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Abstract 

The paper addresses the issue of microprocessor and 
microcontroller testing, and follows an approach based 
on the generation of a test program. The proposed 
method relies on two phases: in the first, a library of 
code fragments (named macros) is generated by hand 
based on the knowledge of the instruction set, only. In 
the second phase, an optimization algorithm is run to 
suitably select macros and values for their parameters. 
The algorithm only relies on RT-level information, and 
exploits a suitable RT-level fault model to guide the test 
program generation. A major advantage of the 
proposed approach lies in the fact that it does not 
require any knowledge about the low level 
implementation of the processor. Experimental results 
gathered on an i8051 model using a prototypical 
implementation of the approach show that it is able to 
generate test programs whose gate-level fault coverage 
is higher than the one obtained by comparable gate-
level ATPG tools, while the computational effort and 
the length of the generated test program are similar. 
The method is thus suitable to be applied during the 
incoming inspection test phase performed on small 
processors, and for developing implementation-
independent test suites for soft IP cores. 

1. Introduction 

Microprocessors and microcontrollers are known to 
be major challenges in the test arena, due to their 
complexity and heterogeneity. Techniques for 
microprocessor testing can be first divided in two 
groups, depending on whether implementation 
information are available (for microprocessor 
producers) or not (when users implement producer-
independent incoming inspection test). In the latter case, 
only high-level functional information are available, 
and test solutions can not rely on any knowledge about 
the real implementation of the device. A similar 
situation arises when soft IP cores are designed, and 
suitable input sequences are required, able to test them 

no matter the technology re-mapping and the 
environment the core is embedded in. 

In both the above cases, any Design for Testability 
technique can hardly be considered, and an effective 
solution is to devise a test program to be executed by 
the microprocessor itself. Its behavior must be 
monitored, and possible mismatches signal the 
existence of one or more faults inside the processor.  

Traditionally, the test of a microprocessor has been 
performed by resorting to functional approaches based 
on exciting all the functions and resources described in 
its data-sheets [3]. This approach involves a high 
amount of manual work performed by skilled 
programmers, and does not provide any quantitative 
measure about the attained Fault Coverage (FC). 
Recently, Dey et al. proposed a deterministic method 
named DEFUSE [4] to generate test programs able to 
reach a good Fault Coverage on the ALU of a 
microprocessor, and to compact the result. The 
approach is very effective with combinationally testable 
parts (e.g., simple ALUs), but shows some limitation 
when hard-to-test sequential modules, such as Control 
Units, are addressed. Another approach has been 
proposed by Batcher and Papachristou [5] that is based 
on generating random sequences of instructions, but it 
requires the insertion of additional hardware in the 
microprocessor under test. Recently, Sheen et al. 
proposed a technique where the processor itself 
generates test at run-time by self-modifying code [6]. 
On the other hand, Utamaphethai et al. showed a 
method for generating instruction sequences for 
validating the branch prediction mechanism of the 
PowerPC604 [7]. Generated sequences are very 
effective, but the methodology exploits a deep 
knowledge of the processor and is not straightforward 
to be applied on general designs. 

In this paper we propose a new approach which does 
not require any knowledge about low-level 
implementation of the processor: only an RT-level 
description is required. The method partly stems from 
the ideas already introduced in [2], but thanks to the 
adoption of an effective RT-level fault model [1], any 
reference to the gate-level netlist is avoided.  The 
proposed method requires a limited amount of manual 



work aimed at developing a library of macros, that are 
able to excite all the functions of the processor and to 
make the effects of possible faults observable. A macro 
is required for every machine-level instruction; each 
macro is composed of few instructions, aimed at 
activating the target instruction with some generic 
operand values representing the macro parameters, and 
to propagate to an observable memory position the 
results of its execution. The complexity of the work for 
developing these macros and the required skills are 
much lower than for the approaches based on functional 
testing, such as [3]; in fact, our approach just requires 
the development of one macro for every machine-level 
instruction according to a simple pre-defined skeleton 
for every group of instructions, and does not involve the 
extraction of complex graphs describing the 
relationships among resources, as in [3]. The final test 
program is composed of a proper sequence of macros 
taken from this library, each activated with proper 
values for its parameters (i.e., the operands of the 
composing instructions). This phase is accomplished by 
resorting to a Genetic Algorithm which exploits an RT-
level Fault Simulator to evaluate the generated 
solutions. Experimental results supporting the 
effectiveness of the method are reported for a core of 
the Intel 8051 microcontroller using a prototypical 
implementation of our algorithm. A synthesizable 
VHDL RT-level description of the microprocessor is 
used. Final figures show that the test program generated 
by the tool has a higher effectiveness (in terms of 
attained gate-level fault coverage) than the one 
generated by the gate-level test program generation 
method introduced in [2], and that the required 
computational effort is comparable between the two 
approaches. 

The paper is organized as follows. Section 2 outlines 
some basic concepts about the adopted test generation 
strategy as well as about the adopted RT-level fault 
model. Section 3 presents an overview of the test 
program generation approach we propose. Section 4 
reports some preliminary experimental results assessing 
the effectiveness of our approach, and Section 5 draws 
some conclusions.  

2. Test Strategy 

Test sequence generation for microprocessors 
necessarily requires the knowledge of the processor 
instruction set and instruction format, since only correct 
programs can internally perform meaningful operations. 
A solution for this problem was proposed in [2] with the 
usage of macros: a short sequence of instructions 
aiming at creating a suitable framework for testing the 

part of control unit and data-path affected by a given 
instruction (or group of instructions). 

The purpose of macros is to execute all the possible 
instructions and to make observable the complete result 
of each instruction, which also includes any flag that is 
possibly affected by the instruction itself. 

 
MOV AX, K1 ;load register AX with K1 
MOV BX, K2 ;load register BX with K2 
ADD AX, BX ;sum BX to AX 
MOV RW, AX ;write AX to RW 
MOV RW2, PSW ;write status register to RW 

Figure 1: pseudo-code of the macro for the ADD 
instruction. 

As an example, Figure 1 reports the code (for sake of 
readability we use a pseudo-assembly language) for the 
macro concerning the addition instruction between 
registers using K1 and K2 as parameters. RW and RW2 
are two easily observable memory locations. 

Macros are stored in a library. A test program is a 
collection of macros. An optimization algorithm (see 
Section 3) is proposed here to select the most suitable 
ones from the library, and to define the values of their 
parameters.  

The effectiveness of test program generation for 
microprocessors RT-level descriptions strongly depends 
on the adopted RT-level fault model. We selected the 
RT-Level single-bit stuck-at fault model [1] that shows a 
good correlation with gate-level stuck-at faults. 

An RT-level single-bit stuck-at fault is defined as a 
single-bit stuck-at in the effect of an RT-level 
assignment operation: when a fault is present, the 
affected object (signal or variable target of an 
assignment statement) loads the correct value, except 
for one bit that remains stuck to 0 or 1. The effect 
VHDL statement is the statement corresponding to the 
fault. The faults are single and permanent: only one 
fault is inserted at a time and the fault effect is present 
during the whole simulation. Other assignments of the 
same signal are assumed to be fault-free, since stuck-at 
faults on the same signal but on different statements are 
considered different.  

 

addr <= (tail + reg1) mod 2**8;

00000100 00001001

00101101
 

Figure 2: RT-level single bit stuck-at fault example. 



Figure 2 shows the example of a RT-level single bit 
stuck-at fault. The fault affects the third bit of the 
assignment operation, and modifies the result of the 
expression, after it has been computed and before it is 
assigned to the target signal. 

Better correlation with the gate-level fault model is 
obtained with the application of some Fault Collapsing 
rules able to partially eliminate the RT-level faults that 
do not correspond to any gate-level fault after synthesis. 

Fault Collapsing rules are required because during 
synthesis the RT-level VHDL description is optimized 
in order to create an efficient gate-level design. The 
optimization process analyzes the VHDL description 
and simplifies all logic eliminating redundancies. As an 
example, assignments of constant values to a signal or 
variable are eliminated during optimization process. 

More details about the Fault Collapsing rules can be 
found in [1]. 

3. Test Program Generation 

To perform Test Program Generation starting from 
the analysis of the VHDL description, we must select 
the best macros and the values of their parameters in 
order to create a program able to detect the highest 
number of faults.  

The environment we propose, whose architecture is 
shown in Figure 3, is composed of: 
• Fault Manager, that analyzes the VHDL 

description and creates a Fault List, according to 
the RT-Level single-bit stuck-at fault model and 
using the Fault Collapsing rules introduced above; 

• a Core that, using a set of heuristics (i.e., greedy, 
hill climber and evolutionary algorithms), selects 
the most suitable macros and the values for their 
parameters to create the test program; 

• a Fault Injector that, interacting with the Fault 
Simulator, injects the faults on the microprocessor 
RT-level description and evaluates the 
effectiveness of the macros created by the Core. 

After generating the Fault List the faults are injected 
during the simulation whenever the corresponding 
statement is executed. All the faults corresponding to a 
statement which has been executed at least once by the 
test program are labeled as executed. Once a fault is 
executed, it is also excited, if the corresponding bit 
assumes a value in the fault-free system which is the 
opposite of the stuck-at one. Finally, when a fault 
produces at least one difference in the output behavior 
of the processor (in terms of produced and observable 
results) it is marked as detected. 

As we work on a microcontroller description, we can 
group faults in two classes: 
• detectable independently from macro operands; 
• detectable only using a specific set of macro 

operands. 
In this paper, the faults that belong to the first class 

are called control-dependent faults and the ones 
belonging to the second class are called data-dependent 
faults. Based on our experience most of the control-
dependent faults are located in the Control Unit and in 
the Instruction Decoder, where the systems decides how 
to elaborate the instruction data. Instead, most of the 
data-dependent faults are located in the data path (e.g., 
in the Arithmetic and Logical Unit). 
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Figure 3: Test Program Generation Architecture. 

3.1. Algorithm 

The algorithm we propose is based on two phases: 
• control-dependent fault detection phase 
• data-dependent fault detection phase. 

The detection of control-dependent faults is based on 
the correct selection of the operative code and the 
addressing mode. The detection of these faults depends 
on which instructions (i.e., which macros) have been 
executed by the microprocessor, independently from a 
specific set of data to be used as macro parameters. For 
this reason, a first phase is activated, which aims at 
maximizing the number of detected control-depending 
faults. The pseudo-code of this phase is reported in 
Figure 4. 

At each iteration, the procedure 
select_best_macro simulates each macro in the 
library with random operands. By means of this 
procedure the VHDL statements executed during the 
fault-free simulation of each macro are identified. The 
macro M that maximizes the number of executed faults 



is selected. The selected macro is then fault simulated 
and, if at least one new fault is detected, it is added to 
the final test program. The macro M is also marked as 
used to avoid being selected again in this phase. 

 
do 
{ (M,O) = select_best_macro(); 
 F = compute_detected_faults(M,O); 
 if( F is not empty ) 
  add M(O) to the test program; 
 drop_faults(F); 
 remove M from selectable_macros; 
} while(stopping_condition is false) 

Figure 4: Control-dependent fault detection phase 
pseudo-code.  

When all the macros of the library have been 
selected and fault simulated, all the macros become 
selectable again and the second phase starts. 

The goal of the second phase is to detect data-
dependent faults. The coverage of these faults depends 
on the arguments of each instruction (i.e., macro 
operands) executed by the microprocessor. The pseudo-
code of this phase is reported in Figure 5.  
 
do 
{ M = select_best_macro(); 
 do 
 { O = select_operands(M);  /*hill climber*/ 
  F = compute_detected_faults(M, O); 
  if( F is not empty ) 
  { add M(O) to the test program; 
   drop_faults(F); } 
   A = compute_activated_faults(M, O); 
   do 
   { Ft = select_fault(A); 
    O = optimize_the_operands(M, Ft); 
    if( Ft is detected ) 
    { add M(O) to the test program; 
     fault_dropping(M, 0); } 
   }while( A is not empty ); 
 }while( stopping_condition() == FALSE ); 
 remove M from selectable_macro; 
}while( selectable_macro is not empty ); 

Figure 5: Data-dependent fault detection phase pseudo-
code.  

As in the first phase, at each iteration the instructions 
executed by each macro of the library are first identified 
via fault-free simulation. The macro M, that maximizes 
the number of executed faults is selected. 

A hill-climbing algorithm is then activated, whose 
goal is to find the values for the macro operands (O) that 
maximize the number of faults excited by the macro. At 
the beginning a set of random operands Omax is created 
and the number of faults Nmax activated by the macro 

M(Omax) is computed. At each iteration a new set of 
operands Onew is created applying local transformations 
(i.e., changing some bit values) to Omax. If the number 
of faults Nnew activated by the macro M(Onew) is higher 
than Nmax, Omax and Nmax are substituted by Onew and 
Nnew, and a new iteration starts. The hill-climber runs 
until the number of activated faults reaches a given 
threshold, or the maximum number of iterations has 
been reached. 

For each fault Ft activated by the selected macro, a 
Genetic Algorithm, detailed in next section, is then 
executed, whose goal is to find the values for the macro 
operands (O) that detect the target fault. 

If Ft is detected, the macro is added to the final test 
program and a fault dropping phase is activated; 
otherwise, the fault is discarded, to avoid being 
considered again with this macro. 

When all the activated faults have been detected or 
discarded, the algorithm returns to the hill-climber in 
order to try to activate others faults. 

The stopping condition is true when either the Fault 
Coverage reaches a given threshold, or the maximum 
number of iterations has been reached. 

When the stopping condition is reached, the selected 
macro is marked as used, all the faults discarded are 
reinserted in the Fault List, and a new iteration starts. 

The data-dependent faults detection phase ends 
when either the Fault Coverage reaches a given 
threshold, or all the macros of the library have been 
selected. 

3.2. Genetic Algorithm 

Once a macro has been selected from the library, a 
fault simulation is performed. For each fault excited by 
the selected macro, a Genetic Algorithm (GA) is then 
activated. 

The goal of the GA is to identify the best values for 
the parameters of the selected macro in order to detect 
the target fault. The algorithm chooses the values for 
immediate operands, and those to be written in the 
registers or memory cells used by the target instruction.  

The number of operands and their length (in bits) 
depend on the macro. A standard steady-state Genetic 
Algorithm is exploited, whose main characteristics are 
summarized in the following: 
• chromosomes are bit strings corresponding to the 

concatenated operands; their length is function of the 
macro;  

• the mutation operator randomly selects a bit in the 
chromosome, and complements it; 

• the cross-over operator is the standard one-cut 
crossover; 



• chromosomes are selected using a linearized fitness 
function and a roulette wheel mechanism. 
The fitness function of a chromosome measures how 

far the macro M, created with the chromosome 
parameters O, is able to propagate the target fault Ft 
effects. More precisely, it is the maximum number of 
differences caused by the fault during the execution of 
the macro. 

∑
∈

=
objectsSvt objectbitsdifferentMAXFOMFitness )(_),,(  

where different_bits counts the number of bits 
having a different value in the fault-free and faulty 
system for any VHDL objects (i.e., signal and variable). 
The fitness function calculates the sum of differences at 
every clock cycle of any execution of the macro and 
takes the maximum.  

The algorithm is stopped when the target fault is 
detected or a steady state is reached, i.e., when a given 
number of generations have elapsed without detecting 
the target fault. 

4. Experimental Results 

In order to test the effectiveness of the proposed 
technique we implemented it in a tool called Automatic 
Test Program Generation System (ATPGS). ATPGS 
amounts to about 11,000 lines of C code including an 
in-house developed RT-Level Fault Simulator based on 
a commercial VHDL Simulator (ModelSim 5.5a by 
Mentor Graphics). 

The system has been evaluated on a synthetizable 
VHDL description of the Intel 8051 microcontroller, 
containing the core system without peripherals, whose 
main characteristics are summarized in Table 1.  

 
Primary inputs 41 
Primary outputs 45 
VHDL lines 13,583 
Processes 6 
Procedures 29 
RT-level faults 15,387 
Gates 12,134 
Flip flops 1,325 
Gate-level faults 28,792 

Table 1: 8051 description characteristics. 

The Fault Simulator is able to simulate the entire 
8051 while it executes the program stored in the 
embedded ROM, injecting RT-level single bit stuck-at 
faults in VHDL code. ATPGS is able to modify the 

program stored in the 8051 ROM without recompiling 
the entire VHDL code but interacting with the simulator 
in order to modify at runtime the map of the ROM. A 
library of 115 macros is exploited, each composed of a 
number of instructions that ranges from 3 to 6. 

The experiments have been performed on a Sun 
Enterprise 250 running at 400 MHz and equipped with 
2 GBytes of RAM. 

 
Parameter Value 

Number of individuals in the population 25 
Number of new individuals at each generation 25 

Maximum number of generations without 
improvements 10 

Crossover probability 0.7 
Mutation probability 0.3 

Table 2: Genetic Algorithm Parameters. 

The values we used for the Genetic Algorithm 
parameters are reported in Table 2. 

For the pourpose of the experiments, the RT-level 
ATPG was first run, with the goal of maximizing the 
Fault Coverage based on the RT-level fault model and a 
test program was obtained. For comparison porposes, a 
second set of experiments was then performed: the RT-
level description of the 8051 was  synthesized and fault 
simulated at gate level. Using this description, we 
compared the results obtained by the RT-level ATPG 
(Table 3) with the Fault Coverage obtained by the gate-
level ATPG described in [2] (Table 4). The whole 
procedure adopted for the experiments is outlined in 
Figure 6. 
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Figure 6: Experimental setup for comparison proposes. 

The reported results show the proposed technique 
provides Fault Coverage figures higher than the gate-
level ones, with a slight increase in the length of the 
final test program (in terms of number of instructions).  



The RT-level ATPG works on a Fault List created 
analyzing the VHDL description and reduced by the 
Fault Manager applying the Fault Collapsing rules. 

 
RT-level faults [#] 15,387 
Executed faults [#] 13,364 
Excited faults [#] 12,263 
Detected faults [#] 12,122 
Test Program Instructions [#] 883 
RT-level Fault Coverage [%] 78.78 
Gate-level  Fault Coverage [%] 89.47 

Table 3: Test Program generation from RT-level 
description. 

Gate-level faults [#] 28,792 
Detected faults [#] 25,759 
Test Program Instructions [#] 624 
Gate-level  Fault Coverage [%] 85.19 

Table 4: Test Program generation from gate-level 
description. 

In the 8051 Fault List above 40% of the faults are 
eliminated by the usage of the rules; this happens 
because many internal parameters, especially in the 
Instruction Decoder and in the Control Unit, are 
constants. Before the proposed method is evaluated in 
terms of required computational effort, it must be first 
emphasized that in the current implementation of the 
tool the RT-level Fault Simulation is performed 
exploiting a commercial VHDL simulator. The 
interaction with it is necessarily loose, and therefore 
slow. However, if the method were integrated in the 
code of the simulator, a much higher efficiency would 
be attained. For this reason, to evaluate the required 
computational effort, we adopted as a parameter the 
number of 8051 instructions simulated by ATPGS 
during the test program generation phase. This number 
is equal to about two million instructions, and roughly 
corresponds to the number of instructions simulated by 
the gate-level ATPG described in [2]. 

5. Conclusions  

We introduced a new method for generating test 
programs for microprocessors and microcontrollers. 
The main novelty of the proposed approach lies in the 
fact that it only relies on the RT-level description of the 
device, and does not exploit any knowledge about 
lower-level implementation details. The method 
requires the availability of a small library of macros, 

whose development should be performed by hand, 
based on the mere knowledge of the instruction set. An 
optimization algorithm is outlined for selecting the 
minimal subset of macros, and their parameters. The 
algorithm entirely works on the RT-level description, 
exploiting a suitable RT-level fault model. 

Experimental results gathered on the Intel 8051 
microcontroller using a prototypical implementation of 
the method show that the generated test program attains 
higher fault coverage figures (in terms of gate-level 
stuck-at faults) than the test program generated starting 
from the gate-level description, with a comparable 
computational effort, thus demonstrating the practical 
viability of the approach. 
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