
System and Framework for QA of Process Design Kits 
 
 

M. C. Scott M. O. Peralta J. D. Carothers 
Texas Instruments Texas Instruments University of Arizona 

Design Automation Group Device Modeling Lab ECE Dept 
6730 S. Tucson Blvd 6730 S. Tucson Blvd P.O. Box 210104 
Tucson, AZ 85716 Tucson, AZ 85716 Tucson, Arizona 

scott_matthew@ti.com peralta_mike@ti.com carothers@ece.arizona.edu 
 

 
 

Abstract 
 

In this paper, we evaluate the dependencies between 
tools, data and environment in process design kits, and 
present a framework for systematically analyzing the 
quality of the design tools and libraries through the 
design flow.  The framework consists of a regression 
engine which executes sets of tests in a distributed 
computing environment.  These tests vary from 
simulations to validate models and simulators, to tests on 
layout versus schematics, parasitics extraction accuracy, 
and ultimately, tests to validate the extracted circuit 
integrity against the ideal.  In particular, it is shown that 
test-chaining is required to obtain confidence in the 
simulation-to-silicon equivalence.  A secondary objective 
is to identify and quantify the peak-error injection points. 
Finally, future work is outlined to extend the framework 
to automate entire design flows and provide capability for 
inter-tool constraint satisfaction and design optimization. 
 
1. Introduction 
 

The process of electronic design depends critically on 
the quality of electronic design automation tools and the 
integrity of their underlying libraries and environments.   
Conceivably, an error in any stage of the design process 
may propagate and expand further down the design flow 
leading to a critical fault.  The existence and nature of 
such errors is hidden to the designer, and thus the designer 
must work blindly on a basis of confidence in the tools 
and libraries.  Idealistically, the design team should need 
only consider the process-temperature-voltage corners and 
signal noise in defining the operating envelop of their 
design.   

In this age of increasing complexity, shrinking 
geometries, higher frequencies, lower power and 
shortening market entry opportunities, it is already 
prohibitive to obtain design closure on signal integrity 
issues, not to mention contending with design kit tool and 
library errors. But, these two concepts: Design Kit 
Integrity and Design Complexity go hand-in-hand.  
Increasing demands on design performance and increasing 

susceptibility to signal integrity issues drive the design kit 
to increasing complexity. Likewise, the design kit 
complexity leads to exponential complexity in design 
susceptibility to kit errors. 

In this paper, we present a systematic means of 
qualifying various stages and components of a design kit. 
Various cross-stage, cross-tool tests-chains propagate 
confidence. We are also looking to quantify the peak-
errors of various stages and devices, and to identify 
opportunities for accuracy and efficiency improvement in 
both the design kit development process and in the design 
process itself. The paper is organized as follows. 
 In section 2 we evaluate the dependencies between 
tools, data and environment in a process design kit. The 
concerns of the design process and its error injection 
points must be considered when developing simulation 
and extraction tools in order to neither under or over-
design the tools. Eventually, this knowledge will improve 
corners definitions and Monte-Carlo simulations. 
 In section 3, a framework for systematically validating 
the quality of the design tools and libraries through the 
design flow is presented. A tool "RegMan" (Regression 
Manager), is introduced which encapsulates the regression 
systems for validation of verification tools through the 
management and evaluation of jobs over LSF [3].  
 In section 4, Front-end device models and simulators, 
the methods for cross-checking models, schematics and 
simulation are presented.  The RegMan tool is extended to 
run regression sets of the defined simulations and 
evaluations. 
 The Fifth section delves into the complexities of 
validation of Physical Verification tools such as DRC and 
LVS.  The regression system was originally designed for 
this role as there are numerous tests to perform, and the 
evolutionary nature of the kits demands frequent re-runs 
of the test suites. 
 Section 6 discusses the use of the RegMan tool to 
execute various evaluations of a set of parastics 
extractions of layout structures.  Comparisons of the 
resulting extracted netlists of a large suite of layout 
structures is made with respect to the industry standard 3D 
simulator Raphael  [6] from Synopsys. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7695-1881-8/03 $17.00  2003 IEEE 



 Section 7 wraps up the Physical Verification validation 
with a system for comparing simulations of extracted 
netlists to the ideal schematic simulation.  The stage is 
motivated by the necessity to bind the layout to the 
original simulation - a more aggressive LVS. 
 In conclusion, sections 8 and 9 present a review of the 
merits of this system, and is possible extensions. As the 
tool has been expanded to exercise all stages of the analog 
design flow, it presents itself as a useful tool to designer 
and layout folk alike to run and manage the execution of 
large sets of jobs. For example, the tool may be extended 
to run a design through multiple Monte-Carlo simulations 
and corners as generated by extraction of minimum, 
typical and maximum parasitics. 
 
2. Design Flows, Design Kits and Design Complexity 
 

Entering the new millennium the semiconductor 
industry has found itself the victim of its own phenomenal 
success.  The fierce competition that has driven down 
costs  while simultaneously increasing performance 
metrics across the board has fostered an expectation and 
demand for continued progress.  This progress has been 
found mostly in shrinking feature sizes and improved 
fabrication technologies.  But, this path of improvement 
brings with it costs, complexities and side effects that 
must be addressed by advances in EDA tools and their 
underlying algorithms and usage models.    

These complexities can roughly be partitioned through 
the design flow vertically into digital and analog centric. 
A major motivation of this project is addressing the 
various incarnations of signal integrity in many design 
types and attempting to evaluate, categorize and link these 
requirements in order to provide feasible solutions given 
the tools available. 

 

 
Fig 1.  A 'simplified' design flow from Old days. 

  
The design flow we evaluate principally consists of five 
stages:  simulation,  layout,  layout verification, 

extraction, and back-annotated re-simulation.  There are 
innumerable ways this flow may be constructed and 
extended.  Figure 1 represents one implementation. There 
are multiple spice simulators, multiple layout tools, 
multiple DRC, LVS, and LPE tools. The device and cell 
libraries must work in all of them.  Thus, the design kit 
development process is a bit involved.  Many concerns 
must be taken into consideration and made to fit with the 
total kit objective. This leads to multiple re-works and 
gradual improvement.  Given the interdependencies 
between libraries and tools, changes in any part may 
create faults propagated to others.  A testing and sign-off 
quagmire results.  The design kit complexity is directly 
driven by the design complexity and its need for multiple 
tools and flow, and their interdependencies. 
 

DIGITAL COMPLEXITY 
In the digital realm, design complexities are being 

dominated by interconnect parasitics and their signal-
integrity degradation effects which introduce non-
linearity’s into the numerical optimization solutions 
provided by synthesis, placement and routing tools. The 
increasing dominance of variable interconnect effects over 
the static cell delays (gate delays) effectively diverges the 
synthesized timing estimate from the eventual physical.  
Numerical methods therefore become less viable and the 
designer is forced into a non-convergent state of 
iterations.  The standard solution is to back-end layout 
parasitics extraction (LPE) and transistor level simulation. 
But, given the exponential increase in device counts, and 
its concomitant exponentially increasing state space, 
resorting to analog level analysis is often doomed to 
intractability.  Solutions must be found that keep the 
complexity order of analysis linear with respect to device 
count, while complimentarily throwing more compute 
power behind the analysis to keep it tractable.  This 
project addresses this complexity in providing a means for 
evaluating and validating various LPE and SI tools. 
 
ANALOG COMPLEXITY 

In the analog realm, the push towards higher 
frequencies and finer signal resolutions has demanded 
similar improvements in simulation and signal quality, 
such as signal matching. But, analog has a much more 
diverse bag of tricks than digital, which must be 
meticulously extracted to enable the analog formulae to 
work.  Usually analog is not limited by the size 
complexity of digital, but rather the specification of 
constraints and the ability to optimize on those constraints 
in silicon.  Critical to analog design is the accuracy of 
models and simulation, and the accounting for parasitic 
effects on sensitive lines in the layout.  Knowledge of the 
accuracies of models and knowledge of the accuracy of 
parasitics extraction can help immensely in determining 



the degree of simulation coverage necessary to ensure 
performance. 
 
DESIGN FLOW ERROR PROPAGATION 

The presented expansion in complexity, speed, size, 
range and SI sensitivity of circuits is a problem that every 
engineer is aware of.  The increases in all of these areas 
are plagued with inter-dependencies which are connected 
through the signal integrity realm. Each engineer is also 
acutely aware that there is a vast matrix of economic 
trade-offs in optimization of various parts, and likewise 
that there exists a chain of error introductions and 
variances within which they must exercise their design to 
ensure an envelop of operation during its expected 
lifetime. A short list of some of these concerns are 
tabulated in (Table 1).  The typical engineer is not, 
however, empowered with the information or tools to 
globally account for all of these factors in their design 
planning and analysis.  They can only set certain 
parametric goals and then hope that through use of various 
point tools and many iterations through the design flow 
they might converge to an acceptable solution with 
reasonable hope that all likely faults have been found.  
This work is also done with the assumption that the 
underlying design environment is correct and not 
changing, thereby allowing for a controlled-experiment 
environment.  This is usually not the case.  Importantly, 
the design engineer is not usually privy to the error levels 
of different tools, libraries and methods.  A means is not 
available for management and satisfaction of design 
constraints across tools and flows.  This must be provided 
by rigorous analysis of each stage, and development of an 
inter-tool constraint management utility.  The system we 
present takes the first step in this direction. 
 

Table 1: Short list of Error Injection Points 
Device Parameters Errors 
 The choice of device parameters to isolate and 
characterize is usually limited.  Most device modeling 
shops do not characterize for all operating regions  
recognized by the target simulation equations, instead 
opting to default to educated guesses.  Probe noise 
notwithstanding. 
Simulation Models, Equations 
 Simulation accuracy can range from the 
quantum-field effects, through standard spice equations, 
on up to the table lookup methods of analog accelerators. 
Simulation Program Accuracy 
 Numerical Resolution, Time-Step Resolution 
 Matrix Size 
Monte-Carlo Coverage:   
 Realistic bounds, Statistical Relevance 
Process Corners Analysis 
 May not be realistic, may not even be consistent 

Statistical Simulations 
Substrate Coupling Effects, ground-bounce 
Schematic Entry 
 Device Parameters Specification 
 Simulation Parameters Specification 
Pcell Device Layout Generation: Device permutations 
Place and Route:  Interconnect noise, delays 
Design Rule Checks 
 Percentage of Rules checked 
 Types of Rules checked 
Layout Parameter Extraction 
 2D, 2 ½ D, 3D, Field Solver, FEM 
 RLC Extraction vs RC vs C 
 Intra-Device Parasitics Geometries Extraction 
LPE Re-Simulation 
 High-Frequency IR Drop 
 Node Compression, Reduction Methods 
Mask Generation 
 Optical Proximity Corrections, PSM 
Fabrication  
 Deposition over/under etch 
Package Effects, Thermal Effects, Reliability 
 Bond Pad RLC 
 Substrate Noise 
 

 
3. A Regression Manager 
 

Regman (Regression Manager) is a graphical tool 
control framework designed to facilitate the distributed 
processing (LSF) automation of simulation, physical 
verification and parasitic extraction runs.  It is generalized 
to work on any design kit and with any set of physical 
verification rules.  It takes as input a comma separated 
vector formatted file describing test cells and their mode 
of pass/fail expectation.  Outputs for physical verification 
validation (DRC, LVS) includes various reports on OK or 
NOK (not-ok) tests, matches, mismatches and failed runs.  
For the parasitics extraction, reports on accuracy of the 
extract tool versus an industry standard, TMA's Raphael, 
are reported].  On the simulation regression tests, results 
are compared to tables of pre-calculated expectation and 
summary reports are generated. 

The tool is written in Perl/Tk and consists of 11K+ 
lines of code.  The interface (Figure 2) enables the user to 
configure the environment, choose processes, choose 
various stages (LVS, DRC, RCX, SIM etc) to run on the 
cells list, choose subsets of cells to run, view the setup 
files for any cell, view log files and results for any cell.  
The list of basic options and actions available exceeds 160 
and is beyond the scope of this report.  Some of the side- 
advantages to RegMan include the creation of a snapshot 
of the environment for each cell run. This snapshot 
enables detection of changes in the environment which 



may render previous runs invalid.  It has the side-
advantage of enabling users to detect if the design-kit, 
schematic, layout, models or verification rules have 
changed. 

 
 

 
Figure. 2  RegMan Interface  
 

 
4. Front-End Device Models and Simulators 
 

The accuracy of all tools and libraries are never any 
better than the accuracy of the device models.  It has been 
found that rigorous measurement and characterization of 
the test chip devices, and cursory simulation tests are 
insufficient to guarantee accurate simulation.   Tests in 
this project have revealed errors in the model parameters, 
in the netlists generated by the symbol and Pcell libraries, 
and in the simulators themselves.  This section delves into 
the process of validating the models and simulators, and 
their consistency in more advanced techniques such as 
Monte-Carlo and Corners simulation.  These tests are 
provided by the Modeling side, and are automated by 
RegMan through parameterized calls to a generalize 
Ocean script [4]. The Ocean script has built-in evaluators 
for each type of test, and thus is highly extensible to real 
design analysis. 

The device models/simulation tests consist of the 
follow four classes. 

 
I. Measurement vs. Simulation 

 Given a database of measured parameters, such as the 
models themselves, simulations are run on isolated 

devices and results compared to measured. The test 
fixtures include: DC I-V checks, capacitance over 
frequency, MOSFET capacitance checks, MOSFET 
transconductance checks, 1/f noise checks.  Each test is 
repeated in each stage. Some tests are elaborated below. 
Figure 3 depicts the BJT I-V and MOSFET Cbg checks. 

II. Schematic vs. Simulation 
This type of quality assessment mostly applies to 

Resistors and Capacitors. For resistors a DC voltage 
source is applied across the resistor and the resulting 
simulated DC current is recorded. For capacitors, an AC 
voltage source of 1mv (rms), denoted  vac , is applied 
across the capacitor and the resulting simulated AC 
current, denoted iac  is recorded and used to calculated the 
Capacitance with the equation : C  =  ( iac / vac ) / (2π 
f).  In the current-voltage checks for Diodes, BJTs, and 
MOSFETs we merely bias the devices at typical design 
points and simulate what the currents are through the 
diode, the collector, or the drain terminals (or other 
terminals as desired). These values are then recorded and 
self-consistency checks are performed such as Simulator 
vs. Simulator, Measured vs. Simulated, etc. 

III. Simulator vs. Simulator 
 In  Figure 4, the results of a SimulatorX-Vs.-
SimulatorY run of equivalent models is depicted. Some 
differences were expected, the others were quickly 
identified and remedied.  The Sim-vs.-Sim also uses an 
Ocean script to compare signals.  A simple rms(s1 – s2) is 
sufficient. 

IV. Corners min, max vs. nominal, Monte-Carlo 
 Corners are checked against the nominal to make sure 
the low corner is less in value than the nominal and the 
high corner is greater in value than the nominal. Also low 
and high corners can be checked against the µ + 3σ values 
calculated from Monte-Carlo simulation runs. This can be 
done for DC current-voltage, AC capacitance-voltage, or 
any other type of device output characteristic including 
transient responses. 

 
Figure 3.   BJT I-V Check         MOSFET Cbg Check 



 
 
Figure 4.  Two simulators results on equivalent circuits 

identified small differences in rise/fall time of MOSFETS, 
significant differences in diode simulation. 
 
5. Physical Verification Tools and Flows Validation 
 

Physical verification (PV) includes the Design Rules 
Checks (DRC) , Layout Vs. Schematics (LVS), and the 
follow on Layout Parasitics Extraction (LPE).  The PV 
process is highly prone to error due to the almost 
superstitious ritual of transfer of a design from schematic 
to layout.   

The DRC rules are generated from a long list of 
historical best practices and the subjective impressions of 
the Fabrication managers in terms of yield impact and 
reliability.  A typical DRC rule deck may contain 
hundreds of rules, implemented in between 4000 and 6000 
lines of code.  According to the layout managers, these 
rules may implement only 2/3 of the actual constraints of 
the process. The rules are made to be as general as 
possible to avoid false errors and allow for layout 
creativity where warranted.  Given that most rules apply to 
many permutations of geometry orientations and relations, 
the number of checks needed to test just the minimum and 
maximum boundary conditions of rules in intractable.  In 
this respect, it becomes imperative to automate the 
process of rule-deck validation and accelerate through 
distributed processing.  One can get by with the traditional 
pass/fail quilt, but the nature of the layers creating through 
Boolean operations within the rule decks leaves too much 
room for error whenever a rule is modified or added. 

LVS rules are developed to ensure equivalence of the 
netlists generated from the schematics and layouts.  
Primarily, this entails checks of the isomorphic 
equivalence of the netlist graphs (or hookup), the device 
types and device sizes.  Here there is quite a bit of leeway 
given to the actual construction of devices.  For example, 
a MOSFET with W=x and L=y may be generated single-
fingered, multi-fingered, inter-digitated with another 
device and surrounded by dummy poly.  There are quite a 

few esoteric practices allowed in the translation from 
schematics to layout, including use of parasitic devices in 
the schematics, multiple-potential substrate regions for 
analog and digital sections, and smashing of parallel 
devices in either the schematic or layout. The lists of 
conceptual tests exceeds 200. The number of permutations 
of device constructions is in the hundreds. The list of 
Token/strings pairs by which RegMan evaluates the 
reports is about 100.  Given that at least one relevant 
component in the kit is likely to change daily during kit 
development, this tool is seen as essential to the 
synchronization of parallel kit development. 
 
6. Parasitics Extraction Tool Validation 
 

To reduce the errors input from the physical design, 
Layout Parasitics Extraction (LPE) is employed to extract 
and back-annotate apparent final physical factors back 
into the design simulation – whereupon the design is re-
simulated to determine if specs are still met. The effects 
induced by parasitics are lumped under the moniker 
'Signal Integrity', or SI. The research, evaluation, 
development and implementation of LPE and signal 
integrity SI solutions usually falls into the domain of the 
Electronic Design Automation (EDA).  As SI is the one 
facet of EDA which is coupled to all stages of design, it 
presents an added complexity of requiring high integration 
between tools and means of information sharing between 
various levels of tools to allow for best optimality at 
various levels.  Thus, the solution that EDA provides for 
parasitics extraction and signal integrity must 
simultaneously be:  

 
• Accurate: The analysis must be guarantee timing 

and SI simulations represent the real product 
• Robust: The solution must be able to 

accommodate varying needs, resolutions 
• Feasible: It must be simulatable within 

reasonable time and compute resources. 
• Usable: The tools and methodologies must be 

integrated and accessible to the infrequent user. 
 
The RegMan system facilitates the analysis of 

extraction tools to determine their accuracy.  Likewise, it 
validates the 'rule-set' provided to the tool which defines 
the process technology and layers to be extracted.  This 
EDA-team generated data is prone to error.  Only through 
rigorous testing can we be certain that no error slipped 
through.  To validate an extraction tool, comparisons are 
made against the industry standard TMA Raphael tool. 
The process consists of: 

 
• Define the techfile for Raphael and LPE tool 
• Raphael regresses over 11 primary topologies 



o Includes 35 permutations each on layers 
o Each layer permutes Width, Spacing, L 

• Generate equivalent layout structures with Skill 
• RegMan runs LVS and LPE over all structures 
• RegMan parses the Raphael capacitance database 
• RegMan parses the LPE extracted spice files 
• RegMan compares and analyzes the results 

 
The final report consists of the errors for each 

structure, averages for each primary layer and layer-pairs, 
and each class of W, S, L permutations.   Said report 
facilitates identification of possible aberrations, and 
provides for determination of std. deviation and variance. 
 
7. Validation of Extraction Circuits 
 

The LPE generated netlist needs to be validated against 
the original (or ideal) schematic netlist to guarantee the 
equivalence of the layed-out intentional devices to their 
originators in the schematic.  A schematic is created which 
contains instances of each of the model-symbol 
combinations, each being driven independently by some 
appropriate stimuli. A layout is then created equivalent to 
the schematic and then extracted with the LPE tool.  The 
extracted layout is paired down to include only the 
intentional devices represented by the schematic. This is 
done by forcing the extractor to ignore device internal 
parasitics such as MOSFET AD, AD, PD, PS, and by 
stripping out the interconnect parasitics.  The original 
schematic and layout are then simulated with the same 
stimuli driving each device.  The resultant signals are 
compared through a simple difference v(s1) - v(s2).  

 

 
Figure 5.  Extracted netlist vs. Ideal Schematic.  
 
 Since the signals should be identical, we should see 

only flat-lines on the waveform tool.  Any fluctuation 
represents some difference in the device netlists between 
the original and the extracted.  The script takes ∀  device 
pairs : v=rms(v(s1) - v(s2)), and reports and signal with 
rms > .00001 in a file and waveform such that the 
RegMan tool can automate and evaluate the process. In 
(Figure 5) the seft side represents MOSFETS, right side 

indicates Bipolar devices. The layout side still includes 
parasitics here.   

 
 
8. Conclusion and Analysis 
 
 The discussed systems and regression manager 
framework have already proven invaluable to the 
development and validation of design kits.  Many, 
heretofore undetectable, errors have been discovered and 
remedied.  Accordingly, the tool has accelerated the 
development process by making comprehensive tests 
feasible with each step of tool or library modification.  
This in turn allows more aggressive kit development to 
implement more 'bells and whistles' with less trepidation 
of the likely error introduction. Better designs will ensue. 
Table 2 provides estimates on the benefits of this system.  
 
Table 2.  Estimated QA time: Manual vs. RegMan. 
Test Stage Manual 

Time 
RegMan 
Time 

Estimate 
# Tests 

Repeats 
Estimate 

Mod / Sim 6 wks 30 min 1000+ 12+ 
DRC 4 wks 12 hrs 1000+ 20+ 
LVS 2 wks 2 hrs 200+ 20+ 
LPE 4 mo. 24 hrs 4000+ 5+ 
LPE / Sim 1 day 1 hrs 20+ 5+ 
 
 Finally, A key factor in this system is the chaining, or 
overlap, of tests between tools and libraries.  This 
propagation of 'confidence' can also enable visualization 
of error propagation and determination of peak-error 
injection points.  Knowledge of peak and average errors 
improves design of tests for corners, MC and sensitivity. 
 
References 
 
 [1]  P. Chen, D. A. Kirkpatrick, and K. Keutzer, "Scripting for 
EDA Tools: A Case Study", ISQED, IEEE, 2001, pp. 87 - 93. 
 
[2] M. A. Kraznicki, R Phelps, J R. Hellums, M McClung, R. A. 
Rutenbar, L R. Carley, "ASF: a Practical Simulation-Based 
Methodology for the Synthesis of Custom Analog Circuits", 
ICCAD, 2001, pp. 350-357 
 
[3] Load Sharing Facility Users Guide, Platform Computing, 
http://www.platform.com/ 
 
[4] Ocean Users Guide, Cadence Design Systems, San Jose CA. 
 
[5] Penberthy, J. S. and Weld, D., ``UCPOP: A Sound, 
Complete, Partial-Order Planner for ADL,'' Third International 
Conference on Knowledge Representation and Reasoning  (KR-
92), Cambridge, MA, October 1992. 
 
[6] Raphael Interconnect Analysis Program,  Reference Manaul, 
Synopsys, July 2000 


	Main Page
	ISQED'03
	Front Matter
	Table of Contents
	Author Index




