
Automatic Test Program Generation
from RT-level microprocessor descriptions

F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero
Politecnico di Torino

Dipartimento di Automatica e Informatica
Torino, Italy

http://www.cad.polito.it/

Abstract

The paper addresses the issue of microprocessor and
microcontroller testing, and follows an approach based
on the generation of a test program. The proposed
method relies on two phases: in the first, a library of
code fragments (named macros) is generated by hand
based on the knowledge of the instruction set, only. In
the second phase, an optimization algorithm is run to
suitably select macros and values for their parameters.
The algorithm only relies on RT-level information, and
exploits a suitable RT-level fault model to guide the test
program generation. A major advantage of the
proposed approach lies in the fact that it does not
require any knowledge about the low level
implementation of the processor. Experimental results
gathered on an i8051 model using a prototypical
implementation of the approach show that it is able to
generate test programs whose gate-level fault coverage
is higher than the one obtained by comparable gate-
level ATPG tools, while the computational effort and
the length of the generated test program are similar.
The method is thus suitable to be applied during the
incoming inspection test phase performed on small
processors, and for developing implementation-
independent test suites for soft IP cores.

1. Introduction

Microprocessors and microcontrollers are known to
be major challenges in the test arena, due to their
complexity and heterogeneity. Techniques for
microprocessor testing can be first divided in two
groups, depending on whether implementation
information are available (for microprocessor
producers) or not (when users implement producer-
independent incoming inspection test). In the latter case,
only high-level functional information are available,
and test solutions can not rely on any knowledge about
the real implementation of the device. A similar
situation arises when soft IP cores are designed, and
suitable input sequences are required, able to test them

no matter the technology re-mapping and the
environment the core is embedded in.

In both the above cases, any Design for Testability
technique can hardly be considered, and an effective
solution is to devise a test program to be executed by
the microprocessor itself. Its behavior must be
monitored, and possible mismatches signal the
existence of one or more faults inside the processor.

Traditionally, the test of a microprocessor has been
performed by resorting to functional approaches based
on exciting all the functions and resources described in
its data-sheets [3]. This approach involves a high
amount of manual work performed by skilled
programmers, and does not provide any quantitative
measure about the attained Fault Coverage (FC).
Recently, Dey et al. proposed a deterministic method
named DEFUSE [4] to generate test programs able to
reach a good Fault Coverage on the ALU of a
microprocessor, and to compact the result. The
approach is very effective with combinationally testable
parts (e.g., simple ALUs), but shows some limitation
when hard-to-test sequential modules, such as Control
Units, are addressed. Another approach has been
proposed by Batcher and Papachristou [5] that is based
on generating random sequences of instructions, but it
requires the insertion of additional hardware in the
microprocessor under test. Recently, Sheen et al.
proposed a technique where the processor itself
generates test at run-time by self-modifying code [6].
On the other hand, Utamaphethai et al. showed a
method for generating instruction sequences for
validating the branch prediction mechanism of the
PowerPC604 [7]. Generated sequences are very
effective, but the methodology exploits a deep
knowledge of the processor and is not straightforward
to be applied on general designs.

In this paper we propose a new approach which does
not require any knowledge about low-level
implementation of the processor: only an RT-level
description is required. The method partly stems from
the ideas already introduced in [2], but thanks to the
adoption of an effective RT-level fault model [1], any
reference to the gate-level netlist is avoided. The
proposed method requires a limited amount of manual

work aimed at developing a library of macros, that are
able to excite all the functions of the processor and to
make the effects of possible faults observable. A macro
is required for every machine-level instruction; each
macro is composed of few instructions, aimed at
activating the target instruction with some generic
operand values representing the macro parameters, and
to propagate to an observable memory position the
results of its execution. The complexity of the work for
developing these macros and the required skills are
much lower than for the approaches based on functional
testing, such as [3]; in fact, our approach just requires
the development of one macro for every machine-level
instruction according to a simple pre-defined skeleton
for every group of instructions, and does not involve the
extraction of complex graphs describing the
relationships among resources, as in [3]. The final test
program is composed of a proper sequence of macros
taken from this library, each activated with proper
values for its parameters (i.e., the operands of the
composing instructions). This phase is accomplished by
resorting to a Genetic Algorithm which exploits an RT-
level Fault Simulator to evaluate the generated
solutions. Experimental results supporting the
effectiveness of the method are reported for a core of
the Intel 8051 microcontroller using a prototypical
implementation of our algorithm. A synthesizable
VHDL RT-level description of the microprocessor is
used. Final figures show that the test program generated
by the tool has a higher effectiveness (in terms of
attained gate-level fault coverage) than the one
generated by the gate-level test program generation
method introduced in [2], and that the required
computational effort is comparable between the two
approaches.

The paper is organized as follows. Section 2 outlines
some basic concepts about the adopted test generation
strategy as well as about the adopted RT-level fault
model. Section 3 presents an overview of the test
program generation approach we propose. Section 4
reports some preliminary experimental results assessing
the effectiveness of our approach, and Section 5 draws
some conclusions.

2. Test Strategy

Test sequence generation for microprocessors
necessarily requires the knowledge of the processor
instruction set and instruction format, since only correct
programs can internally perform meaningful operations.
A solution for this problem was proposed in [2] with the
usage of macros: a short sequence of instructions
aiming at creating a suitable framework for testing the

part of control unit and data-path affected by a given
instruction (or group of instructions).

The purpose of macros is to execute all the possible
instructions and to make observable the complete result
of each instruction, which also includes any flag that is
possibly affected by the instruction itself.

MOV AX, K1 ;load register AX with K1
MOV BX, K2 ;load register BX with K2
ADD AX, BX ;sum BX to AX
MOV RW, AX ;write AX to RW
MOV RW2, PSW ;write status register to RW

Figure 1: pseudo-code of the macro for the ADD
instruction.

As an example, Figure 1 reports the code (for sake of
readability we use a pseudo-assembly language) for the
macro concerning the addition instruction between
registers using K1 and K2 as parameters. RW and RW2
are two easily observable memory locations.

Macros are stored in a library. A test program is a
collection of macros. An optimization algorithm (see
Section 3) is proposed here to select the most suitable
ones from the library, and to define the values of their
parameters.

The effectiveness of test program generation for
microprocessors RT-level descriptions strongly depends
on the adopted RT-level fault model. We selected the
RT-Level single-bit stuck-at fault model [1] that shows a
good correlation with gate-level stuck-at faults.

An RT-level single-bit stuck-at fault is defined as a
single-bit stuck-at in the effect of an RT-level
assignment operation: when a fault is present, the
affected object (signal or variable target of an
assignment statement) loads the correct value, except
for one bit that remains stuck to 0 or 1. The effect
VHDL statement is the statement corresponding to the
fault. The faults are single and permanent: only one
fault is inserted at a time and the fault effect is present
during the whole simulation. Other assignments of the
same signal are assumed to be fault-free, since stuck-at
faults on the same signal but on different statements are
considered different.

addr <= (tail + reg1) mod 2**8;

00000100 00001001

00101101

Figure 2: RT-level single bit stuck-at fault example.

Figure 2 shows the example of a RT-level single bit
stuck-at fault. The fault affects the third bit of the
assignment operation, and modifies the result of the
expression, after it has been computed and before it is
assigned to the target signal.

Better correlation with the gate-level fault model is
obtained with the application of some Fault Collapsing
rules able to partially eliminate the RT-level faults that
do not correspond to any gate-level fault after synthesis.

Fault Collapsing rules are required because during
synthesis the RT-level VHDL description is optimized
in order to create an efficient gate-level design. The
optimization process analyzes the VHDL description
and simplifies all logic eliminating redundancies. As an
example, assignments of constant values to a signal or
variable are eliminated during optimization process.

More details about the Fault Collapsing rules can be
found in [1].

3. Test Program Generation

To perform Test Program Generation starting from
the analysis of the VHDL description, we must select
the best macros and the values of their parameters in
order to create a program able to detect the highest
number of faults.

The environment we propose, whose architecture is
shown in Figure 3, is composed of:
• Fault Manager, that analyzes the VHDL

description and creates a Fault List, according to
the RT-Level single-bit stuck-at fault model and
using the Fault Collapsing rules introduced above;

• a Core that, using a set of heuristics (i.e., greedy,
hill climber and evolutionary algorithms), selects
the most suitable macros and the values for their
parameters to create the test program;

• a Fault Injector that, interacting with the Fault
Simulator, injects the faults on the microprocessor
RT-level description and evaluates the
effectiveness of the macros created by the Core.

After generating the Fault List the faults are injected
during the simulation whenever the corresponding
statement is executed. All the faults corresponding to a
statement which has been executed at least once by the
test program are labeled as executed. Once a fault is
executed, it is also excited, if the corresponding bit
assumes a value in the fault-free system which is the
opposite of the stuck-at one. Finally, when a fault
produces at least one difference in the output behavior
of the processor (in terms of produced and observable
results) it is marked as detected.

As we work on a microcontroller description, we can
group faults in two classes:
• detectable independently from macro operands;
• detectable only using a specific set of macro

operands.
In this paper, the faults that belong to the first class

are called control-dependent faults and the ones
belonging to the second class are called data-dependent
faults. Based on our experience most of the control-
dependent faults are located in the Control Unit and in
the Instruction Decoder, where the systems decides how
to elaborate the instruction data. Instead, most of the
data-dependent faults are located in the data path (e.g.,
in the Arithmetic and Logical Unit).

ATPGS

Fault
Manager

VHDL
Description

Fault
List

Macro
Library

RT-Level
Simulator

Core

Fault
Injector

Test
Program

Figure 3: Test Program Generation Architecture.

3.1. Algorithm

The algorithm we propose is based on two phases:
• control-dependent fault detection phase
• data-dependent fault detection phase.

The detection of control-dependent faults is based on
the correct selection of the operative code and the
addressing mode. The detection of these faults depends
on which instructions (i.e., which macros) have been
executed by the microprocessor, independently from a
specific set of data to be used as macro parameters. For
this reason, a first phase is activated, which aims at
maximizing the number of detected control-depending
faults. The pseudo-code of this phase is reported in
Figure 4.

At each iteration, the procedure
select_best_macro simulates each macro in the
library with random operands. By means of this
procedure the VHDL statements executed during the
fault-free simulation of each macro are identified. The
macro M that maximizes the number of executed faults

is selected. The selected macro is then fault simulated
and, if at least one new fault is detected, it is added to
the final test program. The macro M is also marked as
used to avoid being selected again in this phase.

do
{ (M,O) = select_best_macro();
 F = compute_detected_faults(M,O);
 if(F is not empty)
 add M(O) to the test program;
 drop_faults(F);
 remove M from selectable_macros;
} while(stopping_condition is false)

Figure 4: Control-dependent fault detection phase
pseudo-code.

When all the macros of the library have been
selected and fault simulated, all the macros become
selectable again and the second phase starts.

The goal of the second phase is to detect data-
dependent faults. The coverage of these faults depends
on the arguments of each instruction (i.e., macro
operands) executed by the microprocessor. The pseudo-
code of this phase is reported in Figure 5.

do
{ M = select_best_macro();
 do
 { O = select_operands(M); /*hill climber*/
 F = compute_detected_faults(M, O);
 if(F is not empty)
 { add M(O) to the test program;
 drop_faults(F); }
 A = compute_activated_faults(M, O);
 do
 { Ft = select_fault(A);
 O = optimize_the_operands(M, Ft);
 if(Ft is detected)
 { add M(O) to the test program;
 fault_dropping(M, 0); }
 }while(A is not empty);
 }while(stopping_condition() == FALSE);
 remove M from selectable_macro;
}while(selectable_macro is not empty);

Figure 5: Data-dependent fault detection phase pseudo-
code.

As in the first phase, at each iteration the instructions
executed by each macro of the library are first identified
via fault-free simulation. The macro M, that maximizes
the number of executed faults is selected.

A hill-climbing algorithm is then activated, whose
goal is to find the values for the macro operands (O) that
maximize the number of faults excited by the macro. At
the beginning a set of random operands Omax is created
and the number of faults Nmax activated by the macro

M(Omax) is computed. At each iteration a new set of
operands Onew is created applying local transformations
(i.e., changing some bit values) to Omax. If the number
of faults Nnew activated by the macro M(Onew) is higher
than Nmax, Omax and Nmax are substituted by Onew and
Nnew, and a new iteration starts. The hill-climber runs
until the number of activated faults reaches a given
threshold, or the maximum number of iterations has
been reached.

For each fault Ft activated by the selected macro, a
Genetic Algorithm, detailed in next section, is then
executed, whose goal is to find the values for the macro
operands (O) that detect the target fault.

If Ft is detected, the macro is added to the final test
program and a fault dropping phase is activated;
otherwise, the fault is discarded, to avoid being
considered again with this macro.

When all the activated faults have been detected or
discarded, the algorithm returns to the hill-climber in
order to try to activate others faults.

The stopping condition is true when either the Fault
Coverage reaches a given threshold, or the maximum
number of iterations has been reached.

When the stopping condition is reached, the selected
macro is marked as used, all the faults discarded are
reinserted in the Fault List, and a new iteration starts.

The data-dependent faults detection phase ends
when either the Fault Coverage reaches a given
threshold, or all the macros of the library have been
selected.

3.2. Genetic Algorithm

Once a macro has been selected from the library, a
fault simulation is performed. For each fault excited by
the selected macro, a Genetic Algorithm (GA) is then
activated.

The goal of the GA is to identify the best values for
the parameters of the selected macro in order to detect
the target fault. The algorithm chooses the values for
immediate operands, and those to be written in the
registers or memory cells used by the target instruction.

The number of operands and their length (in bits)
depend on the macro. A standard steady-state Genetic
Algorithm is exploited, whose main characteristics are
summarized in the following:
• chromosomes are bit strings corresponding to the

concatenated operands; their length is function of the
macro;

• the mutation operator randomly selects a bit in the
chromosome, and complements it;

• the cross-over operator is the standard one-cut
crossover;

• chromosomes are selected using a linearized fitness
function and a roulette wheel mechanism.
The fitness function of a chromosome measures how

far the macro M, created with the chromosome
parameters O, is able to propagate the target fault Ft
effects. More precisely, it is the maximum number of
differences caused by the fault during the execution of
the macro.

∑
∈

=
objectsSvt objectbitsdifferentMAXFOMFitness)(_),,(

where different_bits counts the number of bits
having a different value in the fault-free and faulty
system for any VHDL objects (i.e., signal and variable).
The fitness function calculates the sum of differences at
every clock cycle of any execution of the macro and
takes the maximum.

The algorithm is stopped when the target fault is
detected or a steady state is reached, i.e., when a given
number of generations have elapsed without detecting
the target fault.

4. Experimental Results

In order to test the effectiveness of the proposed
technique we implemented it in a tool called Automatic
Test Program Generation System (ATPGS). ATPGS
amounts to about 11,000 lines of C code including an
in-house developed RT-Level Fault Simulator based on
a commercial VHDL Simulator (ModelSim 5.5a by
Mentor Graphics).

The system has been evaluated on a synthetizable
VHDL description of the Intel 8051 microcontroller,
containing the core system without peripherals, whose
main characteristics are summarized in Table 1.

Primary inputs 41
Primary outputs 45
VHDL lines 13,583
Processes 6
Procedures 29
RT-level faults 15,387
Gates 12,134
Flip flops 1,325
Gate-level faults 28,792

Table 1: 8051 description characteristics.

The Fault Simulator is able to simulate the entire
8051 while it executes the program stored in the
embedded ROM, injecting RT-level single bit stuck-at
faults in VHDL code. ATPGS is able to modify the

program stored in the 8051 ROM without recompiling
the entire VHDL code but interacting with the simulator
in order to modify at runtime the map of the ROM. A
library of 115 macros is exploited, each composed of a
number of instructions that ranges from 3 to 6.

The experiments have been performed on a Sun
Enterprise 250 running at 400 MHz and equipped with
2 GBytes of RAM.

Parameter Value

Number of individuals in the population 25
Number of new individuals at each generation 25

Maximum number of generations without
improvements 10

Crossover probability 0.7
Mutation probability 0.3

Table 2: Genetic Algorithm Parameters.

The values we used for the Genetic Algorithm
parameters are reported in Table 2.

For the pourpose of the experiments, the RT-level
ATPG was first run, with the goal of maximizing the
Fault Coverage based on the RT-level fault model and a
test program was obtained. For comparison porposes, a
second set of experiments was then performed: the RT-
level description of the 8051 was synthesized and fault
simulated at gate level. Using this description, we
compared the results obtained by the RT-level ATPG
(Table 3) with the Fault Coverage obtained by the gate-
level ATPG described in [2] (Table 4). The whole
procedure adopted for the experiments is outlined in
Figure 6.

RT-Level
ATPG

Macro
Library

Gate-Level
ATPG

NetlIst

Syntesis

Gate-Level
Fault Simulator

RT-Level
Fault Simulator

VHDL
Description

Gate
FC%

RT
FC%

Gate
FC%

Gate-Level
Fault Simulator

Figure 6: Experimental setup for comparison proposes.

The reported results show the proposed technique
provides Fault Coverage figures higher than the gate-
level ones, with a slight increase in the length of the
final test program (in terms of number of instructions).

The RT-level ATPG works on a Fault List created
analyzing the VHDL description and reduced by the
Fault Manager applying the Fault Collapsing rules.

RT-level faults [#] 15,387
Executed faults [#] 13,364
Excited faults [#] 12,263
Detected faults [#] 12,122
Test Program Instructions [#] 883
RT-level Fault Coverage [%] 78.78
Gate-level Fault Coverage [%] 89.47

Table 3: Test Program generation from RT-level
description.

Gate-level faults [#] 28,792
Detected faults [#] 25,759
Test Program Instructions [#] 624
Gate-level Fault Coverage [%] 85.19

Table 4: Test Program generation from gate-level
description.

In the 8051 Fault List above 40% of the faults are
eliminated by the usage of the rules; this happens
because many internal parameters, especially in the
Instruction Decoder and in the Control Unit, are
constants. Before the proposed method is evaluated in
terms of required computational effort, it must be first
emphasized that in the current implementation of the
tool the RT-level Fault Simulation is performed
exploiting a commercial VHDL simulator. The
interaction with it is necessarily loose, and therefore
slow. However, if the method were integrated in the
code of the simulator, a much higher efficiency would
be attained. For this reason, to evaluate the required
computational effort, we adopted as a parameter the
number of 8051 instructions simulated by ATPGS
during the test program generation phase. This number
is equal to about two million instructions, and roughly
corresponds to the number of instructions simulated by
the gate-level ATPG described in [2].

5. Conclusions

We introduced a new method for generating test
programs for microprocessors and microcontrollers.
The main novelty of the proposed approach lies in the
fact that it only relies on the RT-level description of the
device, and does not exploit any knowledge about
lower-level implementation details. The method
requires the availability of a small library of macros,

whose development should be performed by hand,
based on the mere knowledge of the instruction set. An
optimization algorithm is outlined for selecting the
minimal subset of macros, and their parameters. The
algorithm entirely works on the RT-level description,
exploiting a suitable RT-level fault model.

Experimental results gathered on the Intel 8051
microcontroller using a prototypical implementation of
the method show that the generated test program attains
higher fault coverage figures (in terms of gate-level
stuck-at faults) than the test program generated starting
from the gate-level description, with a comparable
computational effort, thus demonstrating the practical
viability of the approach.

6. References

[1] F. Corno, G. Cumani, M. Sonza Reorda, G.
Squillero, "An RT-level Fault Model with High
Gate Level Correlation", IEEE International High
Level Design Validation Workshop, 2000, pp. 3-8

[2] F. Corno, M. Sonza Reorda, G. Squillero, M.
Violante, "On the Test of Microprocessor IP
Cores", DATE, IEEE Design, Automation & Test
in Europe Conference, 2001, pp. 209-213

[3] S. Thatte, J. Abraham, “Test Generation for
Microprocessors”, IEEE Trans. on Computers,
Vol. C-29, June 1980, pp. 429-441

[4] L. Chen, S. Dey, “DEFUSE: A Deterministic
Functional Self-Test Methodology for
Processors”, IEEE VLSI Test Symposium, 2000,
pp. 255-262

[5] K. Batcher, C. Papachristou, “Instruction
Randomization Self Test For Processor Cores”,
IEEE VLSI Test Symposium, 1999, pp. 34-40

[6] C.A. Papachristou, F. Martin, M. Nourani,
“Microprocessor Based Testing for Core-Based
System on Chip”, ACM/IEEE Design Automation
Conf., 1999, pp. 586-591

[7] T.M. Niermann, W.-T. Cheng, J.H. Patel,
“PROOFS: A Fast, Memory-Efficient Sequential
Circuit Fault Simulator”, IEEE Trans. on
CAD/ICAS, Vol. 11, No. 2, February 1992, pp.
198-207

[8] J. Shen, J. Abraham, D. Baker, T. Hurson, M.
Kinkade, “Functional verification of the Equator
MAP1000 microprocessor”, 36th Design
Automation Conference, 1999, pp. 169 -174

[9] N. Utamaphethai, R.D. Blanton and J.P. Shen,
“Superscalar Processor Validation at the
Microarchitecture Level”, 12th IEEE International
Conference on VLSI Design, 1999, pp. 300-305

