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Abstract

In this paper, we propose a new model-order reduction
technique for linear dynamic systems. The idea behind this
technique is to transform the dynamic system function from
thes-domain into thez-domain via the bilinear transforma-
tion, then use Prony’s [1, 2] or Shank’s [3] least-squares
approximation methods instead of the commonly employed
Pad́e approximation method, and finally transform the re-
duced system back into thes-domain using the inverse bi-
linear transformation. Simulation results for large practi-
cal systems show that this technique based on Prony’s and
Shank’s methods give much higher accuracy than the tradi-
tional Pad́e method, and result in lower-order approxima-
tions with negligible increase in simulation time.

1 Introduction

The computation of equivalent linear system models of
large linear dynamic systems is a topic of considerable prac-
tical interest. This interest is motivated by the reduced com-
plexity obtained by reducing the large linear subnetwork in
a linear (or nonlinear) network. Ideally, linear analysis on
these linear subnetworks is performed by first computing a
state-space model, followed by the application of a suitable
analysis method. However, the applicability of this method
is limited since typical dynamic systems are represented by
very large state matrices that require specialized large-scale
eigen-analysis programs and computer resources. To avoid
this practical limitation, model-order reduction methods are
widely used in the solution of these systems. The basic idea
behind model-order reduction is to replace the original sys-
tem equations for the large linear network by an equivalent
system with a much smaller state-space dimension such that
the identified reduced-order model transfer function charac-
teristics must approximate those of the full-order model.

In general, from approximation theory, there are four ma-
jor categories of approximation methods that one can use de-
pending on the overall accuracy, efficiency, and reliability
desired [4]. The min-max methods rely on nonlinear opti-
mization techniques which make them inefficient but highly

accurate. Series expansion based methods are computation-
ally efficient but may provide inaccurate results. Interpola-
tion methods, on the other hand, are computationally effi-
cient methods which agree exactly with the original system
on sample points but, in general, give unpredictable accu-
racy at other points [5]. Finally, least-squares methods com-
bine the accuracy feature of the min-max methods and the
efficiency of the series expansion and interpolation methods
by controlling the error between the original system func-
tion and the approximate function over all points and not just
where the maximum error occurs (min-max) or at the sample
data points (series expansion and interpolation).

The s-domainPad́e approximation [6] is a combination
of series expansion and interpolation methods that has been
used in the asymptotic waveform evaluation (AWE) [7] al-
gorithm in order to extract the dominant poles and residues
of the system. Other Padé techniques based on Krylov-
subspace methods — such as Padé via Lanczos (PVL) [8]
and Arnoldi-based model-order reduction [9, 10] — provide
efficientestimation of the original system response. How-
ever, theaccuracyof these methods is limited by the or-
der of the Pad́e approximation (i.e. the number of moments
matched). The problem with the Padé approximation is that
it equates the approximating transfer function to the origi-
nal system function to obtain as many equations as there are
unknowns [5,6]. This equating technique is the major limita-
tion in the Pad́e approximation because the resulting transfer
function must contain a large number of poles and zeros in
order for it to be sufficiently close to the original system.

In this paper, we propose a novel model-order reduction
technique for obtaining a reduced-order transfer function ap-
proximation. The technique is based on three steps. First,
the original large system transfer function is transformed
from thes-domain into thez-domain via the bilinear trans-
formation. It is well known that the bilinear transforma-
tion always preserves system stability, and can always be
made to preserve the system frequency response character-
istics for a specified frequency range [2, 11, 12]. In addi-
tion, working in thez-domain results in better approxima-
tions than pures-domain approaches since the parameterα
in the bilinear transformation places more emphasis on the
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frequency range of interest. Second, we propose to apply
Prony’s [1] or Shank’s [3] least-squares approximation meth-
ods to reduce the order of thetransformedsystem function.
Third, the reduced-order system is transformed back to the
s-domain using the inverse bilinear transformation. We show
that Prony’s and Shank’s approximation methods perform
significantly better than the traditional Padé approximation
method. Furthermore, the derivation of this model-order re-
duction technique enables the different Krylov-subspace al-
gorithms [8–10], traditionally applied for the Padé approxi-
mation, to be used with Prony’s and Shank’s methods to ob-
tain efficient and accurate moment approximations.

The remainder of the paper is organized as follows. In
Section 2, we describe thes-to-z system transformation to-
gether with moment computation techniques. We also de-
scribe the connection of the different Krylov-subspace algo-
rithms in this new representation. In Section 3, we explain
Prony’s and Shank’s least-squares approximation methods
and compare them to the traditional Padé approximation. We
corroborate the derived results in Section 4 with simulations
of large practical systems and show the accuracy of our tech-
nique. Finally, Section 5 provides some concluding remarks.

2 s-to-z System Transformation

In this section, we briefly describe the bilinear transfor-
mation and then apply this transformation to represent a lin-
ear, time-invariant (LTI) system in thez-domain. We then
describe three methods for computing the moments of the
z-domain system function.

2.1 The bilinear transformation

The bilinear transformation is a linear fractional transfor-
mation given byβ : C−→ C defined by

β : s 7→ z=
α+s
α−s

, (1)

whereα ∈ R is a constant equal to twice the sampling rate.
This mapping has the property that it transforms thejΩ-axis
in thes-plane onto the unit circle (z= ejω) in thez-plane [11].
Moreover, the left-halfs-plane (Re(s) < 0) is mapped in-
side the unit circle in thez-plane and the right-halfs-plane
(Im(s) > 0) is mapped outside the unit circle in thez-plane,
thus preserving system stability. The inverse bilinear trans-
formationβ−1 is given byβ(−α/z).

The main advantage of using the bilinear transformation
over other transformations such as the impulse- and step-
invariant transformations, is that it preserves the magnitude
characteristics of the transfer function. This follows from
the fact that the parameterα provides a one degree of free-
dom that can be used to make the frequency response charac-
teristics of thez-domain system functionHd(z) approximate
those of thes-domain system functionHc(s) [12].

2.2 z-domain system representation
An LTI system of equations can be used to model a dy-

namic system as follows:

Cẋ(t)+Gx(t)+bu(t) = 0,

y(t) = lTx(t),
(2)

wherex∈Rn represents the state variables of the system,y∈
Rp are thep outputs of the system defined usingl ∈ Rn×p,
G andC ∈ Rn×n, andb∈ Rn×m represents excitations from
m independent sources. It can be shown that the resulting
system transfer function of (2) is given by

Hc(s) =−lT(G+sC)−1b. (3)

Applying the bilinear transformation in (1) to (3) for an ap-
propriately chosenα to preserve the magnitude characteris-
tics, thez-domain transfer function becomes

Hd(z) , Hc(s)|s=α 1−z−1

1+z−1

= lT(1+z−1)(I −z−1A)−1r, (4)

whereA =−(G+αC)−1(G−αC), andr =−(G+αC)−1b.
In order to invert the term(I − z−1A) in (4), we need to di-
agonalizeA, which is numerically expensive and impractical
to perform for typical large dynamic systems. Instead, one
resorts to using Neumann’s expansion [13]:

(I −z−1A)−1 = I +z−1A+z−2A2 + · · · . (5)

Substituting (5) in (4), thez-domain transfer functionHd(z)
becomes

Hd(z) = (1+z−1)
∞

∑
i=0

mc,iz
−i , (6)

where mc,i = lTAir are thes-domain momentsof Hc(s).
Hd(z) can also be written in a more convenient form by
defining thez-domain moments

md,i = mc,i−1 +mc,i , (7)

as

Hd(z) =
∞

∑
i=0

md,iz
−i . (8)

2.3 Computing the moments
It is usually sufficient to compute the firstw+1 moments

in (6) or (8), wherew depends on the choice of the approx-
imation algorithm used in the second step of the proposed
model-reduction technique. In AWE [7], the momentsmc,i

are explicitly computed by first recursively solving the linear
system of equations

(G+αC)ui =−Cui−1, i = 1,2, · · · ,w,

for ui with u0 = r, and thenmc,i = lTui . However, due to
finite machine precision, this approach is numerically ill-
conditioned; see [8]. A better alternative is to use Krylov-
subspace methods which enable a more stable computation



of the moments. For instance, in the Lanczos algorithm,
these moments are obtained by

mc,i = lT reT
1 T i

we1, i = 0,1, · · · ,w,

wheree1 is the first unit vector inRw and Tw is a tridiag-
onal matrix [8]. Similarly, in the Arnoldi process themc,i

moments are given by

mc,i = ‖r‖2lTVwH i
we1, i = 0,1, · · · ,w,

whereVw ∈ Rn×w, andHw is aw×w upper Hessenberg ma-
trix whose scaler entries are generated by the Arnoldi algo-
rithm [14]. Finally, thez-domain moments are easily com-
puted from themc,i moments using (7).

3 Reduced-Order Modeling
The model-order reduction problem can now be stated as

follows: Given thetransformedz-domain system response
as described by equation (8), find an approximatez-domain
transfer function of the form

H̃d(z) =
∑q−1

k=0 bkz−k

1+∑q
k=1akz−k

≡
w

∑
i=0

m̃d,iz
−i , (9)

whose responsẽmd,i accurately approximate the response
md,i of Hd(z). Once this approximate system is identified, it
is transformed back into thes-domain using the inverse bilin-
ear transformationβ−1 in order to obtain the reduced-order
s-domain transfer function.

The rational representation of the approximate transfer
function given in equation (9) has2q unknowns, namely,
the coefficients{ak}q

k=1 and {bk}q−1
k=0. Existing techniques

employ the Pad́e approximation to determine these coeffi-
cients [7–9]. The drawback of this technique is that it equates
thew+1 terms ofH̃d(z) of (9) to the firstw+1 moments of
Hd(z) in (8) to get as many equations as there are unknowns.
This in turn requires a large-order rational approximate func-
tion to achieve acceptable accuracy. To solve this problem,
we propose using least-squares approximation methods, such
as Prony’s or Shank’s methods, which determine the mo-
ments ofH̃d(z) over a large number of moments ofHd(z)
but using a low-order rational approximate function.

3.1 Pad́e approximation
We will first briefly present thez-domain Pad́e approxima-

tion which is similar to the commonly useds-domain Pad́e
approximation [7–9] in order to compare with our proposed
methods. In this approximation, the parameterw is set to
2q− 1 and the responses̃md,i and md,i of the two transfer
functions are equated for0≤ i ≤ 2q−1, in order to obtain
as many equations as there are unknowns. This results in the
following system of linear equations

md,i =





−
q

∑
k=1

akmd,i−k +bi , 0≤ i ≤ q−1, (10a)

−
q

∑
k=1

akmd,i−k, q≤ i ≤ 2q−1, (10b)

where it is assumed that moments with negative indices are
zero. The coefficients{ak} are first obtained by solvingq
equations in (10b), which are then used to determine the
coefficients{bk} in (10a). Thus, the Padé approximation
method results in a perfect match between them̃d,i and the
original md,i for the first2q values of the impulse response.
However, fori ≥ 2q there is no bound on the error between
the two responses. This is the major limitation with the
Pad́e approximation, and hence the resulting transfer func-
tion must contain a large number of poles and zeros in or-
der for its impulse response to be sufficiently close to the
response of the original transfer function. Furthermore, the
Pad́e approximation results in a perfect match with the orig-
inal momentsmd,i only when the original system is rational
and we have prior knowledge of its number of poles and ze-
ros. However, this is not usually the case since we only know
the impulse response data as given in (6).

3.2 Prony’s method
The main problem with the Padé approximation is that it

setsw= 2q−1 in order to get as many equations as there are
unknowns. In Prony’s least-squares method [1, 2], this con-
straint is removed andw can be a large number (À 2q−1)
without necessarily resulting in a large-order rational func-
tion. This method tries to minimize the linear least-squares
error between the two responses

ε =
w

∑
i=0
|md,i − m̃d,i |2, (11)

with respect to the coefficients{ak} of the approximate trans-
fer function H̃d(z). This linear least-squares optimization
minimizes the linear prediction error, and not the original mi-
nus approximate squared response error. The idea behind the
linear prediction part is that instead of equatingm̃d,i = md,i

for all i, recursively computẽmd,i using a linear predictor de-
fined by the following set of linear equations

m̃d,i =





−
q

∑
k=1

akmd,i−k +bi , 0≤ i ≤ q−1, (12a)

−
q

∑
k=1

akmd,i−k, q≤ i ≤ w. (12b)

The coefficients{ak} are then chosen so as to minimize the
squared-prediction-error defined by

ε =
w

∑
i=q

∣∣∣∣∣md,i +
q

∑
k=1

akmd,i−k

∣∣∣∣∣
2

, l = 1, · · · ,q.

Setting∂ε/∂al to zero, results in the following set of linear
equations

q

∑
k=1

ak

w

∑
i=q

md,i−kmd,i−l =−
w

∑
i=q

md,imd,i−l , l = 1, · · · ,q.

This set of equations can equivalently be written as
q

∑
k=1

akYk,l =−yl , l = 1, · · · ,q, (13)



where, by definition,Yk,l = ∑w
i=qmd,i−kmd,i−l and yl =

∑w
i=qmd,imd,i−l . Equation (13) can be used to determine the

coefficients{ak} which are then used to determine the coef-
ficients{bk} using

bk = m̃d,k +
q

∑
i=1

aimd,k−i , for k = 0,1, · · · ,q−1.

3.3 Shank’s method
Rather than obtaining the numerator coefficients{bk} us-

ing an exact fit as was the case in Padé and Prony’s meth-
ods, one might use least-squares minimization. Hence, both
the coefficients{ak} and{bk} are obtained using the least-
squares minimization technique. This technique is known as
Shank’s method which approximates a rational transfer func-
tion by an all-pole approximate transfer function inseries
with an all-zero approximate transfer function. The method
starts by using an all-pole approximate transfer function of
the form

H̃d1(z) =
b0

1+∑q
k=1akz−k

≡
w

∑
i=0

m̃d1,iz
−i . (14)

Similar to Prony’s method, Shank’s method computes the co-
efficients{ak} by minimizing the least-squares error between
md,i andm̃d1,i . The result is

q

∑
k=1

akYk,l =−yl , l = 1, · · · ,q, (15)

where, by definition,Yk,l = ∑w
i=0md,i−kmd,i−l and yl =

∑w
i=0md,imd,i−l . Solving (15) we can obtain the{ak} coef-

ficients. The impulse responsẽmd1,i of the all-pole system
can now be obtained as

m̃d1,i =−
q

∑
k=1

akm̃d1,i−k +δi , i ≥ 0.

If this response is now used to excite an all-zero approximate
transfer function of the form

H̃d2(z) =
q−1

∑
k=0

bkz
−k ≡

w

∑
i=0

m̃d2,iz
−i ,

its responsẽmd2,i must approximate the response of the orig-
inal systemmd,i . Therefore, the coefficients{bk} can now be
computed by minimizing the least-squares errors of

ε =
w

∑
i=0

∣∣md,i − m̃d2,i
∣∣2 =

w

∑
i=0

∣∣∣∣∣md,i −
q−1

∑
k=0

bkm̃d1,i−k

∣∣∣∣∣
2

.

Setting∂ε/∂bk to zero, results in the following set of linear
equations

q−1

∑
k=0

bkXk,l = xl , l = 0,1, · · · ,q−1, (16)

whereXk,l = ∑w
i=0m̃d1,i−km̃d1,i−l and xl = ∑w

i=0md,im̃d1,i−l .
Solving (16) gives the coefficients{bk}.

4 Applications
In this section, we apply the proposed model-order reduc-

tion technique using Prony’s and Shank’s methods on five
large practical systems and compare their resulting responses
with the corresponding original system response. We also
show the responses resulting from using the commonly em-
ployed Pad́e method. The simulation times for the five ex-
amples are shown in Table 1. From these examples we show
how Prony’s and Shank’s methods can produce lower-order
approximations than the Padé approximation while maintain-
ing sufficient accuracy and negligible increase in simulation
time.

4.1 A fifth-order Chebyshev filter
Consider a fifth-order Chebyshev filter with system func-

tion given in (17) whereωc = 2π×104 rad/sec. The circuit
implementation of this filter is shown in Figure 1. It con-
sists of two second-order LCR resonators and a first-order
op amp-RC circuit. Real741 op amp circuits were used in
the design. Using SPICE, we performed an AC analysis over
the linear frequency range of1Hz to 300MHz. The origi-
nal system was of order720. Using modified nodal analy-
sis (MNA) stamps extracted from SPICE, we performed the
three approximation procedures and the resulting system re-
sponses are plotted in Figure 2. As seen, a 6th-order Padé
approximation of the resulting frequency response is a rela-
tively poor approximation to the original response. However,
Prony’s and Shank’s methods perform significantly better us-
ing only a 4th-order approximation. By increasing the order
of the Pad́e approximation to a 7th-order we finally obtain a
good match with the original Chebyshev filter.
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Figure 2. Chebyshev filter response.

4.2 Clamped beam
The clamped beam model of [15] has 348 states. The in-

put represents the force applied to the structure at the free
end, and the output is the resulting displacement. We plot in
Figure 3 the magnitude response of the original system to-
gether with that of the reduced models. The Padé method re-
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Figure 1. Fifth-order Chebyshev filter circuit schematic implemented using real 741 op amps.

Hc(s) =
ω5

c

8.1408(s+0.2895ωc)(s2 +0.4684ωcs+0.4293ω2
c)(s2 +0.1789ωcs+0.9883ω2

c)
(17)

quires a system of order 54 to obtain an exact match, whereas
Prony’s requires an order of 40 and Shank’s an order of 38.
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Figure 3. Clamped beam system response.

4.3 A large-order system
This example is similar in spirit to the example pro-

posed in [16]. The system is of order 3018, generated
using block matrices. Spikes in the system magnitude
plots are artificially generated by explicitly placing
the system eigenvalues of theG matrix as follow-
ing: λ(G) = {−1 ± j10,−1± j700,−1± j1200,−1±
j1400,−1 ± j2600,−1 ± j5800,−1 ± j7000,−1 ±
j12000,−1 ± j42000,−1,−2, · · · ,−3000}. As can be
seen in Figure 4, using Prony’s method a 35th-order system
accurately approximates the magnitude waveform of the
original system. Shank’s method was able to reduce the
order to 32 at the expense of increased simulation time. In
contrast, a 35th-order Padé approximation fails to capture the
magnitude response for frequencies less than200rad/sec.

4.4 International space-station
This example is a structural model of component1r (Rus-

sian service module) of the International Space Station (ISS)
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Figure 4. Large-order system response.

[17]. We plot in Figure 5 the magnitude responses for
Hc,11(s) andHc,12(s) of the original system as well as the
reduced models. As shown in the plots, Prony’s and Shank’s
methods accurately model the original system with lower or-
ders than the Padé method.

4.5 PEEC Model
The partial element equivalent circuit (PEEC) model

given in [9] contains 2100 capacitors, 172 inductors, and
6990 mutual inductors. As shown in Figure 6, a 45th-order
Pad́e approximation performs poorly, in contrast to Prony’s
and Shank’s approximations of the same degree.

5 Conclusion
In this paper, we have presented a new model-order re-

duction technique for approximating large dynamic systems.
This technique is based on three steps: (1) transform the dy-
namic system function from thes-domain into thez-domain
via the bilinear transformation, (2) use Prony’s or Shank’s
approximation methods instead of the commonly employed
Pad́e approximation method, and (3) transform the reduced
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system back into thes-domain using the inverse bilinear
transformation. We have shown through simulations of large
practical systems the effectiveness of this technique in terms
of accuracy and simulation time.
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Table 1. Comparison in simulation times. §

Example Padé Prony Shank
w time (s) w time (s) w time (s)

Chebyshev filter\ 13 1.07 50 1.43 50 2.63
Clamped beam† 107 0.54 120 0.84 120 1.34
Large system† 89 2.27 120 3.38 160 5.85

ISS 1-to-1‡ 49 0.29 80 0.78 80 1.20
ISS 1-to-2‡ 53 0.29 80 0.85 80 1.32

PEEC model† 103 1.54 120 1.92 120 3.67
§ Simulated with MATLAB on Sun Ultra 10 workstation.
Moments computed using:\ Arnoldi process [10],† Lanczos process [8],‡ AWE [7].
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