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Abstract accurate. Series expansion based methods are computation-
ally efficient but may provide inaccurate results. Interpola-

In this paper, we propose a hew model-order reduction ti_on methods, on _the other hand, are comput_at_ionally effi-
technique for linear dynamic systems. The idea behind thisC/€Nt methods which agree exactly with the original system
technique is to transform the dynamic system function from©n Sample points but, in general, give unpredictable accu-
the s-domain into thez-domain via the bilinear transforma- ~ 'acy at other points [5]. Finally, least-squares methods com-
tion, then use Prony’s [1, 2] or Shank's [3] least-squares blr?e. the accuracy fgature of the min-max meth'ods and the
approximation methods instead of the commonly employeoemc'ency qf the series expansion and m_te_rpolatlon methods
Pack approximation method, and finally transform the re- oY controlling the error between the original system func-
duced system back into tlsedomain using the inverse bi- tion and the approxmate function ov_erall points and not just
linear transformation. Simulation results for large practi- Where the maximum error occurs (min-max) or at the sample
cal systems show that this technique based on Prony’s andi@t@ points (series expansion and interpolation).

Shank’s methods give much higher accuracy than the tradi- The s-domainPact approximation [6] is a combination
tional Pace method, and result in lower-order approxima- of series expansion and interpolation methods that has been
tions with negligible increase in simulation time. used in the asymptotic waveform evaluation (AWE) [7] al-
gorithm in order to extract the dominant poles and residues
of the system. Other Pédtechniques based on Krylov-
subspace methods — such as ®aéh Lanczos (PVL) [8]

The computation of equivalent linear system models of and Arnoldi-based model-order reduction [9, 10] — provide
large linear dynamic systems is a topic of considerable prac-€fficientestimation of the original system response. How-
tical interest. This interest is motivated by the reduced com- €ver, theaccuracyof these methods is limited by the or-
plexity obtained by reducing the large linear subnetwork in der of the Paé approximation (i.e. the number of moments
a linear (or nonlinear) network. Ideally, linear analysis on Matched). The problem with the Radpproximation is that
these linear subnetworks is performed by first computing ait €quates the approximating transfer function to the origi-
state-space model, followed by the application of a suitable "al system function to obtain as many equations as there are
analysis method. However, the applicability of this method Unknowns [5,6]. This equating technique is the major limita-
is ||m|ted Since typlca| dynamic Systems are represented byt|0n in the Paé approximation because the resulting transfer
very large state matrices that require specialized large-scaldunction must contain a large number of poles and zeros in
eigen-analysis programs and computer resources. To avoi@rder for it to be sufficiently close to the original system.
this practical limitation, model-order reduction methods are  In this paper, we propose a novel model-order reduction
widely used in the solution of these systems. The basic ideatechnique for obtaining a reduced-order transfer function ap-
behind model-order reduction is to replace the original sys- proximation. The technique is based on three steps. First,
tem equations for the large linear network by an equivalentthe original large system transfer function is transformed
system with a much smaller state-space dimension such thafrom the ss<domain into thez-domain via the bilinear trans-
the identified reduced-order model transfer function charac-formation. It is well known that the bilinear transforma-
teristics must approximate those of the full-order model. tion always preserves system stability, and can always be

In general, from approximation theory, there are four ma- made to preserve the system frequency response character-
jor categories of approximation methods that one can use deistics for a specified frequency range [2,11, 12]. In addi-
pending on the overall accuracy, efficiency, and reliability tion, working in thez-domain results in better approxima-
desired [4]. The min-max methods rely on nonlinear opti- tions than pures-domain approaches since the parameter
mization techniques which make them inefficient but highly in the bilinear transformation places more emphasis on the

1 Introduction
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frequency range of interest. Second, we propose to apply2.2 z-domain system representation

Prony’s [1] or Shank’s [3] least-squares approximation meth-  An LT| system of equations can be used to model a dy-
ods to reduce the order of tiansformedsystem function.  namic system as follows:

Third, the reduced-order system is transformed back to the

s-domain using the inverse bilinear transformation. We show Cx(t)+Gx(t) +bu(t) =0,
that Prony’s and Shank’s approximation methods perform y(t) =1Tx(t),
significantly better than the traditional Radpproximation

method. Furthermore, the derivation of this model-order re- Wherex € R" represents the state variables of the system,
duction technique enables the different Krylov-subspace al-RP are thep outputs of the system defined usihg R"™*P,

)

gorithms [8-10], traditionally applied for the Radpproxi- G andC € R™", andb € R™™ represents excitations from
mation, to be used with Prony’s and Shank's methods to ob-M independent sources. It can be shown that the resulting
tain efficient and accurate moment approximations. system transfer function of (2) is given by

The remainder of the paper is organized as follows. In He(s) = —1T(G+sC)th. ()

Section 2, we describe theeto-z system transformation to-

gether with moment computation techniques. We also de-Applying the bilinear transformation in (1) to (3) for an ap-

scribe the connection of the different Krylov-subspace algo- Propriately chosemr to preserve the magnitude characteris-

rithms in this new representation. In Section 3, we explain tics, thez-domain transfer function becomes

Prony’s and Shank’s least-squares approximation methods Ha(2) £ He(s)|

and compare them to the traditional Bapproximation. We d ¢ ka%

corroborate the derived results in Section 4 with simulations 1Tz Y -z 1At (4)

of large practical systems and show the accuracy of our tech-

nique. Finally, Section 5 provides some concluding remarks. whereA = —(G + qC)*l(G —aC), andr = —(G+ aC)*lb.
In order to invert the ternil —z*A) in (4), we need to di-
agonalizeA, which is numerically expensive and impractical

2 sto-z System Transformation to perform for typical large dynamic systems. Instead, one
resorts to using Neumann’s expansion [13]:

In this section, we briefly describe the bilinear transfor- a1 ] P

mation and then apply this transformation to represent a lin- (I1=Z7A) " =14+Z A+ Z A+ ®)

ear, time-invariant (LTI) system in thedomain. We then g pqtituting (5) in (4), the-domain transfer functioby(z)

describe three methods for computing the moments of theyo.gmes

z-domain system function.

Ha(2) = (1+2) imz—i, (6)

2.1 The bilinear transformation _
where mgj = ITAr are thes-domain moment®f Hc(s).
The bilinear transformation is a linear fractional transfor- Hg(z) can also be written in a more convenient form by

mation given byp : C — C defined by defining thez-domain moments
My, = Mej—1+ Mej, (1)
a+s ’ , )
.S =— 1
pis—z a—s’ @) as
wherea € R is a constant equal to twice the sampling rate. Ha(z) = zomd,iz*i. (8)
This mapping has the property that it transforms jteaxis i=

in thes-plane onto the unit circlez&= el®) in thez-plane [11].

Moreover, the left-halfs-plane Re(s) < 0) is mapped in- 2.3 Computing the moments

side the unit circle in the-plane and the right-hali-plane Itis usually sufficient to compute the first+- 1 moments
(Im(s) > 0) is mapped outside the unit circle in taglane,  in (6) or (8), wherew depends on the choice of the approx-
thus preserving system stability. The inverse bilinear trans-imation algorithm used in the second step of the proposed
formationB~! is given byB(—a/2). model-reduction technique. In AWE [7], the moments;

are explicitly computed by first recursively solving the linear

The main advantage of using the bilinear transformation .
system of equations

over other transformations such as the impulse- and step
invariant transformations, is that it preserves the magnitude (G+aC)ui = —Cu_1, i=12--,w

characteristics of the transfer function. This follows from

the fact that the parametarprovides a one degree of free- for u; with ug =r, and thenm¢; = ITu;. However, due to

dom that can be used to make the frequency response charadinite machine precision, this approach is numerically ill-
teristics of thezzdomain system functioll4(z) approximate  conditioned; see [8]. A better alternative is to use Krylov-
those of thess-domain system functiohl¢(s) [12]. subspace methods which enable a more stable computation



of the moments. For instance, in the Lanczos algorithm, where it is assumed that moments with negative indices are
these moments are obtained by zero. The coefficient§ax} are first obtained by solving
equations in (10b), which are then used to determine the
coefficients{bx} in (10a). Thus, the P&dapproximation
method results in a perfect match betweeniiige and the
original my; for the first2q values of the impulse response.
However, fori > 2q there is no bound on the error between

_ the two responses. This is the major limitation with the
Mo = [[r][2l "VwHLer, i=0,1,---,w, Pack approximation, and hence the resulting transfer func-

W i tion must contain a large number of poles and zeros in or-
whereVy, € R™", andHy is aw x w upper Hessenberg ma-  qer for jts impulse response to be sufficiently close to the

trix whose scaler entries are generated by the Arnoldi algo-regnonse of the original transfer function. Furthermore, the
rithm [14]. Finally, thez-domain moments are easily com-  pag approximation results in a perfect match with the orig-
puted from them,; moments using (7). inal momentsry; only when the original system is rational
and we have prior knowledge of its number of poles and ze-
3 Reduced-Order Modeling ros. However, this is not usually the case since we only know

The model-order reduction problem can now be stated asthe impulse response data as given in (6).
follows: Given thetransformedz-domain system response ,
as described by equation (8), find an approxinatemain 3.2 Prony’s method

me =I1Trel Tle, i=01,---,w,

whereeg, is the first unit vector irRY and T, is a tridiag-
onal matrix [8]. Similarly, in the Arnoldi process threg;
moments are given by

transfer function of the form The main problem with the Padapproximation is that it
G-1p, 5k w setsw = 2q— 1in order to get as many equations as tht_are are
I:|d(z) _ Zk:é) kZ =3 My iz—i7 9) unknowns. In Prony’s least-squares method [1, 2], this con-
1+ 3 az X izo ’ straint is removed ana can be a large numbers{2q— 1)

without necessarily resulting in a large-order rational func-
tion. This method tries to minimize the linear least-squares
error between the two responses

whose responséy; accurately approximate the response
my,i of Hq(2). Once this approximate system is identified, it
is transformed back into treedomain using the inverse bilin-
ear transformatiof3—* in order to obtain the reduced-order £ — i M — M2
s-domain transfer function. N i; Ma,i — Ma,il™,
The rational representation of the approximate transfer
function given in equation (9) ha&y unknowns, namely,
the coefficients{ax}?_, and {bx}?_2. Existing techniques
employ the Pag approximation to determine these coeffi-
cients [7-9]. The drawback of this technique is that it equatesIinear prediction part is that instead of equatifig — My

thew+ 1 terms ofHq(2) of (9) to the firstw+ 1 moments of for all i Vel v USi i dictor d
Ha(2) in (8) to get as many equations as there are unknowns. oralll, recursively Computeny,; using a linear predictor de-

This in turn requires a large-order rational approximate func- fined by the following set of linear equations

11)

with respect to the coefficien{sy} of the approximate trans-

fer function Hy(z). This linear least-squares optimization
minimizes the linear prediction error, and not the original mi-
nus approximate squared response error. The idea behind the

tion to achieve acceptable accuracy. To solve this problem, 9 i

we propose using least-squares approximation methods, such - kzlakmii—k +bi,  0<i<qg-1 (12a)
as Prony’'s or Shank's methods, which determine the mo- My = q

ments ofHq4(z) over a Ia_rge number _of moments A (2) _ Z Mgk, g<i<w. (12b)
but using a low-order rational approximate function. 1

The coefficientgax} are then chosen so as to minimize the
squared-prediction-error defined by

2
’ |:1a7q

3.1 Pack approximation

We will first briefly present the-domain Paé approxima-
tion which is similar to the commonly usesdomain Paéd w
approximation [7-9] in order to compare with our proposed &= Z
methods. In this approximation, the parameteis set to =
29— 1 and the response®y; andmg; of the two transfer ~ Settingde/da; to zero, results in the following set of linear
functions are equated f@<i < 2q—1, in order to obtain equations
as many equations as there are unknowns. This results inthe ¢ w

w
following system of linear equations Z ay Z My kMg = — Z mgimgi—i, |=1,---,0.
k=1 i=q i=q

q
Mg+ > M,k
&

q
— > aMmyi—k+hi, 0<i<qg-1, (10a) This set of equations can equivalently be written as
=1

Myi = q
’ q

~ 3 am q<i<2q-1, (100) 2N =g I=1a (13)
k=1 -



where, by definition, Yy = z\iN:q My—kMg,i—1 and y;
ZiW:q mg,imgi—. Equation (13) can be used to determine the
coefficients{a,} which are then used to determine the coef-
ficients{by} using

q
bk:md,k‘f' Z‘ainlj,kfh for k:O717 7q_1
=

3.3 Shank’s method

Rather than obtaining the numerator coefficiefiig} us-
ing an exact fit as was the case in Pahd Prony’s meth-

4 Applications

In this section, we apply the proposed model-order reduc-
tion technique using Prony’s and Shank’s methods on five
large practical systems and compare their resulting responses
with the corresponding original system response. We also
show the responses resulting from using the commonly em-
ployed Paé method. The simulation times for the five ex-
amples are shown in Table 1. From these examples we show
how Prony’s and Shank’s methods can produce lower-order
approximations than the Padpproximation while maintain-
ing sufficient accuracy and negligible increase in simulation

ods, one might use least-squares minimization. Hence, bothime.

the coefficients{ax} and {by} are obtained using the least-

squares minimization technique. This technique is known as4q. 1 A fifth-order Chebyshev filter

Shank’s method which approximates a rational transfer func-

tion by an all-pole approximate transfer functiondaries
with an all-zero approximate transfer function. The method
starts by using an all-pole approximate transfer function of
the form

bo

w .
Ha(2) = T+57 azk = .Z)mdl,if'-
— =

(14)

Similar to Prony’s method, Shank’s method computes the co-

efficients{ax} by minimizing the least-squares error between
mMg,i andrfyyi. The resultis

Qo

akYk,l ==Y, I = 17 =50, (15)

k=1

where, by definition,Yy) = S oMyi-kMgj—1 andy =
S omgimyi—. Solving (15) we can obtain thfay} coef-
ficients. The impulse responsi; of the all-pole system
can now be obtained as

q
M1 = — ) &Mk +8, >0
&

If this response is how used to excite an all-zero approximate

transfer function of the form

g-1 ‘ w i
bz "= e
kZO kZ I; md2,| z )

Haz(2) =

its respons@\yz; must approximate the response of the orig-
inal systenmy ;. Therefore, the coefficienfdy} can now be
computed by minimizing the least-squares errors of

e 5 w g-1
€= i;‘rnd,i - rﬁC|2,i ‘ = ig‘rnd,j — k;bkr’ﬁdl’iik

Settingde/dby to zero, results in the following set of linear
equations

2

q-1

kak.’|:X|, |:O,1,"',q*1, (16)
2

whereX| = 3" o Myri—kMyri—1 andx = 31 omy My
Solving (16) gives the coefficien{dy}.

Consider a fifth-order Chebyshev filter with system func-
tion given in (17) whereo, = 21t x 10%rad/sec The circuit
implementation of this filter is shown in Figure 1. It con-
sists of two second-order LCR resonators and a first-order
op amp-RC circuit. Real41 op amp circuits were used in
the design. Using SPICE, we performed an AC analysis over
the linear frequency range dfHz to 300MHz The origi-
nal system was of ordef20. Using modified nodal analy-
sis (MNA) stamps extracted from SPICE, we performed the
three approximation procedures and the resulting system re-
sponses are plotted in Figure 2. As seen, a 6th-ordeg Pad
approximation of the resulting frequency response is a rela-
tively poor approximation to the original response. However,
Prony’s and Shank’s methods perform significantly better us-
ing only a 4th-order approximation. By increasing the order
of the Pa@& approximation to a 7th-order we finally obtain a
good match with the original Chebyshev filter.
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Figure 2. Chebyshev filter response.
4.2 Clamped beam

The clamped beam model of [15] has 348 states. The in-
put represents the force applied to the structure at the free
end, and the output is the resulting displacement. We plot in
Figure 3 the magnitude response of the original system to-
gether with that of the reduced models. The&adkthod re-
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Figure 1. Fifth-order Chebyshev filter circuit schematic implemented using real 741 op amps.
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Figure 3. Clamped beam system response. [17]. We plot in Figure 5 the magnitude responses for

Hc11(s) andHc12(s) of the original system as well as the
reduced models. As shown in the plots, Prony’s and Shank’s

4.3 Alarge-order system - .
. A . methods accurately model the original system with lower or-
This example is similar in spirit to the example pro- jars than the Padmethod.

posed in [16]. The system is of order 3018, generated
using block matrices. Spikes in the system magnitude 4 5 pEEC Model
plots are artificially generated by explicitly placing

the system eigenvalues of th& matrix as follow- The partial element equivalent circuit (PEEC) model

P : : ; iven in [9] contains 2100 capacitors, 172 inductors, and

ing: A(G) = {-1+j10,—14+ j700 -1+ j1200-1 + 9 . L

{14001 + j2600-1 + j580Q—1 + j7000-1 + 6990 mutuall mdt_;ctors. As shown in Figure 6, a 45th—ordfar
Pack approximation performs poorly, in contrast to Prony’s

j12000-1 + j4200Q—1,—-2,---,—3000}. As can be d Shank’ imati fth d
seen in Figure 4, using Prony’s method a 35th-order systeman ank's approximations ot th€ same degree.

accurately approximates the magnitude waveform of the )

original system. Shank’s method was able to reduce thed Conclusion

order to 32 at the expense of increased simulation time. In  |n this paper, we have presented a new model-order re-
contrast, a 35th-order Padpproximation fails to capture the  duction technique for approximating large dynamic systems.

magnitude response for frequencies less 2@0rad'sec This technique is based on three steps: (1) transform the dy-
namic system function from thedomain into thezzdomain
4.4 International space-station via the bilinear transformation, (2) use Prony’s or Shank’s
This example is a structural model of componan{Rus- approximation methods instead of the commonly employed

sian service module) of the International Space Station (ISS)Pade approximation method, and (3) transform the reduced
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Figure 5. Magnitude response for the international space-station example.
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Figure 6. PEEC model response.

system back into the-domain using the inverse bilinear

transformation. We have shown through simulations of large
practical systems the effectiveness of this technique in termg16]
of accuracy and simulation time.
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Example Padée Prony Shank
w [time(s)| w [time(s)| w [ time(s)

Chebyshev filtér | 13 1.07 50 1.43 50 2.63
Clamped bear | 107 0.54 120 0.84 120 1.34
Large systeh | 89 | 227 | 120 | 3.38 | 160 | 5.85
ISS 1-to-F 49 0.29 80 0.78 80 1.20
ISS 1-to-Z 53 0.29 80 0.85 80 1.32
PEEC modél 103 1.54 120 1.92 120 3.67

§ Simulated with MATLAB on Sun Ultra 10 workstation.
Moments computed usingArnoldi process [10];} Lanczos process [8} AWE [7].
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