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Output Stabilization of Boundary-controlled Parabolic PDEs via
Gradient-based Dynamic Optimization*

Zhigang Ren1, Chao Xu1, Qun Lin2, and Ryan Loxton2

Abstract—This paper proposes a new control synthesis ap-
proach for the stabilization of boundary-controlled parabol-
ic partial differential equations (PDEs). In the proposed ap-
proach, the optimal boundary control is expressed in integral
state feedback form with quadratic kernel function, where the
quadratic’s coefficients are decision variables to be optimized.
We introduce a system cost functional to penalize both state
and kernel magnitude, and then derive the cost functional’s
gradient in terms of the solution of an auxiliary “costate” PDE.
On this basis, the output stabilization problem can be solved
using gradient-based optimization techniques such as sequential
quadratic programming. The resulting optimal boundary control
is guaranteed to yield closed-loop stability under mild conditions.
The primary advantage of our new approach is that the costate
PDE is in standard form and can be solved easily using the finite
difference method. In contrast, the traditional control synthesis
approaches for boundary-controlled parabolic PDEs (i.e., the
LQ control and backstepping approaches) require solving non-
standard Riccati-type and Klein-Gorden-type PDEs.

I. INTRODUCTION

Parabolic partial differential equation (PDE) systems are an
important type of distributed parameter system (DPS) describ-
ing a wide range of natural phenomena, including diffusion,
heat transfer, and fusion plasma transport. Over the past few
decades, control theory for the parabolic DPS has developed
into a mature research topic at the interface of engineering and
applied mathematics [1], [2], [10].

The linear quadratic (LQ) control framework is well-
defined in infinite dimensional function spaces to deal with
the parabolic DPS (e.g., [1], [2]). However, the LQ control
framework requires solving Riccati-type differential equations,
which are nonlinear parabolic PDEs of dimension one greater
than the original parabolic PDE system. For example, to gen-
erate an optimal feedback controller for a scalar heat equation,
a Riccati PDE defined over a rectangular domain must be
solved [11]. Hence, the LQ approach does not actually solve
the controller synthesis problem directly, but instead converts
it into another problem (i.e., solve a Riccati-type PDE) that is
still extremely difficult to solve from a computational point of
view.
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One of the major advances in PDE control in recent years
has been the so-called infinite dimensional Voltera integral
feedback, or the backstepping method (e.g., [5], [9]). In-
stead of Riccati-type PDEs, the backstepping method requires
solving the so-called kernel equations—linear Klein-Gorden-
type PDEs for which the successive approach can be used to
obtain explicit solutions. This method was originally devel-
oped for the stabilization of one dimensional parabolic DPS
and then extended to fluid flows [16], [19], magnetohydro-
dynamic flows [17], and elastic vibration [4]. In addition,
the backstepping method can also be applied to achieve full
state feedback stabilization and state estimation of PDE-ODE
cascade systems [13].

In this paper, we propose a new framework for control
synthesis for boundary-controlled parabolic DPS. This new
framework does not require solving Riccati-type or Klein-
Gorden-type PDEs. Instead, it requires solving a so-called
“costate” PDE, which is much easier to solve from a computa-
tional viewpoint. In fact, many numerical software packages,
such as Comsol Multiphysics and MATLAB PDE ToolBox,
can be used to generate numerical solutions for the costate
PDE. The Riccati PDEs, on the other hand, are usually not in
standard form and thus cannot be solved using off-the-shelf
software packages. The approach proposed in this paper can
be viewed as an extension of optimization-based PID tuning
ideas (see [3], [6], [14], [18]) to infinite dimensional systems.

II. PROBLEM FORMULATION

A. Feedback Kernel Optimization

We consider the following parabolic PDE system:
yt(x, t) = yxx(x, t)+ cy(x, t), (1a)
y(0, t) = 0, (1b)
y(1, t) = u(t), (1c)
y(x,0) = y0(x), (1d)

where c> 0 is a given constant and u(t) is a boundary control.
It is well known that the uncontrolled version of system
(1) is unstable when the constant c is sufficiently large [5].
According to the LQ control [11] and backstepping synthesis
approaches [5], the optimal stabilizing control law takes the
following feedback form:

u(t) =
∫ 1

0
K (1,ξ )y(ξ , t)dξ , (2)

where the feedback kernel K (1,ξ ) is obtained by solving
either a Riccati-type or a Klein-Gorden-type PDE. By intro-
ducing the new notation k(ξ ) = K (1,ξ ), we can write the
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Fig. 1. The feedback kernel (4) for various values of c.

feedback control policy (2) in the following form:

u(t) =
∫ 1

0
k(ξ )y(ξ , t)dξ .

The corresponding closed-loop system is

yt(x, t) = yxx(x, t)+ cy(x, t), (3a)
y(x,0) = y0(x), (3b)
y(0, t) = 0, (3c)

y(1, t) =
∫ 1

0
k(ξ )y(ξ , t)dξ . (3d)

In reference [5], the backstepping method is used to express
the optimal feedback kernel as follows:

K (1,ξ ) =−cξ
I1(

√
c(1−ξ 2))√

c(1−ξ 2)
, (4)

where I1 is the first-order modified Bessel function given by

I1(ω) =
∞

∑
n=0

ω2n+1

22n+1n!(n+1)!
.

The feedback kernel (4) is plotted in Figure 1 for different
values of c. Note that its shape is similar to a quadratic
function. Note also that K (1,ξ )= 0 when ξ = 0. Accordingly,
motivated by the quadratic behavior exhibited in Fig. 1, we
express k(ξ ) in the following parameterized form:

k(ξ ;Θ) = θ1ξ +θ2ξ 2, (5)

where Θ = (θ1,θ2)
⊤ is a parameter vector to be optimized.

Moreover, we assume that the parameters must satisfy the
following bound constraints:

a1 ≤ θ1 ≤ b1, a2 ≤ θ2 ≤ b2, (6)

where a1, a2, b1 and b2 are given bounds.
Let y(x, t;Θ) denote the solution of the closed-loop system

(3) with the parameterized kernel (5). The results in [15]
ensure that such a solution exists and is unique. Our goal is
to stabilize the closed-loop system with minimal energy input.
Accordingly, we consider the following cost functional:

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t;Θ)dxdt +

1
2

∫ 1

0
k2(x;Θ)dx. (7)

We now state our kernel optimization problem formally as
follows.

Problem 2.1: Given the PDE system (3) with the param-
eterized kernel (5), find an optimal parameter vector Θ =
(θ1,θ2)

⊤ such that the cost functional (7) is minimized subject
to the bound constraints (6).

B. Closed-Loop Stability

Since (7) is a finite-time cost functional, there is no guar-
antee that the optimized kernel (5) generated by the solution
of Problem 2.1 stabilizes the closed-loop system (3) as t → ∞.
Nevertheless, we now show that, by analyzing the solution
structure of (3), additional constraints can be added to Problem
2.1 to ensure closed-loop stability.

Using the separation of variables approach, we decompose
y(x, t) as follows:

y(x, t) = X (x)T (t). (8)

Substituting (8) into (3a), we obtain

X (x)Ṫ (t) = X ′′(x)T (t)+ cX (x)T (t), (9)

where

Ṫ (t) =
dT (t)

dt
, X ′′(x) =

d2X (x)
dx2 .

Furthermore, from the boundary conditions (3c) and (3d),

X (0)T (t) = 0,

X (1)T (t) =
∫ 1

0
k(ξ ;Θ)X (ξ )T (t)dξ .

Thus, we immediately obtain

X (0) = 0, (10)

X (1) =
∫ 1

0
k(ξ ;Θ)X (ξ )dξ . (11)

Rearranging (9) gives

X ′′(x)+ cX (x)
X (x)

=
Ṫ (t)
T (t)

= σ , (12)

where σ is a constant called the eigenvalue. Clearly,

T (t) = T0eσt , (13)

where T0 = T (0) is a constant to be determined.
To solve for X (x), we must consider three cases: (i) c < σ ;

(ii) c=σ ; (iii) c>σ . In cases (i) and (ii), the general solutions
of (12) are, respectively,

X (x) = X0e
√

σ−cx +X1e−
√

σ−cx,

and
X (x) = X0 +X1x,

where X0 and X1 are constants to be determined from the
boundary conditions (10) and (11). Then the corresponding
solutions of (3) are

y(x, t) = X0T0e
√

σ−cx+σt +X1T0e−
√

σ−cx+σt ,



and
y(x, t) = X0T0eσt +X1T0xeσt .

These solutions are clearly unstable because 0 < c ≤ σ . Thus,
the parameters θ1 and θ2 should be chosen so that the unique
solution of (3) satisfies case (iii) instead of cases (i) and (ii).

In case (iii), the general solution of (12) is

X (x) = X0 cos(
√

c−σx)+X1 sin(
√

c−σx), (14)

where X0 and X1 are constants to be determined from the
boundary conditions (10) and (11). Substituting (14) into (10),
we obtain

X (0) = X0 = 0.

Hence,
X (x) = X1 sin(

√
c−σx). (15)

To simplify the notation, we introduce a new variable α =√
c−σ . Substituting (15) into condition (11), we have

X1 sinα = X1

∫ 1

0
θ1ξ sin(αξ )dξ +X1

∫ 1

0
θ2ξ 2 sin(αξ )dξ ,

and thus

sinα =
∫ 1

0
θ1ξ sin(αξ )dξ +

∫ 1

0
θ2ξ 2 sin(αξ )dξ . (16)

By evaluating the integrals on the right-hand side, equation
(16) can be simplified to obtain

(θ1α2 +θ2α2 −2θ2)cosα
+(α3 −θ1α −2θ2α)sinα +2θ2 = 0.

(17)

For any α satisfying (17), there exists a corresponding solution
of (12) in the form (15). It can be shown that (17) has
an infinite number of positive solutions when Θ = (θ1,θ2)

⊤

satisfies the following inequality:

θ 2
1 +θ 2

2 +2θ1θ2 −2θ1 −4θ2 ≥ 0.

This is demonstrated numerically in Section IV. A formal
proof will be given in a forthcoming journal article [12]. Let
{αn}∞

n=1 be a sequence of positive solutions of (17). Then the
general solution of (12) is

X (x) =
∞

∑
n=1

An sin(αnx),

where An are constants to be determined. The corresponding
eigenvalues are

σn = c−α2
n , n = 1,2,3, . . .

Hence, using (13),

y(x, t) = X (x)T (t) =
∞

∑
n=1

T0Ane(c−α2
n )t sin(αnx). (18)

By virtue of (10) and (11), this solution satisfies the boundary
conditions (3c) and (3d). The constants T0 and An must be
selected appropriately so that the initial condition (3b) is also
satisfied. To ensure stability as t → ∞, each eigenvalue σn =

c−α2
n in (18) must be negative. Thus, we impose the following

constraints on Θ = (θ1,θ2)
⊤:

θ 2
1 +θ 2

2 +2θ1θ2 −2θ1 −4θ2 ≥ 0, (19a)

c−α2 ≤−ε, (19b)

(θ1α2 +θ2α2 −2θ2)cosα
+(α3 −θ1α −2θ2α)sinα +2θ2 = 0, (19c)

where ε is a given positive parameter and α is the smallest
positive solution of (17). Note that α here is treated as
an additional optimization variable. Constraint (19a) ensures
that there are an infinite number of eigenvalues and thus
the solution form (18) is valid. Constraints (19b) and (19c)
ensure that the largest eigenvalue is negative, thus guaranteeing
solution stability. Adding constraints (19) to Problem 2.1
yields the following modified problem.

Problem 2.2: Given the PDE system (3) with the parameter-
ized kernel (5), choose Θ = (θ1,θ2)

⊤ and α such that the cost
functional (7) is minimized subject to the bound constraints
(6) and the nonlinear constraints (19).

The next result is concerned with the stability of the closed-
loop system corresponding to the optimized kernel from
Problem 2.2.

Theorem 2.1: Let (Θ∗,α∗) be an optimal solution of Prob-
lem 2.2, where α∗ is the smallest positive solution of e-
quation (19c) corresponding to Θ∗. Suppose that there exists
a sequence {α∗

n}∞
n=1 of positive solutions to equation (19c)

corresponding to Θ∗ such that y0(x) ∈ span{sin(α∗
n x)}. Then

the closed-loop system (3) corresponding to Θ∗ is stable.
Proof: Because of constraint (19a), the solution form

(18) with αn = α∗
n is guaranteed to satisfy (3a), (3c) and

(3d). If y0(x) ∈ span{sin(α∗
n x)}, then there exists constants

Yn,n ≥ 1, such that

y0(x) =
∞

∑
n=1

Yn sin(α∗
n x).

Taking Yn = T0An ensures that (18) with αn = α∗
n also satisfies

the initial conditions (3b), and is therefore the unique solution
of (3). Since α∗ is the first positive solution of equation (17),
it follows from constraints (19b) and (19c) that for each n ≥ 1,

c− (α∗
n )

2 ≤ c− (α∗)2 ≤−ε < 0.

This shows that all eigenvalues are negative.
Theorem 2.1 requires that the initial function y0(x) be con-
tained within the linear span of sinusoidal functions sin(α∗

n x),
where each α∗

n is a solution of equation (17) corresponding
to Θ∗. The good thing about this condition is that it can
be verified numerically by solving the following optimization
problem: choose span coefficients Yn,1 ≤ n ≤ N, to minimize

J =
∫ 1

0

∣∣∣∣y0(x)−
N

∑
n=1

Yn sin(α∗
n x)

∣∣∣∣2dx, (20)

where N is a sufficiently large integer and each α∗
n is a solution

of equation (17) corresponding to the optimal solution of
Problem 2.2. If the optimal cost value for this optimization



problem is sufficiently small, then the span condition in
Theorem 2.1 is likely to be satisfied, and therefore closed-loop
stability is expected. Based on our computational experience,
the span condition in Theorem 2.1 is usually satisfied. In fact,
as we show in [12], the solutions α∗

n of (17) converge to the
integer multiples of π . Thus, it is reasonable to expect that the
linear span of {sin(α∗

n x)} is “approximately” the same as the
linear span of {sin(nπx)}, which is known to be a basis for
the space of continuous functions defined on [0,1].

III. NUMERICAL COMPUTATION

Problem 2.2 is an optimal parameter selection problem
with decision parameters θ1, θ2 and α . In principle, such
problems can be solved as nonlinear optimization problems
using sequential quadratic programming or other nonlinear
optimization methods. However, to do this, we need the
gradients of the cost functional (7) and the constraint functions
(19) with respect to the decision parameters.

Since the constraint functions in (19) are explicit functions
of the decision variables, their gradients are easily derived
using elementary differentiation. The cost functional (7), on
the other hand, is an implicit function of Θ because it depends
on the state trajectory y(x, t). Thus, computing the gradient
of (7) is a non-trivial task. We now develop a computational
method, analogous to the costate method in the optimal control
of ordinary differential equations [7], [8], [14], for computing
this gradient.

We define the following costate PDE system:
vt(x, t)+ vxx(x, t)+ cv(x, t)

+ y(x, t;Θ)− k(x;Θ)vx(1, t) = 0, (21a)
v(0, t) = v(1, t) = 0, (21b)
v(x,T ) = 0. (21c)

Let v(x, t;Θ) denote the solution of the costate PDE system
(21) corresponding to the parameter vector Θ. Then we have
the following theorem.

Theorem 3.1: The gradient of the cost functional (7) is
given by

∇θ1 g0(Θ) =−
∫ T

0

∫ 1

0
xvx(1, t)y(x, t)dxdt +

1
3

θ1 +
1
4

θ2,

∇θ2 g0(Θ) =−
∫ T

0

∫ 1

0
x2vx(1, t)y(x, t)dxdt +

1
4

θ1 +
1
5

θ2,

where y(x, t) = y(x, t;Θ) and vx(x, t) = vx(x, t;Θ).
Proof: For simplicity, we write y(x, t;Θ) as y(x, t) and

k(x;Θ) as k(x). Let ψ(x, t) be an arbitrary function satisfying

ψ(x,T ) = 0, ψ(0, t) = ψ(1, t) = 0. (22)

Then we can rewrite the cost functional (7) in augmented form
as follows:

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t)dxdt +

1
2

∫ 1

0
k2(x)dx

+
∫ T

0

∫ 1

0
ψ(x, t)

{
− yt(x, t)+ yxx(x, t)+ cy(x, t)

}
dxdt. (23)

Using integration by parts and applying conditions (3b), (3c)
and (22), we can simplify the augmented cost functional (23)
to obtain

g0(Θ) =
1
2

∫ T

0

∫ 1

0
y2(x, t)dxdt +

1
2

∫ 1

0
k2(x)dx

+
∫ T

0

∫ 1

0

{
ψt(x, t)+ψxx(x, t)+ cψ(x, t)

}
y(x, t)dxdt

+
∫ 1

0
ψ(x,0)y0(x)dx−

∫ T

0
ψx(1, t)y(1, t)dt.

Now, consider a perturbation δρ in the parameter vector Θ,
where δ is a constant of sufficiently small magnitude and ρ
is an arbitrary vector. The corresponding perturbation in the
state is,

yδ (x, t) = y(x, t)+δ ⟨∇Θy(x, t),ρ⟩+O(δ 2), (24)

and the perturbation in the feedback kernel is,

kδ (x) = k(x)+δ ⟨∇Θk(x),ρ⟩+O(δ 2), (25)

where O(δ 2) denotes omitted second-order terms such that
δ−1O(δ 2)→ 0 as δ → 0. For notational simplicity, we define
η(x, t) = ⟨∇Θy(x, t),ρ⟩. Obviously, η(x,0) = 0, because the
initial profile y0(x) is independent of the parameter vector
Θ. Based on (24) and (25), the perturbed augmented cost
functional takes the following form:

g0(Θ+δρ) =
1
2

∫ T

0

∫ 1

0

{
y(x, t)+δη(x, t)

}2dxdt

+
∫ T

0

∫ 1

0

{
ψt(x, t)+ψxx(x, t)

}{
y(x, t)+δη(x, t)

}
dxdt

+
∫ T

0

∫ 1

0
cψ(x, t)

{
y(x, t)+δη(x, t)

}
dxdt

−
∫ T

0
ψx(1, t)

[∫ 1

0
k(x)

{
y(x, t)+δη(x, t)

}
dx
]

dt

−
∫ T

0
ψx(1, t)

[∫ 1

0
δ ⟨∇Θk(x),ρ⟩y(x, t)dx

]
dt

+
1
2

∫ 1

0

{
k(x)+δ ⟨∇Θk(x),ρ⟩

}2dx

+
∫ 1

0
ψ(x,0)y0(x)dx+O(δ 2). (26)

Taking the derivative of (26) with respect to δ and setting
δ = 0 gives

⟨∇Θg0(Θ),ρ⟩= dg0(Θ+δρ)
dδ

∣∣∣∣
δ=0

=
∫ T

0

∫ 1

0

{
y(x, t)+ψt(x, t)+ψxx(x, t)+ cψ(x, t)

}
η(x, t)dxdt

−
∫ T

0

∫ 1

0
ψx(1, t)k(x)η(x, t)dxdt

−
∫ T

0

∫ 1

0
ψx(1, t)⟨∇Θk(x),ρ⟩y(x, t)dxdt

+
∫ 1

0
k(x)⟨∇Θk(x),ρ⟩dx.

Since the perturbation ρ was selected arbitrarily, the theorem
follows immediately by setting ψ(x, t) = v(x, t;Θ) and taking
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Fig. 2. Uncontrolled open-loop response.

Fig. 3. Optimal closed-loop response.

ρ to be the standard unit basis vectors in R2. This completes
the proof.

By combining the gradient formulas in Theorem 3.1 with
a standard gradient-based optimization method (such as se-
quential quadratic programming), Problem 2.2 can be solved
efficiently.
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Fig. 6. Equation (17) has an infinite number of positive solutions.

IV. NUMERICAL EXAMPLE

We consider Problem 2.2 over a time horizon of [0,T ] =
[0,4]. To solve the problem, we wrote a MATLAB program
that combines the FMINCON optimization function with the
gradient formulas in Theorem 3.1. The state system (3) and
the costate system (21) are solved numerically using the finite
difference method (with 14 spatial intervals and 5000 temporal
intervals). All numerical simulations were performed on a
desktop computer with the following configuration: Intel Core
i7-2600 3.40GHz CPU, 4.00GB RAM, 64-bit Windows 7
Operating System.

Consider the uncontrolled version of (3) in which u(t) = 0.
In this case, the exact solution is [5]

y(x, t) = 2
∞

∑
n=1

Cne(c−n2π2)t sin(nπx)dx, (27)

where Cn are the Fourier coefficients defined by

Cn =
∫ 1

0
y0(x)sin(nπx)dx.

The eigenvalues of (27) are c−n2π2, n = 1,2, . . . The largest
eigenvalue is therefore c−π2, which indicates that system (3)
with u(t) = 0 is unstable for c > π2 ≈ 9.8696.

We choose c = 12 and y0(x) = (2+ x)sin(πx). The corre-
sponding uncontrolled open-loop response (see equation (27))
is shown in Fig. 2. As we can see from Fig. 2, the state



TABLE I
SOLUTIONS OF EQUATION (17) AND CORRESPONDING SPAN

COEFFICIENTS.

n α∗
n α∗

n/π Yn

1 3.6934 1.0801 −0.4211
2 6.4961 2.0678 1.5226
3 9.5794 3.0492 1.4629
4 12.6751 4.0346 −0.7636
5 15.7975 5.0285 0.4483
6 18.9223 6.0231 −0.3458
7 22.0544 7.0201 0.2681
8 25.1874 8.0173 0.9085
9 28.3233 9.0155 1.0726

10 31.4597 10.0139 0.9415
11 34.5975 11.0127 1.0418
12 37.7356 12.0116 0.9709
13 40.8745 13.0107 1.0156
14 44.0136 14.0099 0.9968
15 47.1532 15.0093 0.9908

of the uncontrolled system grows as time increases. For the
feedback kernel optimization, we suppose that the lower and
upper bounds for the optimization parameters are ai = −10
and bi = 10, respectively. We also choose ε = 1 in (19b).
Starting from the initial guess (θ1,θ2,α) = (−1,2,0), our
program terminates after 29 iterations and 21.0904 seconds.
The optimal cost value is g0 = 1.2092 and the optimal solution
of Problem 2.2 is (θ ∗

1 ,θ ∗
2 ,α∗) = (−3.6977,2.3220,3.6934).

The spatial-temporal response of the controlled plant cor-
responding to (θ ∗

1 ,θ ∗
2 ) is shown in Fig. 3. The figure clearly

shows that the controlled system (3) with optimized param-
eters (θ ∗

1 ,θ ∗
2 ) is stable. The corresponding optimal boundary

control and kernel function are shown in Fig. 4 and Fig. 5,
respectively.

Recall from Theorem 2.1 that closed-loop stability is guar-
anteed if α∗ = 3.6934 is the first positive solution of equation
(17) and the initial function y0(x) is contained within the
linear span of {sin(α∗

n x)}, where each α∗
n is a solution of

equation (17) corresponding to (θ ∗
1 ,θ ∗

2 ). By viewing a plot of
the left-hand side of equation (17), it can be easily verified that
α∗ is indeed the first positive solution; see Fig. 6. To verify
the linear span condition, we use FMINCON in MATLAB to
minimize (20) for N = 20. The first 15 positive solutions of
(17) corresponding to the optimal parameters θ ∗

1 = −3.6977
and θ ∗

2 = 2.3220 are given in Table I. The optimal span
coefficients that minimize (20) are also given. The optimal
value of J in (20) is 7.7387 × 10−14, which indicates that
the span condition holds. Note also from Table I that α∗

n/π
converges to an integer as n → ∞.

V. CONCLUSIONS

In this paper, we have introduced a new gradient-based
optimization approach for boundary stabilization of parabolic
PDE systems. Our new approach involves expressing the
boundary controller as an integral state feedback in which
a kernel function needs to be designed judiciously. We do
not determine the feedback kernel by solving Riccati-type
or Klein-Gorden-type PDEs; instead, we approximate the

feedback kernel by a quadratic function and then optimize
the quadratic’s coefficients using dynamic optimization tech-
niques. This preliminary work has also raised several issues
that require further investigation: (i) Can the proposed kernel
optimization approach be applied to other classes of PDE plant
models (i.e., 2D or 3D domains)? (ii) Is it possible to develop
methods for minimizing cost functional (7) over an infinite
time horizon? These issues will be explored in future work.
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Abstract—In this paper we present an iterative algorithm
to jointly optimize the source and relay power allocations for
a general relay transmission system, i.e. the broadcast-and-
multiaccess (BMA) multicarrier relay system, where the source
transmits in two time-slots. Under the indoor power line commu-
nication environment, we examine the issue of minimization of the
total network transmission power subjecting to QoS constraints
expressed as the capacity lower-bound of the data-link from the
source to the destination nodes. In addition to demonstrate the
fast convergence of the proposed algorithm, the simulation results
also show that with respect to the two-hop relay system and the
broadcast-and-forward (BF) relay system, the proposed general
relay system can satisfy the same QoS requirement while consume
less total transmission power.

Index Terms—Power Line Communications (PLC), multi-
carrier relay, time varying channel, three-node system, non-
regenerative relay, QoS.

I. INTRODUCTION

Indoor power line communication (PLC) technology has

received much research attention. In addition to electricity

delivery, the indoor power cables are used as medium, at

the meantime, to support local area networks (LAN). How-

ever, as the indoor power cables are not manufactured for

high frequency (HF) signal transmission purpose, indoor PLC

channels have demonstrated hostile characteristics for broad-

band communications. Due to the similar broadcasting nature

between the wireless signal propagation and the power-cable

guided signal transmission, some advanced relay schemes can

be readily introduced into PLC systems. However, [1] pointed

out a notable difference between PLC relay channels and

the wireless relay systems. In wireless systems the source-

to-destination, source-to-relay and relay-to-destination paths

can be considered as independent to each other so that the

spatial diversity gain can be achieved. On the other hand, in

PLC environment these paths are highly correlated, as they

share the same power cable grid all the time. The authors of

[2] have investigated the optimal time-slot duration allocation

between the direct transmission phase and the relay phase,

when there is only one relay node. Under the assumption that

each outlet on the power grid is a potential relay node, [3]

proposed a multi-hop transmission scheme combined with the

application of distributed space-time block code (DSTBC) in

PLC networks.

Depending on the signal processing type used in the relay

node, relay schemes can be classified into two groups, namely

regenerative and non-regenerative relay systems. As the non-

regenerative scheme only requires the relay node amplify-and-

forward (AF) signals, it has lower complexity, shorter process-

ing delay and lower implementation cost. In [4] algorithms

have been developed to maximize the relay system throughput

by assuming that the relay works in non-regenerative mode

and the powers at the source node and the relay node can

be distributed over multiple sub-carriers. The communication

process is completed in two successive phases. In the first

phase, the source node transmits signal to the relay node. In

the second phase, the relay node amplifies each sub-carrier

component of the signal received from the source node, and

forward the amplified signals to the destination node. We call

this two-hop relay scheme as there is no direct path between

the source and destination nodes. The effect of the direct link

has been considered in [5], [6], where in the first phase the

source broadcasts signal to the relay and destination nodes.

In the second phase, the relay forwards its received signal

to the destination. As a result, the source node is always

silent during the second phase. We call this broadcast-and-
forward (BF) relay scheme. In [7] the authors took another

step that they allow the source to transmit in both the first and

second phases. In other words, when the relay node forwards

its received signal, the source repeat a transmission of the

same information (as in the first phase) to the destination in

the second phase. We refer this as broadcast-and-multiaccess
(BMA) relay scheme. As a result of this configuration, the

total network transmission power has been separated into relay

power and source power, which in turn has been split into

two part (corresponding to two phases) for transmitting the

same information twice. Obviously this is a very general case

comparing with the above two-hop and BF schemes.

In the conventional direct transmission (DT) system, the rate



maximization (RM) and margin maximization (MM) problems

are of duality to each other and admit a unique water-filling

solution [8]. However this fact does not hold when relay

node has been introduced. The aim of [4], [5], [6], [7] is

to optimize a given objective function, usually expressed

as signal-to-noise ratio (SNR), mutual information (MI) or

system capacity, subjecting to the power constraints of the

whole network or/and at each node. On the other hand, the

quality-of-service (QoS) constraints are not addressed. Note

that in practical indoor PLC applications, such as HD Video

Streaming, QoS criteria is very important as they greatly affect

the user experience.

In this paper we address the joint optimization of source

and relay power allocation to minimize the total network

consuming power subjecting to QoS constraints, which has

not been considered before. We set the QoS criteria as the

lower-bound of the capacity of the data-link from the source

to the destination node. Since the QoS-constrained power

allocation problem is highly non-convex, the globally optimal

solution is computationally intractable to obtain. To overcome

this challenge, we propose an alternating optimization (AO)

method adapted from [9] to decompose the joint optimization

problem into three sub-problems. Simulation results show the

fast convergence and short delay of the proposed algorithm.

The remainder of this paper is organized as follows. Section

II describes in detail the system model and problem formula-

tion. The decomposed three sub-problems from Section II have

been fully discussed in Sections III, IV and V, respectively.

Based on these, the overall AO algorithm has been presented

in Section VI. Simulation examples are given in Section VII

to demonstrate the fast convergence and superior performance

of the proposed algorithm. Finally, conclusions are given in

Section VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The block diagram of the three-node relay system is shown

in Fig. 1, which consists of three nodes, i.e. the source node

(S), the destination node (D) and the relay node (R). Under

a practical topology of indoor power lines this arrangement,

every pair of outlets/sockets can be employed as a point-to-

point communication system, and its corresponding channel

transfer function HSD is characterized by the wiring topology

and load impedance between the transceivers. Let us refer to

the shortest link between the source and destination nodes

as the main path, while other wirings are as treated as tap-

brunches attached to the main path, which contribute to the

multi-path fading effect of the channel. Any outlet located on

the main path or on a brunch of the main path can be chosen to

deploy the relay node. Let us also denote the transfer function

of the channel transfer function of source-to-relay link and

relay-to-destination link as HSR and HRD, respectively. If

the relay node has been chosen on the main path, then from

the relay node’s point of view the whole direct channel has

been separated into two parts, thus we can write [1]

HSD = HSRHRD. (1)

Fig. 1: A multicarrier three-node relay system, where the solid-

lines and dash-lines indicate phase 1 and 2, respectively. S, R
and D stand for source node, relay node and destination node

respectively. k = 1, . . . ,K is the index of sub-carriers.

Fig. 2: Channel separation from a relay node’s point of view.

This relation has been illustrated in Fig. 2. However, we

mention that if the relay node is chosen on a tap-brunch, the

relation in (1) does not hold in general.

We consider an orthogonal frequency-division multiplex-

ing (OFDM) based mutlticarrier system. The whole system

bandwidth is divided uniformly into K subcarriers, where

the channel fading on each subcarrier is considered to be

frequency-flat, i.e. it can be described as a channel coefficient.

The channel response on the kth (k = 1, 2, . . .K) subcarrier

from node L1 to node L2 is denoted as H
[k]
L1L2

, where

L1 ∈ {S,R} and L2 ∈ {R,D}. Let us denote the transmit

power on the kth subcarrier from the source node as P
[k]
S , and

from the relay node as P
[k]
R . Furthermore, to distinguish the

source power used in the first and second phase, we denote

them as P
[k]
S,1 and P

[k]
S,2 respectively, i.e. P

[k]
S = P

[k]
S,1 + P

[k]
S,2 .

Thus, the total network power PΣ can be expressed as

PΣ =

K∑
k=1

P
[k]
S +

K∑
k=1

P
[k]
R

=
K∑

k=1

P
[k]
S,1 +

K∑
k=1

P
[k]
S,2 +

K∑
k=1

P
[k]
R . (2)

Following OFDM principle, corresponding to the K subcarri-

ers, each packet of information is encoded into K independent

complex symbols X [k] (k = 1, 2, . . .K), of zero mean and

unit variance. To complete a packet of information transmis-

sion from the source to the destination, the broadcast-and-

multiaccess relay scheme works as the following two phases.



In the first phase, the source node broadcasts information

signal X [k] (k = 1, 2, . . .K) over the kth subcarrier with the

power P
[k]
S,1. Due to the broadcast nature of power line grids,

both the relay and the destination can receive this signal with

different channel gain and noise disturbances respectively as

Y
[k]
R,1 = H

[k]
SR

√
P

[k]
S,1X

[k] +N
[k]
R,1 (3)

Y
[k]
D,1 = H

[k]
SD

√
P

[k]
S,1X

[k] +N
[k]
D,1 (4)

where Y
[k]
L2,n

and N
[k]
L2,n

respectively denote the received signal

and noise at the node L2(L2 ∈ {R,D}) in the nth (n =1 or

2) phase.

In the second phase, the relay amplifies its received signals

on each sub-carrier, i.e. Y
[k]
R,1, with proper complex gain

g[k] exp(jθ[k]) , where g[k] is the amplitude gain and θ[k] is

the phase shift, and then forwards the amplified signals to

the destination with power P
[k]
R . At the meantime, the source

node sends another identical message packet out, this time

with power P
[k]
S,2. Then the received signal at the destination

node in the second phase is

Y
[k]
D,2 = H

[k]
RDg[k] exp(jθ[k])Y

[k]
R,1

+H
[k]
SD

√
P

[k]
S,2X

[k] +N
[k]
D,2 (5)

where

g[k] =

√√√√ P
[k]
R

P
[k]
S,1|H [k]

SR|2 +W
[k]
R

(6)

θ[k] = ∠H [k]
SD − ∠H [k]

SR − ∠H [k]
RD. (7)

Here we used W
[k]
L2

to denote the power of noise N
[k]
L2,n

(n =1

or 2) in (6), and ∠(·) stands for the angle of a complex number

in (7).

Finally, the destination combines the two copies of received

signal (4) and (5) over two phases by maximum ratio combi-

nation (MRC) processing with the knowledge of channel state

information (CSI). By denoting the SNR of the kth subcarrier

at the destination in the nth phase as SNR
[k]
D,n, from (3)-(7)

we have

SNR
[k]
D,1 = P

[k]
S,1γ

[k]
SD (8)

SNR
[k]
D,2 =

(√
P

[k]
S,1γ

[k]
SRP

[k]
R γ

[k]
RD+

√
P

[k]
S,2γ

[k]
SD

(
1+P

[k]
S,1γ

[k]
SR

))2

1+P
[k]
S,1γ

[k]
SR+P

[k]
R γ

[k]
RD

(9)

where the normalized gain of the channel from L1 to L2 is

introduced as γ
[k]
L1L2

=
|H[k]

L1L2
|2

W
[k]
L2

. Thus, we obtain the capacity

(in bit/sec/Hz) of the data-link from S to D as

C =
1

2

K∑
k=1

log2

(
1 + SNR

[k]
D,1 + SNR

[k]
D,2

)
(10)

where the factor 1/2 reflects the half-duplex constraint of the

relay node.

We note that (10) is the capacity of a general two-phase

relay system, which includes the following special cases: (a) If

γ
[k]
SD = 0, the system becomes a two-hop relay system without

the direct link. In PLC scenario this usually happens when the

cable length between the source and the destination outlets

is very far. (b) If P
[k]
S,2 = 0, it means the system becomes

a broadcast-and-forward relay system as we mentioned in

Section I. (c) Interestingly, if P
[k]
R = 0, it means the relay

node is not active, then the system become a two-phase direct
transmission system, where the source transmits the same in-

formation packet twice independently in two phases to achieve

time-diversity. (d) Especially, if P
[k]
R = 0 and P

[k]
S,2 = 0, the

scheme degrades to a conventional direct transmission (DT)

system1. Without losing generality, we assume all γ
[k]
L1L2

> 0
in the following.

With the QoS criteria as the lower-bound of the system

capacity, to explore the most efficient utilization of the system

power we propose the following optimization problem

min
P

[k]
S,1,P

[k]
S,2,P

[k]
R

PΣ (11)

s.t. C ≥ q, (12)

P
[k]
S,1, P

[k]
S,2, P

[k]
R ≥ 0, ∀k (13)

where (11) is the objective function of the total network

transmission power, and q ≥ 0 is the required minimum link

capacity to support certain applications. We can also define the

averaged subchannel capacity as C
K , so that capacity constraint

(12) can be equally expressed as

C

K
≥ q′ (14)

where q′ = q
K is the requirement of average capacity on each

subcarrier.

The exact solution to problem (11)-(13) is difficult to find

because the system minimum capacity constraint in (12) is

non-convex. In this paper, we provide a locally optimal solu-

tion by adopting the AO approach from [9], where we firstly

optimize P
[k]
R with given P

[k]
S,1 and P

[k]
S,2(k = 1, 2, . . .K),

then optimize P
[k]
S,1 with given P

[k]
S,2 and previously optimized

P
[k]
R , and next we optimize P

[k]
S,2 with previously obtained

P
[k]
S,1 and P

[k]
R . This process is repeated until convergence, i.e.

the difference between the PΣ obtained in two consecutive

iterations is less than a preset threshold. For any two groups

of fixed power allocation parameters, the resulted sub-problem

becomes convex. Based on the method, we will develop the

overall algorithm to solve the problem (11)-(13). we discuss

these issues in detail from Section III to Section VI.

1In this case, the relay’s half-duplex factor 1/2 does not exist.



III. OPTIMAL RELAY POWER ALLOCATION WHEN GIVEN

SOURCE POWER ALLOCATIONS

For fixed P
[k]
S,1 and P

[k]
S,2 (k = 1, 2, . . .K), problem (11)-(13)

becomes

min
P

[k]
R

∑K
k=1 P

[k]
R (15)

s.t. 1
2

∑K
k=1 log2

(
ak + bk

dkP
[k]
R +ck

)
≥ q (16)

P
[k]
R ≥ 0, ∀k (17)

where

ak = 1 + P
[k]
S,1γ

[k]
SD + P

[k]
S,1γ

[k]
SR

bk =
(
1 + P

[k]
S,1γ

[k]
SR

)(
P

[k]
S,2γ

[k]
SD − P

[k]
S,1γ

[k]
SR

)
ck = 1 + P

[k]
S,1γ

[k]
SR

dk = γ
[k]
RD.

Let us write down the Karush-Kuhn-Tucker (KKT) condi-

tions to the problem (15)-(17) as, for ∀k,

1 + λ
bkdk

ln 2(ck + dkP
[k]
R )(bk + akck + akdkP

[k]
R )

= 0 (18)

λ

[
2q −

K∑
k=1

log2

(
ak +

bk

dkP
[k]
R + ck

)]
= 0 (19)

λ ≥ 0 (20)

P
[k]
R ≥ 0 .(21)

It is easy to notice that the Lagrangian multiplier λ cannot

take zero value. In addition, it can be proved that only when

bk < 0 while ak, ck, dk > 0, the problem (15)-(17) have

solution. Under this condition the problem (15)-(17) is convex

on
{
P

[k]
R | P [k]

R ≥ 0, k = 1, 2, . . .K
}

. For fixed λ > 0, as

the left-hand-side (LHS) of (18) is a monotonically increasing

function of P
[k]
R and the LHS of (19) is a decreasing function

of P
[k]
R , we can use a bi-section search algorithm to solve

expressions (18)-(21), which in turn leads us to the solution

of problem (15)-(17).

IV. OPTIMAL FIRST-PHASE SOURCE POWER ALLOCATION

WHEN GIVEN SECOND-PHASE POWER AND RELAY POWER

ALLOCATIONS

For given P
[k]
S,2 and P

[k]
R (k = 1, 2, . . .K), we now consider

the optimization of the source power allocation in the first

phase, namely P
[k]
S,1, by solving the problem as

min
P

[k]
S,1

∑K
k=1 P

[k]
S,1 (22)

s.t. 1
2

∑K
k=1 log2

(
Ak +BkP

[k]
S,1 +

Ck

DkP
[k]
S,1+Ek

)
≥q (23)

P
[k]
S,1 ≥ 0, ∀k (24)

where

Ak = 1 + P
[k]
R γ

[k]
RD + P

[k]
S,2γ

[k]
SD

Bk = γ
[k]
SD

Ck = −P
[k]
R γ

[k]
RD

(
1 + P

[k]
R γ

[k]
RD + P

[k]
S,2γ

[k]
SD

)
Dk = γ

[k]
SR

Ek = 1 + P
[k]
R γ

[k]
RD.

Let us write down the KKT condition to the problem (22)-

(24) as, for ∀k,(
Ak +BkP

[k]
S,1 +

Ck

Ek + PS,1Dk

)
ln 2

+λ

⎛
⎜⎝Bk +

CkDk(
Ek + P

[k]
S,1Dk

)2
⎞
⎟⎠ = 0 (25)

λ

[
2q −

K∑
k=1

log2

(
Ak+BkP

[k]
S,1

+
Ck

DkP
[k]
S,1 + Ek

)]
= 0 (26)

λ ≥ 0 (27)

P
[k]
S,1 ≥ 0 . (28)

We observe that, for fixed λ > 0, the LHS of (25) is

a monotonically increasing function of P
[k]
S,1 and the LHS

of (26) is a decreasing function of P
[k]
S,1. Furthermore, the

problem (22)-(24) is only solvable when Ck < 0 while

AK , Bk, Dk, Ek > 0, and under this condition it is convex

on
{
P

[k]
S,1 | P [k]

S,1 ≥ 0, k = 1, 2, . . .K
}

. Thus its solution can

be found by using the bi-section search algorithm.

V. OPTIMAL SECOND-PHASE SOURCE POWER ALLOCATION

WHEN GIVEN FIRST-PHASE POWER AND RELAY POWER

ALLOCATIONS

Similarly, based on the optimized P
[k]
S,1 from Section IV

and P
[k]
R from Section III, we now consider the optimization

of the source power allocation in the second phase, i.e. P
[k]
S,2,

by solving the problem as

min
P

[k]
S,2

∑K
k=1 P

[k]
S,2 (29)

s.t. 1
2

∑K
k=1 log2

(
αk + βkP

[k]
S,2

)
≥ q (30)

P
[k]
S,2 ≥ 0, ∀k (31)

where

αk = 1 + P
[k]
S,1γ

[k]
SD +

P
[k]
S,1γ

[k]
SRP

[k]
R γ

[k]
RD

1 + P
[k]
S,1γ

[k]
SR + P

[k]
R γ

[k]
RD

βk =
P

[k]
S,1γ

[k]
SRγ

[k]
SD + γ

[k]
SD

1 + P
[k]
S,1γ

[k]
SR + P

[k]
R γ

[k]
RD

.



Algorithm 1 AO algorithm for proposed problem

1) Use bi-section algorithm with preselected (newly obtained)

allocations of source power in two phases to solve (18)-(21)

to find a new set of relay power.

2) Use bi-section algorithm with the preselected (newly ob-

tained) second-phase source power and newly obtained relay

power to solve (25)-(28) to find a new set of first-phase power.

3) Use bi-section algorithm with newly obtained allocations

of relay power and first-phase source power to solve (32)-(35)

to find a new set of second-phase source power.

4) If the difference of (11) between two consecutive loops is

less than a preset threshold σ, then stop; otherwise, GO TO

step 1).

The KKT conditions to the problem (29)-(31) are, for ∀k,

1− λ
βk

ln 2
(
αk + βkP

[k]
S,2

) = 0 (32)

λ

[
2q −

K∑
k=1

log2

(
αk + βkP

[k]
S,2

)]
= 0 (33)

λ ≥ 0 (34)

P
[k]
S,2 ≥ 0 (35)

For fixed λ > 0, the LHS of (32) is a monotonically increasing

function of P
[k]
S,2 and the LHS of (33) is a decreasing function

of P
[k]
S,2. Thus, the problem (29)-(31) is solvable and convex on{

P
[k]
S,2 | P [k]

S,2 ≥ 0, k = 1, 2, . . .K
}

, when ak, bk > 0. Again,

its solution can be found by using the bi-section search

algorithm.

VI. PROPOSED ITERATIVE ALGORITHM

Based on the discussion from Sections III to V, we sum-

marize the proposed AO algorithm, as we mentioned earlier,

for solving the proposed problem (11)-(13). This is shown in

Algorithm 1.

In general, the alternating optimization method cannot guar-

antee to converge to the globally optimal solution. However,

since constraint in (12) is convex for any fixed group of{
P

[k]
S,1, P

[k]
S,2

}
,
{
P

[k]
R , P

[k]
S,2

}
or
{
P

[k]
S,1, P

[k]
R

}
, the proposed AO

algorithm converges to a stationary point of the objective

function (11). This will be verified by the simulation examples

in the next section.

VII. NUMERICAL EXAMPLES

In this section we present simulation results based on the

indoor PLC channel environment by using the direct PLC

channel model [11] and noise model [12]. Here, we assume

the the relay node has been chosen on the main path, which

means with the relation (1) we can cascade two randomly

generated direct channel model to get a relay channel. Also,

from the randomly generated channel transfer function and

noise PSD, we can calculate the normalized channel gain

on each subcarrier. For simplicity of presentation, we set the
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Fig. 3: Total power versus number of iterations.

subcarrier amount K as 32, among the usual broadband PLC

spectrum, i.e. 2-30MHz. However, we mention that in practical

PLC systems this value is usually larger than one thousand. In

addition, we set the power spectrum density (PSD) of the noise

on the relay node and the destination node to the same, even

though this is not always true in the real PLC environment,

e.g. an outlet near a noise-generating appliance usually has a

stronger PSD than the one which is located further away from

that appliance.

For the proposed algorithm, we set the convergence con-

dition as the difference between the total power obtained in

two consecutive iterations less than 10−5. As an example

to demonstrate the convergence speed of the overall AO

algorithm, Fig. 3 shows the total transmission power versus the

number of iterations when the averaged subchannel capacity

in (16) is set to five different values from 1 to 1.5 bit/Sec/Hz,

respectively. It can be seen that the proposed AO algorithm

converges typically within six iterations. Specifically, the de-

creasing of the total power after four iterations is very small.

Thus only a few iterations are required to achieve a good

performance. This also indicates that the AO algorithm has a

short processing delay, which is important for practical PLC

relay systems. It can also be observed from Fig. 3 that with

the increasing of averaged subchannel capacity, more trans-

mission power is needed to meet the stricter QoS constraint,

which reflects the typical QoS-cost tradeoff in communication

systems.

Next, we compare the proposed AO power allocation al-

gorithm on the general BMA relay scheme with the two-hop

relay system as proposed in [4] and the BF relay system under

the same channel conditions, and plot the total network power

versus the common QoS requirements. We can see from Fig. 4

that the AO algorithm make the system meet the requirement

with the least power consumption. The details of the power

allocations on each subchannel for two-hop, BF and BMA

relay systems has been shown in Fig. 5, where the averaged

subchannel capacity is set to 1 bit/sec/Hz. Considering the

the PLC system’s possible electromagnetic interference (EMI)

to the shortwave radio system, we hope this power saving

property can relieve this issue to some extent.
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(a) Two-hop relay

0 5 10 15 20 25 30

0.5

1

1.5

2

2.5

3

3.5

BF: sum(PS)+sum(PR)=138.4968 mW

po
w

er
 a

llo
ca

tio
ns

(m
W

)

subcarrier index

PS
PR

(b) Broadcast-and-forward (BF) relay
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Fig. 5: Power allocations on each subchannel of three relay

schemes under the same channel conditions with common QoS

requirement.

VIII. CONCLUSION

We have developed an iterative algorithm to jointly optimize

the source power and relay power allocations for the general

three-node/two-phase relay system, where the source transmits

in both time-phases. Specifically, we examined the minimiza-

tion of the total transmission power when there is a minimal

channel capacity requirement from some indoor PLC system

applications. Simulation results show that with respect to a

two-hop and BF relay systems with certain QoS constraint,

the proposed general relay system, along with the proposed

alternative algorithm, can attain the same QoS requirement

with less total transmission power.
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