3];

T126+=
t126*T[a1][a2][A3]*T[A4][A5][a3];

T134+=
t134*T[a1][A2][a3]*T[a4][A5][A3];

Tens = 4*(TE+T12+T13+T14+T16
+T23 +T24 +T26 -(T1 +T2 +T3 +T4
+T5+T123+T126+T134));

Input: J: symplectic matrix
Input: T: tensor
Output: Tens: invariant
Tens=TE=T1=T2=T3=T4=T5=T12 =
T13 = T14 = T16 = T23 = T24 = T26
= T123 = T126 = T134 = 0;

N = size/2;
for a4← 0 to N by 1 do
A4 = a4 + N;
for a2← 0 to N by 1 do
A2 = a2 + N;
for a6← 0 to N by 1 do
A6 = a6 + N;
W1 = T[a4][a2][a6];
W2 = T[a4][A2][a6];
W3 = T[a4][a2][A6];
W4 = T[A4][A2][a6];
W5 = T[a4][A2][A6];
W6 = T[A4][a2][A6];
W7 = T[A4][A2][A6];
for a1← 0 to N by 1 do
A1 = a1 + N;
for a5← 0 to N by 1 do
A5 = a5 + N;
Z1 = T[a1][a5][a6];
Z2 = T[A1][a5][a6];
Z6 = T[A1][a5][A6];
t5 = W3*T[a1][A5][a6];
tE = W4*T[A1][A5][A6];
t1 = W3*Z2;
t13 = t1;
t2 = W5*Z1;
t23 = t2;
t3 = W3*Z1;
t4 = W6*Z1;
t12 = W5*Z2;
t14 = W6*Z2;
t134 = t14 ;
t16 = W1*Z6;
t24 = W7*Z1;
t26 = W2*T[a1][a5][A6];
t123 = W5*Z2;
t126 = W2*Z6;
for a3← 0 to N by 1 do
A3 = a3 + N;
TE+=tE*T[a1][a2][a3]*T[a4][a5][A3];

T5+=t5*T[A1][A2][A3]*T[A4][a5][a3];

X7Y5=T[a1][A2][A3]*T[A4][A5][a3];

T1 += t1*X7Y5;
T16 += t16*X7Y5;
T2+=t2*T[A1][a2][A3]*T[A4][A5][a3];

T3+=t3*T[A1][A2][a3]*T[A4][A5][A3];

T4+=t4*T[A1][A2][A3]*T[a4][A5][a3];

T12+=
t12*T[a1][a2][A3]*T[A4][A5][a3];

T13+=
t13*T[a1][A2][a3]*T[A4][A5][A3];

T14+=
t14*T[a1][A2][A3]*T[a4][A5][a3];

T23+=
t23*T[A1][a2][a3]*T[A4][A5][A3];

T24+=
t24*T[A1][a2][A3]*T[a4][A5][a3];

T26+=
t26*T[A1][a2][A3]*T[A4][A5][a3];

T123+=
t123*T[a1][a2][a3]*T[A4][A5][A3];

T126+=
t126*T[a1][a2][A3]*T[A4][A5][a3];

T134+=
t134*T[a1][A2][a3]*T[a4][A5][A3];

Tens = 4*(TE+T12+T13+T14+T16
+T23 +T24 +T26 -(T1 +T2 +T3 +T4
+T5+T123+T126+T134));

do, they might not have the same execution time. Although the same number
of polynomial operations are performed, these operations might not take the
same time, since the size of the polynomials they are manipulating might not be
the same, depending on whether terms are canceling each other or not. Hence,
a static domain decomposition scheme (cutting the range of the outer loops in
equal parts) might not apply.

Thus, we need to consider schemes whereby the assignment of things to do
is more flexible and dynamic. The question then becomes one of granularity
of work assignment to parallel tasks versus the overhead of management and
communication with the tasks. Given the uncertainty of how computationally
complex polynomial operations might be, there is also the concern of workload
imbalance. Four parallel algorithms developed in our work are described below.

Master-worker scheme. The algorithm presented by Algorithm 2 can be im-
plemented in parallel by a master-worker scheme. It presents the advantage of
handling load balancing automatically, since the workers are assigned work to
do dynamically. When a worker requests some work, the master sends it a vector
of parameters that contains the indices of the outer loops (hence, the vector’s
length depends on the granularity) and the worker computes the corresponding
inner loops and sends its result to the master. By linearity, the final result is
obtained by addition of all the workers’ subresults. The performance issues that
arise in this scheme have to do with the number of works, the overhead of work
assignment, and the granularity of the work.

Delegate the addition on a worker. Adding the intermediate polynomials to-
gether can take a significant time, and keep the master busy with computation
instead of answering requests from the workers. A variant of the master-worker
scheme consists in only accumulating subresults on the master, and sending two
types of workloads to the workers: either a set of parameters, or, when it has ac-
cumulated enough subresults, a set of polynomials to add. This variant reduces
the computation workload on the master, but requisitions a worker sometimes
during the computation. The performance issues are similar to the basic scheme,
except that more opportunity for work offloading is possible.

Hierarchical master-worker scheme Depending on the granularity of the compu-
tation performed on the workers and the number of workers, the master can be
overloaded with communications with the workers. A hierarchical scheme can be
adopted: the worker distributes vectors of parameters to foremen, that cut the
corresponding inner loop and distribute them between their workers. Depend-
ing on the granularity, it is expected that the foremen communicate more often
with their workers than with the master. Hence, in addition to reducing the
communication bottleneck on the master, this scheme is particularly adapted to
hierarchical architectures [13].

Stateful master-worker If the bottleneck is on the addition performed by the
master to compute the final polynomial, this computation can be distributed.

In a traditional master-worker scheme, the workers are stateless: they send their
result to the master and do not keep it in memory. We can use stateful workers:
they do not send their result but instead, they add them. At the end of the
computation, the final result is computed by adding the partial polynomials held
by the workers, which can be done using a tree. Moreover, the addition of the
newly computed polynomial to the worker’s polynomial can be computed while
waiting for the next vector of parameters from the master, hence overlapping
communication and computation, and reducing the idle time if the master is
overloaded and takes some time to answer. This algorithm is given by Algorithms
3 (for the master) and 4 (for the worker).

Algorithm 3: Master
/* prepare parameter sets

*/
queue params;
for a4← 0 to N by 1 do

for a2← 0 to N by 1 do
for a6← 0 to N by 1 do

params.push_back({
a4, a2, a6)});

/* distribute them */
while !parameters.empty() do

src = recv(request,
ANY_SOURCE);
p = params.pop();
send(src, p, TAG_WORK);

/* wait for all the slaves
*/

while running() do
src = recv(request,
ANY_SOURCE);
send(src, 0, TAG_END);

/* global sum */
Tens = reduction_sum();

Algorithm 4: Stateful worker
Tens = 0;
T = 0;
while true do

/* ask for some work */
send(root, 0, TAG_REQ);
/* as I wait for a

parameter set, add my
polynomials */

req = Irecv(ROOT,
ANY_TAG);
if T != 0 then

Tens += T ;

p, tag = wait(req);
if tag == TAG_END then

break;

/* compute a polynomial
for the parameters I
have received */

T = compute(p);

/* global sum */
reduction_sum(Tens);

3.4 On-the-fly adaptation

All of the parallel schemes described above are reasonable to consider and evalu-
ate. While there is some support for dynamic work production in their operation,
it is not the case that they take into account the cost of doing the work. Each
scheme might be better under difference circumstances. If the analysis of costs at
runtime could allow dynamic selection of which scheme to apply when, it might
result in greater performance overall. There requires performance monitoring of

the computation coupled with policy-based online analytics to adapt to changing
execution behavior.

4 Performance Evaluation

We have implemented the algorithms described in section 3 using two symbolic
polynomial computation libraries: GiNaC [3] and Obake [7]. We used GiNaC
1.7.6 and its dependency CLN 1.3.4, and Obake commit bbed828 and its depen-
dencies Abseil commit 24713a7, MPPP d56c7502 and MPFR 4.0.2. We have run
the performance evaluations on the Grid’5000 platform [10], using the Parapide
cluster in Rennes. It is made of 20 nodes, each of which featuring two Intel Xeon
X5570 CPUs (4 cores/CPU), 24 GB of memory and , a 20 Gb InfiniBand NIC
and a Giga Ethernet NIC. The operating system deployed on the nodes is a
Debian 9.8 with a Linux kernel 4.9.0. All the code was compiled using g++ 8.3.0
with -O3 optimization flag, and OpenMPI 4.0.2.

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Ti
m

e
 (

s)

Number of procs

Stateful + tree
Addslave (fine)

Addslave (coarse)
Addslave (middle)

Master-worker (fine)
Master-worker (coarse)

Hierarchical

Fig. 2: Parallel execution using a tensor of size 8.

We compared the execution time of the algorithms described in section 3.3
on a small tensor (8 elements in each dimension), on the Parapide cluster, using
the Obake library. For readability purpose, since some results were significantly
higher than the other ones, we are showing the time in logarithmic scale. We
can see that the algorithm that delegates the polynomial additions to a worker,
called addworker in the remainder of this paper, is significantly faster than the
other ones but stops scaling after only 32 processes. On the other hand, the
traditional master-worker scheme is slower when using a fine grain. More precise
time measurements showed that these computations are limited by the polyno-
mial additions. In the traditional master-worker scheme, the master spends most

of its time adding polynomials. When the granularity is finer, it has to perform
more additions. The addworker takes advantage of the fact that this addition
is not performed on the master and therefore, not part of the critical path, but
when the number of processes used increases, the final addition becomes the
major part of the computation.

Following this observation, we implemented a first adaptation policy, as de-
scribed in paragraph 3.4: we introduced some timers on the master in order to
determine when the master is taking too much time adding the polynomials com-
pared to the time it waits for workers’ results. In other words, we want to detect
when the master is not available enough for its workers. We called this algorithm
combined : it starts as a master-worker and, when it considers it is spending too
much time adding the polynomials on the master, it delegates these additions
to a worker.

The policy that decides when to switch between the tradition master-worker
scheme and the addworker scheme is parameterized by two constants. The first
one is the ratio between the computation time when polynomials are added on
the master, and the wait time in the reception. The second one is the number of
polynomials that are accumulated on the master before sending them to a worker
for addition: the maxresult constant. We tried to study the impact of these two
parameters on a tensor of size 8, using Obake on Parapide. The results are
presented on Figure 3. We can see that they do not have any significant impact
on the performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 10 20 30 40 50 60 70

Ti
m

e
 (

s)

Number of procs

Ratio .5, maxres 8
Ratio 1, maxres 8
Ratio 2, maxres 4

Ratio 2, maxres 8
Ratio 2, maxres 16

Ratio 4, maxres 8

Fig. 3: Impact of the policy parameters on the computation, tensor of size 8, on
Parapide using Okabe.

We evaluated it on larger tensors, starting with a tensor of size 12 with
Obake (Figure 4). We can see that the combined algorithm is slightly faster

(1-3% faster). A closer analysis showed that the algorithm switched from the
master-worker to the addworker scheme very early in the computation (bottom
line, title "Switch"). Hence, since on this problem the polynomials to add are
large starting from the beginning of the computation, the algorithm switches
early to a scheme which is more efficient in any case.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Ti
m

e
 (

s)

Number of procs

Hierarchical
Stateful

Addworker (middle)
Addworker (fine)

Combined
Switch

Fig. 4: Parallel execution using a tensor of size 12 using Obake.

We also measured it on a tensor of size 16 with Obake (Figure 5) and with
GiNac (Figure 6). GiNaC has an important particularity: the polynomial addi-
tions take significantly longer and dominate the computation. Hence, the algo-
rithm that minimizes these additions, i.e. the stateful master-worker, performs
significantly better but it does not scale because the final addition tree (reduc-
tion) dominates the overall execution time. Using Obake, the addworker turns
out to be less efficient at small scale, and slightly more scalable.

We also implemented a second policy: when the master is overloaded by
requests, the computation switches to a hierarchical scheme. The policy change
happens after the computation has switched to the addworker algorithm. We
used timers at two places to determine that the master is a point of congestion:
if a worker spends more time waiting for work than computing, and if the master
spends more time sending polynomials to add to a worker than waiting for new
results. When workers consider they spend too much time waiting for work, they
send the next request with a specific tag; if more than half of the workers (over
a certain number of iterations) send this tag, the master triggers a change of
algorithm. Even when applying a ratio between these timers of the number of
processes in the system, we never encountered a situation that triggered this
algorithm switch.

Overall, we have seen that:

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Ti
m

e
 (

s)

Number of procs

Master-worker (fine)
Addworker (fine)

Combined
Switch

Fig. 5: Parallel execution using a tensor of size 16 using Obake.

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70

Ti
m

e
 (

s)

Number of procs

Stateful + tree
Addworker (fine)

Master-worker (fine)

Master-worker (coarse)
Combined

Fig. 6: Parallel execution using a tensor of size 16 using GiNaC.

– if we increase the number of workers we need to refine the granularity to
keep them busy. However, we are reaching a granularity that makes the
computation too short compared to the communications;

– if we increase the size of the problem, we increase the amount of work done
by each workers and therefore, we overcome this problem.... but it involves
more (expensive) polynomial additions, which increases their share of the
overall cost;

– the polynomial additions become expensive quickly. Switching to the pattern
in which the addition is performed by a worker is a good choice most of the
times;

– we have never encountered a case in which we needed to switch to a hierarchi-
cal pattern. The reason for that is that the workload on each worker increases
faster than the congestion on the master when the size of the problem in-
creases to overcome scaling limitations, and the aforementioned problem of
increasing the number of polynomial additions

– the stateful worker approach is interesting but the final stage that adds all
the polynomials, even when done using a tree structure, is expensive, and
most of the times its cost is higher than the gain during the computation.

5 Conclusion and Perspective

We began the paper motivating the need for dynamic parallel algorithms that
utilize monitoring to guide adaptive control for better performance outcomes.
Indeed, the focus of our work on symplectic invariants in high energy physics
is an example of one such application. There are several features of the prob-
lem that translate to requirements for on-the-fly optimization in parallel execu-
tion in order to achieve desired performance outcomes. The parallel algorithms
we developed and their implementation with monitoring and adaptive control
demonstrate performance improvements over static schemes. Our experiments
show that we can achieve significant results from parallel runs on application
cases heretofore unresolved.

Another perspective of this work certainly pertains to physics. Indeed, the
fact that the invariant T 4 (3) is nontrivial allows us to consider it as an in-
teraction in physical models. Tensor models also relate to discrete and random
geometry [15]. The invariant T 4 presented here is associated with a 3d simplex,
a tetrahedron that defines the building block of 3D discrete geometries. We show
that, at least for a range of values of N , this interaction exists for symplectic ten-
sors and therefore opens a new avenue for analysis of tensor models with Sp(N).
Furthermore, and more generally for any symmetry (classical Lie) groups, fu-
ture computational or physical experiments with tensor models will require the
data of the invariants itself. Give it in generic terms of formula just like T 4 (3)
will not help. Hence, extended to other Lie groups, such as the unitary and or-
thogonal groups, the present work already could provide an explicit formula of
any polynomial invariant in more than a reasonable time. We hope that an effi-
cient calculus of such expressions could contribute to set up those experiments
(computational or physical).

We have seen that the parallel performance and scalability we can obtain is
always limited by the polynomial operations that need to happen in the critical
path. Indeed, a high-performance polynomial calculus library is critical here.
Our future work will also consider other forms of parallel execution using multi-
threading, shared memory, and accelerators, in particular for these polynomial
operations.

The source code is available at the following URL: https://depot.lipn.
univ-paris13.fr/coti/tensor.

https://depot.lipn.univ-paris13.fr/coti/tensor
https://depot.lipn.univ-paris13.fr/coti/tensor

References

1. Ambjørn, J., Durhuus, B., Jonsson, T.: Three-dimensional simplicial quantum
gravity and generalized matrix models. Modern Physics Letters A 6(12), 1133–
1146 (1991)

2. Avohou, R.C., Ben Geloun, J., Dub, N.: On the counting of O(N) tensor invariants
(Adv Theor Math Phys, 2020)

3. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC Framework
for Symbolic Computation within the C++ Programming Language. CoRR
cs.SC/0004015 (2000), https://arxiv.org/abs/cs/0004015

4. Ben Geloun, J., Ramgoolam, S.: Counting Tensor Model Observables and Branched
Covers of the 2-Sphere. Ann. Inst. Henri Poincaré D, Comb. Phys. Interact 1, 77–
138 (2014)

5. Ben Geloun, J., Ramgoolam, S.: Tensor Models, Kronecker coefficients and Per-
mutation Centralizer Algebras. JHEP 1711, 092 (2017)

6. Biscani, F.: The Piranha algebraic manipulator. CoRR abs/0907.2076 (2009),
http://arxiv.org/abs/0907.2076

7. Biscani, F.: Obake: A C++17 library for the symbolic manipulation of sparse
polynomials & co. https://github.com/bluescarni/obake (2020)

8. Blasiak, J.: Kronecker coefficients for one hook shape (2012)
9. Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit:

Uncoloring the colored tensor models. Physical Review D 85(8), 084037 (2012)
10. Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y., Primet, P.V.B., Jean-

not, E., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Quetier, B., Richard, O.:
Grid’5000: A large scale and highly reconfigurable grid experimental testbed. In:
SC’05: Proc. The 6th IEEE/ACM International Workshop on Grid Computing
CD. pp. 99–106. IEEE/ACM, Seattle, Washington, USA (Nov 2005)

11. Carrozza, S., Pozsgay, V.: SYK-like tensor quantum mechanics with Sp(N) sym-
metry. Nuclear Physics B 941, 28–52 (2019)

12. Carrozza, S., Tanasa, A.: O(N) Random Tensor Models. Letters in Mathematical
Physics 106(11), 1531–1559 (2016)

13. Coti, C., Hérault, T., Cappello, F.: MPI Applications on Grids: A Topology Aware
Approach. In: Sips, H.J., Epema, D.H.J., Lin, H. (eds.) Euro-Par 2009 Parallel
Processing, 15th International Euro-Par Conference, Delft, The Netherlands, Au-
gust 25-28, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5704, pp.
466–477. Springer (2009), https://doi.org/10.1007/978-3-642-03869-3_45

14. Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2D gravity and random matrices.
Phys. Rept. 254, 1–133 (1995)

15. Gurau, R.: Random tensors. Oxford University Press, Oxford (2017)
16. Ikenmeyer, C., Mulmuley, K.D., Walter, M.: On vanishing of Kronecker coefficients.

computational complexity 26(4), 949–992 (2017)
17. Stanley, R.P.: Positivity problems and conjectures in algebraic combinatorics.

Mathematics: frontiers and perspectives 295, 319 (2000)

https://arxiv.org/abs/cs/0004015
http://arxiv.org/abs/0907.2076
https://github.com/bluescarni/obake
https://doi.org/10.1007/978-3-642-03869-3_45

	On-the-fly Optimization of Parallel Computation of Symbolic Symplectic Invariants

