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Abstract—Continuum computing promises the abstraction of
physical node location and node platform stack in order to
create a seamless application deployment and execution across
edges and cloud data centres. For industrial IoT applications,
the demand to generate data insights in conjunction with an
installed base of increasingly capable edge devices is calling for
appropriate continuum computing interfaces. Derived from a
case study in industrial water flow monitoring and based on
the industry’s de-facto standard Kubernetes to deploy complex
containerised workloads, we present an appropriate continuum
deployment mechanism based on custom Kubernetes controllers
and CI/CD, called Kontinuum Controller. Through synthetic
experiments and a holistic cross-provider deployment, we in-
vestigate its scalability with emphasis on reconciling adjusted
configuration per application and per node, a critical requirement
by industrial customers. Our findings convey that Kubernetes by
default would enter undesirable oscillation already for modestly
sized deployments. Thus, we also discuss possible solutions.

Index Terms—Continuum computing, scalability, configuration
management

I. INTRODUCTION

Field monitoring of physical phenomena is a growing source

of distributed data streams that are collected, processed and

used for generation of insights and inference of knowledge

about the phenomena. Such phenomena include wildlife be-

haviour, earthquakes, human traffic and water flows. Apart

from challenges relating to the data volume and velocity, a key

challenge is the underlying network topology. Data collection

is performed at extreme network edges while data processing

including cross-correlation is typically performed at central

locations such as cloud services. Consequently, edge-cloud

and fog-cloud trends that have led to the notion of computing

continuums over the past years are now seeing an increased

deployment in the field to support field monitoring with

simplified application models. This shift is further supported

by the widespread availability of commodity cloud stacks

such as Kubernetes shipping with various implementations that

adjust to a hardware range from embedded edge systems to

data centre equipment. In such deployments, software only

needs to be written and packaged once and can then be flexibly

deployed to where it fits best from an operational perspective.

Deployment is, however, a complex process, especially at

scale. Industrial field monitoring deployments achieve scale

by a large number of heterogeneous devices, a large num-

ber of applications, and a large number of customers with

specific preferences. Hence, from a Kubernetes perspective,

it is not sufficient to deploy static deployment descriptors or

application charts. Instead, per-{application, device, customer}
configuration adjustments need to be applied in the right order

at deployment time, centered around resource constraints such

as the allocation of virtual CPU cores and main memory.

In this paper, we first give a background on continuum

computing, industrial IoT and Kubernetes workloads. Then,

we introduce in depth a case study in water flow monitoring

that is representative of field monitoring in an industrial

IoT/edge-to-cloud transmission context. Our first contribution

is then a custom Kubernetes controller to support workload

deployment across the resulting continuum. This is followed

by our second contribution, the execution of sufficiently scaled

synthetic deployments. While discussing the results, we high-

light problems with configuration reconciliation and present

our third contribution, the discussion of possible solutions.

II. BACKGROUND

A. IIoT and Continuum Computing

The concept of IoT is meant to tackle automation challenges

through increased digitalisation and connectivity of plants and

installed devices. Aside from the intrinsic endeavour of the

businesses that are part of the respective application domain,

such as water sensing, to digitalise their processes to enhance

productivity, suppliers in this industry sector are also offering

solutions based on the concept of IoT. Those solutions shall

provide the end user as well as the supplier with new ways for

value generation that are linked to increased productivity and

efficiency, cost reduction, better customer/citizen experience,

faster innovation and new revenue streams [1], [2].

The industrial application of the broad IoT concept has

formed a subgroup over the last couple of years, called

Industrial Internet of Things (IIoT). As Boyes et al. [3] state,

the application of IoT in the industrial domain is a quite

disruptive action as historically, industrial automation and



control systems were largely isolated from enterprise ICT en-

vironments [3]. This strict isolation between the industrial field

and other networks is more and more softened as automation

and control systems are equipped with additional connectivity

options that make IIoT feasible.

The initial and often non-industrial IoT application architec-

tures often leverage the cloud as their central hub for commu-

nication and computation purposes. This direct communication

of devices with the cloud introduces several challenges [4].

It adds additional latency to the overall data processing [5],

is hard to implement in bandwidth-restricted environments,

introduces a central point for possible failures in an otherwise

distributed system [6] and requires strong data confidentiality

mechanisms. Additionally, industrial applications require some

application functionalities to be available in offline scenarios.

Bonomi et al. argued that a new platform is needed to meet

these requirements [7]. They introduced the term fog comput-

ing [8] which is not a substitute for edge-cloud computing

but a powerful complement [9]. The main idea of the fog

architecture is the extension of a traditional cloud computing

architecture to the edge of the network. The literature proposes

several definitions for fog computing and the associated IIoT-

edge-cloud continuum as application field [10]–[12].

The problem space around the edge-cloud continuum is

composed of but not limited to security and privacy con-

cerns [13], [14], data management issues [13], and resource

constraints [13]–[15]. Especially important for this work is

the statement of Chiang et al. [13] which explicitly mention

the need for a unified fog-cloud platform that amongst others

should manage the life cycle of applications, as well as Atlam

et al. [15] that list fog computing deployment as an open

issue that needs to be solved. Both sources especially mention

the actual deployment and management of applications on the

continuum as a challenge. However, existing works do not

provide acceptable industry-grade solutions.

B. Kubernetes Workloads and Edge-Cloud Implementations

With the advent of cloud computing and the subsequent

refinement of methodology and architectures into what is today

known as cloud-native, developers have been able to to react

to new market requirements more rapidly [16] and allow them

to generate enormous business growth and value [17]. Kratzke

and Quint [18] offer a distilled set of properties that describe

the characteristics of cloud-native applications [16]. One key

essence in the context of this work is given in the following

summary by Kratzke and Quint that defines that the application

and each self-contained deployment unit of that application

is designed according to cloud-focused design patterns and

operated on a self-service platform [18]. Wurster et al. [16]

composed the following list of properties from Kratzke’s

and Quint’s [18] work: Service-based architectures, API-based

interactions, state isolation, self-contained service deploy-

ment, disposability, fault-resilience, infrastructure abstraction,

infrastructure-as-code, policy-driven elasticity, CI/CD compli-

ance. For the context of this work, deployment and platform

related properties are described in further detail, because even

though the infrastructure (i.e. edge and cloud) abstraction

layers have become sophisticated, developers and operators

still run into situations where the underlying heterogeneity of

computing resources causes problems.

• Self-contained service deployment: Each deployable ser-

vice should be packaged in a standardised and self-

contained format that includes the application code as

well as necessary libraries and tools. A prominent method

of achieving this packaging are container images that

can be deployed on every compute unit that offers a

compatible container engine.

• Infrastructure abstraction: The service execution and de-

ployment should be abstracted from the underlying infras-

tructure. This allows applications to be portable across

a variety of cloud providers, deployment targets and

hardware types. Together with the self-contained service

deployment, abstraction is a key enabler for flexible

application placement across the edge-cloud continuum.

• CI/CD compliance: To build cloud-native applications,

developers started to embrace the development and op-

erations (DevOps) paradigm by using the concepts of

continuous integration (CI) and continuous deployment

(CD). Each separate service should be equipped with its

own pipeline, which allows individual teams to deliver

new versions of their services independent from others.

To overcome the risk of a serious vendor lock-in, several

methodologies have become popular that use different tools

and abstraction layers to reduce the impact of certain cloud

provider specifics on the actual application and deployment ar-

chitecture. Orchestration frameworks deal with the end-to-end

process of a deployment and offer additional functionalities

to manage related services [19]. Orchestrators offer APIs that

allow users to define a desired state [20] that is afterwards

implemented onto the set of resources that are assigned to the

orchestrator’s control domain. The API abstracts implemen-

tation details of the underlying infrastructure to a common

set of resources that can be used regardless of the backing

cloud provider. A state of the art orchestrator that falls into

this category, also called cloud stack, is Kubernetes.

The efforts to extend Kubernetes into IIoT/edge-cloud con-

tinuums can be categorised into two groups. The first one

focuses on the adaptation of the originally cloud-focused

Kubernetes to be deployable in a resource-constrained edge

scenario and offers users to run standalone clusters at the edge

of the network. The second group is built around the concept

of extending a cloud-based cluster towards edge nodes.

Representatives of the first group are K3s and MicroK8s

[21]. Both distributions tuned their component resource foot-

print to a minimum which reduces the overhead introduced

by the orchestration and leaves more of the constrained edge

resources for actual user deployed workloads. In a default

installation, K3s replaces the clustered storage mechanism

’etcd’ [22] with the small footprint database engine SQLite.

Besides this resource tuning, these distributions offer the stan-

dard Kubernetes API and run all necessary cluster components



on the edge resources themselves.

The second group extends a cloud-based control cluster

towards edge nodes, with the notion of edge resources as

single Kubernetes worker nodes rather than standalone and

self-contained clusters. Furthermore, some of the projects in

this group offer additional services and connectivity options

that should solve the challenges of edge-deployed resources.

KubeEdge [23] (presumably related to the original industrial

research prototype KubeEdge by Xiong et al. [24]), FLEDGE

[25], OpenYurt [26] and SuperEdge [27] can be mentioned

as representatives of this group. However, all designs from

the second group provide limited scalability due to the tight

integration between edge and cloud, and only support push-

based deployments, i.e. are not suitable for IIoT deployment.

III. CASE STUDY: WATER FLOW SENSING

The application domain of water flow sensing spans over

many different industries and businesses, e.g. municipal utili-

ties as well as food and beverages. Especially water networks

are highly distributed systems that belong to the most critical

infrastructures of the modern civilised world. In order to run

these networks, process automation technology is essential to

ensure a continuous and faultless operation. A key factor for

the automation is the continuous sensing of metrics that allow

human operators or the automation infrastructure to monitor

the state of the system in order to take action if necessary.

Therefore, large-scale IIoT/edge-clouds emerge and need to

be maintained through software deployments, i.e. Kubernetes

workloads.

For better illustration of the work required to maintain a

typical water network, the number of sensors and measurement

locations is given based on a case study of Endress+Hauser,

which is a process instrumentation supplier. The mentioned

case study was conducted with the city of Oberzent in Ger-

many that has 10’248 citizens and requires 19 decentralised

sites equipped with a total of 60 sensors [28]. Hence, one edge

node per 500 inhabitants is a reasonable scalability target.

Due to the mentioned criticality of the water networks, these

industries are highly regulated by authorities. New regula-

tory requirements put a strain on existing manual processes

that involve steps performed by trained valuable personnel.

Some of these repetitive tasks offer the potential for further

digitalisation which would free up capacity of the qualified

personnel to work on their core assignments. Such repetitive

tasks might comprise the manual read-out of measurements

or general device validation checks that need to be carried

out regularly. Current solutions introduce avoidable effort on

the personnel side through time-consuming travels and work

on-site of possibly remote plants.

With the advent of the IIoT concept, novel ICT architectures

emerged that solve some of the problems mentioned above. In

the water flow sensing domain, such architectures typically

deal with the task of gathering, transforming and shipping of

sensor data to other connected systems and the cloud as well

as additional knowledge generation based on the processed

Fig. 1: Cloud-to-edge/things continuum model applicable to

the water flow domain

measurements. Examples for use cases that are present in the

water flow sensing domain include but are not limited to:

1) Inference of additional metrics based on the observation

of existing sensor values

2) Remote validation and report generation for measure-

ment equipment

3) Correlation of sensor metrics with environmental data

(e.g. weather forecasts) to support decision processes or

generate alarms

Furthermore, maintenance and operational tasks can be

carried out digitally without the need for on-site interaction

with the device. The infrastructure for such applications in

the water flow sensing domain fits the notion of edge-cloud

continuums and typically consist of three layers as depicted

in Fig. 1. The domain knowledge is dispersed across teams,

leading up to 10 concurrent applications per edge node. Hence,

our work targets among other application fields the deployment

of water sensing applications across the installed field edges

and cloud resources and across concurrent applications.

IV. DEPLOYMENT MECHANISM – KONTINUUM

CONTROLLER

A. Preliminaries

This work strives to provide an industrially validated con-

cept for a holistic application deployment and configuration

management framework that is able to deliver applications

across the whole edge-cloud continuum, based on Kubernetes.

Applications or other software assets shall be deployable

across the continuum if they are packaged and described in

a format that is supported by the concept. The deployment

targets in scope consist of cloud providers that offer IaaS or

a higher level service offering, and constrained edge devices

that are located in close proximity to the water flow sensors.

A common interface for deployment and configuration man-

agement of this diverse group of deployment targets shall be

defined. Through such an interface, a holistic deployment and

management process shall be made possible at scale.

In the application domain of water flow sensing and the

process industry in general, the operational technology is often

shielded and secured from the outside world to minimise the

chance of an attack or general influence of outside factors



Fig. 2: Edge connectivity variants

on the critical industrial process. Additionally, the quality

of network connection can largely differ between various

edge deployments. While industrial plants might be equipped

with high bandwidth network connections, remote sites or

standalone sensor deployments often have only access to a

limited or even no connectivity option at all. These factors

result in different possible network topologies that a continuum

application platform has to support. Fig. 2 illustrates different

variants of edge connectivity that evidently call for a pull-

based deployment option.
According to our assessment, an autonomous Kubernetes

controller variant offers the best fit for a platform concept

on the continuum compared to other approaches such as

the Open Application Model (OAM) or the construction of

a platform-as-a-service (PaaS) atop Kubernetes. Due to its

usage of basic Kubernetes principles, it fits optimally onto

the holistic deployment and management concept that uses

standalone Kubernetes clusters. The high resource consump-

tion and limited extensibility of existing PaaS solutions make

them the worst fit for deployments along the continuum. The

result of the assessment supports the statements made by Pahl

et al. [29] that another evolutionary step for the PaaS systems

is necessary to properly support such deployment scenarios.

KubeVela as a reference project falls in-between the other

variants as it provides a solid foundation for platform features

on the continuum but its push-only multi-cluster functionality

limits its usage to only a partial set of connectivity options.

However, the underlying mechanisms of the OAM are a

solid baseline for a platform concept and should be (at least

partially) taken into account during the fine-grade design for

a pull-based controller variant and its implementation.

B. Platform components

In the first part of the implementation, a coarse-grained

overview of the different components that are used in the two

concept layers is given. Fig. 3 shows a graphical summary of

the different components used in the design. The overview is

grouped into two interface groups for the platform operators

and developers that deploy applications, as well as the group

of deployment targets and components used for the platform

implementation. The following listing describes each group

and their respective components in detail:

Fig. 3: Concept component overview

• Operator interface: The operator interface is based on

Kubernetes custom resource objects. These Kubernetes

API objects are used to interact with the platform and are

processed by the Kubernetes controller that implements

the platform functionality. Helm charts are the second

components that platform operators interact with. With

63% (as shown by the CNCF survey 2020 [30]), Helm, at

the time of writing, is the most popular packaging format

for Kubernetes. For platform operators Helm charts are

used for two purposes: to provide simple to use blueprints

for often used application types (e.g. web applications,

batch jobs etc.) that abstract Kubernetes complexity away

from the users and to packages managed services onto

the platform that can later be consumed by application

developers.

• Developer interface: Similar as already described for the

operator interface, developers also use Kubernetes custom

resource objects to interact with the platform and describe

their applications. The interfaces for interaction with the

platform should hide platform internals and therefore a

direct interaction with Kubernetes is not desirable. Git

as a commonly used version control system is used to

provide an interface to publish platform definitions in a

way that most developers are already familiar with. Those

textual definitions are then applied by a CD agent to

the respective Kubernetes cluster, to minimise the direct

interaction of developers with the Kubernetes API. The

platform catalogue allows developers to browse available

platform capabilities and applications types. The cata-

logue shall provide an overview of the platform operator

maintained Helm charts and their detailed settings.

• Deployment targets: The deployment targets need to run

Kubernetes in order to be deployable and managed by the

platform. The types of clusters are grouped into cloud and

edge for illustration purposes as technically no difference

from a platform deployment perspective exists based on

the locality of the clusters. In the cloud, the usage of

managed Kubernetes services offered by cloud providers

as well as the deployment to self-managed clusters is

supported. Outside the boundaries of the cloud in closer

proximity to the things layer often lightweight Kubernetes

distributions, like K3s or MicroK8s, are typically used



due to restricted resource availability. However, any other

Kubernetes variant would also be supported.

• Platform implementation: The actual platform function-

ality on the continuum and connection between the

standalone deployment target clusters is carried out by

a Kubernetes controller running on the so-called Control

Plane Cluster (CPC). This cluster acts as a central hub

for application descriptions and deployment assignments

for all managed deployment targets. The actual platform

logic is computed on the control plane cluster to save

resources on the deployment targets. The aforementioned

CD agent is in charge of pulling the developer definitions

onto the CPC, as well as distributing the resulting Kuber-

netes deployment manifests to the actual target clusters.

C. Custom resource interface

Platform users and operators will use Kubernetes CRs

to interact with the controller running on the control plane

cluster which implements the platform logic. Since Kubernetes

version 1.7, the API server has been supporting CRDs [31]

that allow the expansion of the Kubernetes API with custom

objects and resources. This functionality will be used to save

definitions and application descriptions for the continuum-

wide platform functionality on the CPC. The Kubernetes API

of the CPC will be extended with the following three CRDs:

• Workload: Similar to the Application object defined in

the OAM, the workload object holds a list of compo-

nents that shall be deployed together. Each component

references a Helm chart and includes a set of values

entered by the user to configure the specific deployment

details. A second list of so-called managed components

describes the dependency of the respective workload to

a managed and shared resource that must be deployed

on the target cluster. For the assignment of the workload

to one or many deployment targets, the object includes

a Kubernetes label selector that is matched against the

target labels.

• Target: The target object represents one Kubernetes clus-

ter that is designated to be a deployable target on the

platform. It includes a set of labels that are used for the

aforementioned assignment of deployments. To deliver

the resulting Kubernetes manifests to the represented

target cluster, the target object includes a reference to a

storage location where those deployment manifests shall

be stored. Additionally, specific targets include a paused

flag that will prevent the controller from shipping new de-

ployments onto the deployment target. This functionality

can support an attended update process.

• Overlay: The overlay object is a way for platform opera-

tors to specify default settings for certain components that

are not included in the default Helm chart values. It can

also be used to enforce certain values that should not be

changeable by a platform user. The third use case is the

insertion of target-specific settings for certain component

types.

Fig. 4: Kubernetes custom resources interaction

The interaction between the three CR types is an essential

part of the concept. Fig. 4 shows a graphical overview of how

one set of workload, target and overlay CRs interact with each

other. In this example, the workload resource contains two

components with their respective user configuration. Addition-

ally, the workload requires one platform managed component

to be available on the respective deployment targets. A single

overlay takes care of some specific configuration for compo-

nent A and is maintained primarily by the platform operators.

It also includes the platform managed configuration values

for the managed component C. The managed component

C object in workload A does not carry any user-specific

configuration, as they are fully managed by the platform

operators. Kubernetes labels and selectors [32] are a common

mean in Kubernetes to build references between Kubernetes

API objects. This mechanism is also used to assign workloads

and overlays to one or many targets. The workload and overlay

resources include a target selector that should match the labels

assigned to one or more target resources. Kubernetes supports

equality-based and set-based selectors. For simplicity, this

concept will focus on the simpler variant of equality-based

matching, where matching objects must satisfy all of the

specified label constraints, though they may have additional

labels as well.

D. Reconciliation process

Controllers react to changes on Kubernetes objects they

watch and try to reflect the changes made to those objects

in- and outside of the cluster. The process of comparing the

current state with the desired state and taking the appropriate

actions to achieve the desired state is called reconciliation [33].

To implement this reconciliation, the Kubebuilder SDK [34]

offers a function called Reconcile for every type the controller

should work on. It takes context information and the name and

namespace of the object that shall be reconciled as inputs.

This function needs to be implemented by the developer

of the controller and therefore, besides the above-mentioned

type definitions, is the main area of work to implementing

the Kontinuum Controller. Kubebuilder offers configuration

options to let the developer filter the objects on which the

reconcile function should be called if changes are made to

objects on the cluster. As each reconcile function is built for a



specific object type, Kubebuilder will by default automatically

subscribe to all changes for objects of the respective type on

the cluster. Watching and filtering object changes as well as

queuing requests for reconciliations is abstracted away from

the developer by the Kubebuilder SDK. A high-level algorithm

that is implemented by the majority of reconcile functions

consists of the following four steps:

1) Query the Kubernetes API to get the full object for

which the reconcile request has been filed.

2) Compare the state described in the objects specification

section (’spec:’) with the current state on the cluster and

the real world.

3) If necessary, make changes to other objects on the cluster

and/or the real world to bring both closer to the desired

state.

4) Update the status section (’status:’) of the object under

reconciliation to reflect the new state.

This control loop concept offers the possibility to implement

processes and workflows on top of the Kubernetes API. The

implementation is based on an asynchronous control flow,

where each step is based on a change of a certain Kubernetes

object. This change might be observed asynchronously by

a controller running on the cluster that itself might change

other objects respectively. That asynchronous chain of object

changes propagates through the cluster until a steady state

is reached that comes as close as possible to the desired one,

described by the different objects involved. For the Kontinuum

Controller, this algorithm needs to be implemented specifi-

cally for the three Kubernetes object types mentioned above:

workload, target and overlay. Fig. 5 provides an overview of

the interaction between the different components in the form

of a sequence diagram. It focuses on the most common use

case on the platform: a user changing a workload definition

that is afterwards propagated through the different objects and

results in an upload of updated deployment definitions to cloud

storage services, for instance in a respective AWS S3 bucket.

The user configuration traverses the different Kubernetes

objects and reaches the storage layer. Fig. 6 shows the case of

a user editing a Workload definition. The subsequent traversal

of the configuration entries through the different Kubernetes

CRs is depicted. The first change of the Workload specification

causes the controller to reconcile the changed object. During

this reconciliation operation, as already described above, the

configuration values are copied to the specification section

of the associated target object. As this operation is a change

to the Target object, another reconciliation is triggered. This

time the changed Target object is reconciled by the controller.

The second reconciliation operation processes and merges all

configuration from the Workloads and Overlays that are found

in the Targets specification and uploads the results to a pull

storage service, for instance an S3 bucket. Additionally, the

status section of the object is propagated to represent the

current state of the storage layer and the associated deployment

target.

Fig. 5: Sequence diagram – Workload change

Fig. 6: Configuration flow and object traversal

V. EXPERIMENTAL VALIDATION

A. Workload Deployment

To make the impact of the different platform layers on

the device resource consumption visible, a multi-step testing

procedure was carried out on two industrial devices, a Kunbus

RevPi Connect+ with 1 GB RAM and a Wago Edge Controller

with 2 GB RAM. Each edge node runs K3s and Flux to pull

updated applications from S3. The four steps are ’idle’ (no

containers running), ’k3s startup’, ’flux startup’ and ’applica-

tion deployment’, first using NGinx as minimal deployment

workload per edge, and then a more complex PostgreSQL-

based water sensing application on an edge-cloud setup.

Fig. 7 shows the exemplary resource consumption on the

Kunbus device. There is an evident exhaustion of memory in

the NGinx deployment phase, an effect not visible with the

other device, suggesting that 2 GB RAM are the minimum

edge capacity for the Kontinuum Controller and any reason-

able application.

In the holistic application test, a PostgreSQL-based Helm

chart was deployed to Digital Ocean (via the Kubernetes API

adapter Crossplane) and an edge node. The application of the

workload resource on the CPC until the running container on



Fig. 7: Resource consumption of Kunbus RevPi

Fig. 8: Controller CPU and memory consumption

the target edge takes around one minute, which is suitable

for sporadic edge connectivity during maintenance cycles. The

waiting time can be attributed to I/O while the CPU load on

the controller is insignificant. Only a fraction of the memory

usage can be attributed to the controller itself, as evidenced

by Fig. 8, measured using the B test series for reconciliation

(described below).

B. Configuration Reconciliation

For the scalability tests, a large number of Kontinuum

Controller CRDs needed to be applied to the cluster in order

to generate the desired load. This task was automated via a

script that performs the following steps with a configurable

amount of objects per run: Create a configurable amount of

Workload resources all assigned to the same (yet not existing)

Target; Create a configurable amount of Overlay resources all

assigned to the same (yet not existing) Target; Create a single

Target that is referenced by the previously created resources;

Delete all created resources after an interactive confirmation

by the user.

Fig. 9: Scalability heatmap – reconciliation durations

The scalability tests were performed according to the

schema described above. The goal was to simulate the cre-

ation of a new Target resource on an already utilised plat-

form control cluster. The number of assigned Workloads was

chosen as the main test variable to check if the controller

runs into scalability issues after a certain number of as-

signed objects. All tests were performed with 1 target, a

set of 10 Overlays and a variable amount of Workloads.

Performance metrics were gathered using Prometheus. The

primary analysis is based on the Kubebuilder SDK met-

ric ’controller runtime reconcile time seconds bucket’. This

metric provides an aggregated view of the durations each

reconciliation request takes to complete due to Kubernetes’

optimistic concurrency model.

Fig. 9 contains a heatmap that shows the aforementioned

buckets grouped by time slots of one minute. The tests

performed are named as follows and were executed with the

given parameters: A tests 10–400 workloads without filtering;

B tests 300–400 workloads with ignoring changes to the status

object via event filtering; C tests 100–300 workloads with

ignoring changes and up to three concurrent reconcile workers

per CR. The results reveal that the B group achieved the

best results. The expected improvement by the parallelism in

the C group could not be achieved due to a high number of

synchronisation-related errors (428% in C compared to B in

the highest spike). The A group performance is in between,

with expected issues due to status changes to configuration

objects triggering another reconciliation in the absence of

filtering such recursive behaviour, effectively leading to os-

cillation. Server-Side Apply (SSA) has been available since

Kubernetes v1.22 and similarly helps avoiding oscillation,

as evidenced by an early-stage kubectl-based prototype we

make available along with other experiment scripts, but would

require Kubebuilder SDK integration in order to be usable by

the Kontinuum Controller.

VI. DISCUSSION AND CONCLUSION

Making large-scale industrial sensing approachable for soft-

ware development and deployment is a major challenge. With

the open source 1 Kontinuum Controller, we have created

a framework based on Kubernetes to facilitate customised

1Kontinuum Controller website: https://kontinuum-controller.github.io/

https://kontinuum-controller.github.io/


deployments to heterogeneous edge-cloud environments offer-

ing computational resources for sensor data processing. It is

the first approach for pull-based workload placement across

edge nodes, applications and configurations. According to our

findings, around 100 customised workloads per minute can

be deployed on the continuum, making it a suitable approach

for many industrial IoT applications with a careful controller

design to avoid oscillation during reconciliation.

The work of Pahl et al. [29] describes several evolutionary

steps of the wider PaaS concept towards a better fit for the

edge-cloud continuum. We claim that the results of this work

can be conceived as a first step towards the fourth stage as

the edge-cloud PaaS, i.e. a meta-OS for the IIoT/edge-cloud

continuum. Evidently, the focus of the presented concept is

limited to application deployment and management. It offers

potential for extensions towards additional PaaS functionality

such as monitoring and automated software builds.
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