

We present an optimal budget distribution method for
low power circuit design using transistor sizing. The
algorithm distributes the available budget inside the
functional unit by efficient traversalof the Series Parallel
Graph representation. The technique can be efficiently
applied at different abstraction levels of the design as
well as toward other optimization goals (such as area
optimization). The complexity is O(n) in terms of the
number of transistors in the circuit. Incorporating our
method in the design flow yields significant
improvements in power consumption. Experiments on
circuits extracted from MCNC91 benchmark suite have
revealed improvements up to 59% in average power and
65% in maximum power dissipation compared to an
alternative budget distribution algorithm.

1. Introduction

Power consumption has become a major issue in
electronics system design in the past decade. As power
consumption becomes more critical, power optimization
methods are incorporated at multiple levels of the design
hierarchy as opposed to being restricted to a single level.
Versatile techniques that can serve at various levels are
highly desirable.

One such technique that can provide significant
improvements at various levels of the design hierarchy is
budgeting. Most of the time design decisions are made
according to the critical constraints, such as worst case
delay of the circuit. However, there is usually more
room for optimization for the non-critical parts of the
circuit without violating the constraints. Extracting and
utilizing this potential relaxation on the non-critical parts
of the circuit yields significant improvements in the
overall design quality.Budget assignment and
distribution tools are used along with other optimization
methods that exploit the potential relaxation budgeting
tools reveal. Among such methods are voltage scaling,
transistor sizing…etc. Transistor sizing is a commonly
used technique for various circuit optimization purposes.
In many of the past applications, the channel widths of
the transistors on the critical path are increased to
improve the worst case delay of the circuit.
 Given a circuit with the critical path information, the
constraints on the rest of the functional units can be
relaxed without affecting the worst-case delay by a
budgeting algorithm. Existing tools can be used to
extract potential slack of the functional units given the
critical path delay. Hence, the problem reduces to
distributing this given budget to individual transistors
inside functional units as efficiently as possible.

In order to illustrate the importance of budget
distribution scheme let us consider the example in
Figure.1.

Figure 1. Alternative budget distribution schemes for
example circuit.

Assume that a total size relaxation of B% is available
to this functional unit by the initial analysis of the
circuit. We refer to this value, B, as the budget assigned
to the functional unit for the rest of the paper. The given
relaxation implies that, the total amount of budget
allocated to the transistors on any path from VDD to
GND cannot exceed B. The budget can be assigned to
more than one path as long as the assignment does not
violate the above-mentioned constraint. Two alternative
ways of distributing the given budget under these
constraints is illustrated in Figure.1.

Scheme I assigns the total amount B to transistor T1.
Therefore, it is unable to assign any budget to T2 or T3.
However, Scheme II exploits the given budget more
efficiently by assigning budgets to both T2 and T3 of
amount B. As a result the power improvement for
Scheme II is better. As the example illustrates, the
effectiveness of the budget distribution scheme plays a
critical role in the quality of the overall budget
allocation. In this paper, we propose a novel and optimal
method to solve budget distribution on functional units
in CMOS technology. This method can be incorporated
into the transistor level tools to optimize the power
consumption. Series-parallel (SP) graph representation is
used to model the functional units. The budget
distribution algorithm is then applied to allocate budget
efficiently. This budget is utilized to optimize the power
consumption of the functional units by transistor sizing.
We illustrate that our method eases the manual effort in
custom designs at transistor level as well. Yet, our
budget distribution idea is applicable, but not limited to
transistor level. Although we apply it for power
optimization in this paper, the method is quite general
and can be used toward other optimization objectives
such as area minimization.

The rest of the paper is organized as follows: In
Section II, we outline some related work on transistor
sizing and budgeting algorithms. Then, in Section III
series-parallel graph modeling of CMOS circuits is
presented. In Section IV, we provide the problem

Transistor Level Budgeting for Power Optimization

E,Kursun S.Ghiasi M.Sarrafzadeh
{kursun,soheil,majid}cs.ucla.edu

Computer Science Department, UCLA

B

B B

T1

T2 T3 T3 T2

T1

I II

formulation. Section V presents our optimal algorithm.
Experimental results and conclusions are discussed in
Section VI and Section VII respectively.

2. Related Work

Transistor sizing is a commonly used technique, which
is well studied in the past decades. In this Section we
talk about some of the basic studies for sake of brevity.
Majority of the research on transistor sizing has been on
improving the critical path delay of a given circuit.
TILOS [1] is a well-known example to this idea. It is a
compact and strong technique with great ease of
implementation. However, it does not have guaranteed
convergence properties. TILOS is a heuristic approach
that has been commonly used both in industry and as a
building block in following academic tools. There are
exact solutions to the transistor-sizing problem in this
context as well. However, the running time
characteristics of these approaches are not well defined
[3], [4]. There are studies that target different
optimization goals through transistor sizing. Sapatnekar
et al. proposed an optimal technique for area
minimization in [3]. Yet another iterative relaxation
approach with two-step optimization strategy was
presented by Chen et al. [4]. This method only deals
with the cases where the delay is expressed in terms of
Elmore delay model. Minflotransit [2] by Sundararajan
et al. is a two-phase iterative relaxation based technique
for area optimization. It uses a minimum-cost network
flow formulation in its first phase. The transistor sizes
are assumed to be fixed and the delay values are
assumed to be variable at this step. In the second step the
transistor delays are fixed and the sizes are treated as
variable parameters. The tool also incorporates the
TILOS [1] in the initial step as well, to meet the delay
requirements.

Budgeting finds many application areas that vary from
gate/wire sizing to VLSI layout compaction. The main
goal for VLSI compaction applications is to minimize
the area of the layout and budgeting idea is used to
decrease the wire length [9], [10], [11]. The problem is
then formulated and solved using Linear Programming
(LP). However, the running time properties of LP
formulation approach are not favorable. One of the most
popular and efficient algorithm for delay budgeting is
Zero Slack Algorithm [8] by Nair et al. The main
application goal is to generate performance constraints
for VLSI layout design. However, the algorithm is not
optimal and the performance depends on the input. As a
result of its popularity various improved versions of
Zero Slack Algorithm have been proposed [12], [13].

Another optimal solution to the transistor sizing problem
is Eins-tuner [14]. It is based on a large-scale, general
purpose, non-linear optimization tool called Lancelot.
The computational complexity of the tool is quite high.

The running times reported in the experimental results
are as high as 284,445 sec for an average sized
benchmark among the benchmark set, which signifies
the computational complexity of the underlying non-
linear solver. Furthermore in many cases the whole non-
linear optimization might not be desired when a local
change is needed. These above approaches are either
suboptimal or possess high algorithmic complexity. The
method we propose in this work provides optimal budget
distribution and O(n) algorithmic complexity. (n:
number of transistors in the functional units). It is based
on a different approach than many of the other
complicated underlying optimization tools. It can also be
used for local and global budget assignment step after
the initial solution is set.

3. Series-Parallel Graph Modeling

We start by construction and basic properties of the
series-parallel graphs.
Definition: The set SP of series-parallel graphs is the
smallest set of graphs G = (V, E) with two distinguished
vertices s, t ∈ V for which the following statements are
true:

Base Graph: The graph that consists of two vertices and
an edge e between them, is in SP. The terminals are the
end points of e. Given a functional unit F consisting of
transistors {t1, t2…tn} each edge ei in SP graph represents
transistor ti in F.

Series Composition: If G1 with terminals s1, t1 and G2
with vertices s2, t2 are in SP, so is the graph G that is
obtained by merging t1 and s2 and whose terminals are
s=s1 and t=t2. A series composition of the SP graph
represents series connection of the partitions of the
circuit in our model.

Parallel Composition: If G1 with terminals s1, t1 and G2
with vertices s2, t2 are in SP, so is the graph G that is
obtained by merging s1 with t1 to yield the terminal s and
by merging s2 with t2 to yield the terminal t. A parallel
composition in the SP graph represents parallel
connection of the partitions in the CMOS circuits. All
CMOS circuits can be modeled using SP graphs as a
result of the fact that they all are built according to the
above-mentioned composition statements.

4. Problem Formulation

Most of the circuit constraints are given in terms of
the critical conditions such as the worst case delay of the
circuit. However after the initial construction of the
circuit according to the design constraints, majority of
the designs can be improved in terms of various
optimization goals, by utilizing the flexibility in the non-
critical parts of the circuit. By making proper
modifications on the non-critical parts the design quality

can be significantly enhanced, yet still be able to meet
the constraints.

There are many tools, namely budget assignment and
distribution tools, constructed on this basic idea. The
extra flexibility in the design is extracted using an initial
analysis of the circuit. This extra flexibility assigned to
higher level blocks are then distributed inside the block
at lower levels. Our goal in this study is to develop a
budget distribution tool to efficiently distribute the
provided flexibility inside the building blocks of the
circuit. We assume that budget distribution takes place at
an early stage and the resulting values are provided to
us. These values might be generated by any budget
assignment tool according to the design constraints that
are not known to us. Our basic goal is to input the given
flexibility provided to us, and distribute it most
efficiently at the lower levels, hence improve the power
consumption of the circuit. More specifically, preceding
the initial analysis of the circuit a higher level budgeting
tool provides potential relaxation for the individual
functional units. For instance, for a functional unit j the
delay can be relaxed by budget B = 10%. This
corresponds to the maximum allowed delay budget for a
functional unit without affecting the worst-case timing
of the circuit. Delay distribution tool then finds an
effective distribution of this budget among the
transistors of the functional unit.

Given an SP graph G (V, E) and the maximum
allowed timing relaxation B, let bi represent the amount
of budget allocated to edge ei ∈ E. The optimal budget
distribution problem then can be formulated as:

∑
∈∀ Ee

ibmax

 Subject to: Σ bi ≤ B (on each path in the functional unit)

We assume that the budget assigned to each edge
(transistor) is directly proportional to its delay.
Therefore, the formulation constraint ensures that the
result will meet the design timing constraint.

5. Optimal Budget Distribution Algorithm

 In this section, we present an optimal algorithm for
budget distribution as formulated in the previous section.
First, we mention some useful properties of SP graphs
on which our budget assignment method relies. Then,
we prove the optimality and efficiency of our algorithm.

 Lemma.1: Let Gain(G, T) denote the maximum total
amount of budget that can be assigned to graph G,
under timing relaxation T. In other words, Gain(G, T) is
the maximum value of the cost function presented in
section IV when B=T. Then:

Gain(G, T)= (T/T’) ·Gain(G, T’).

 Proof: We prove the lemma by way of contradiction.
Assume Gain(G, T)<(T/T’)·Gain(G, T’). Let vectors b
and b’ denote the budget assignment distribution under
timing relaxation T and T’ respectively, i.e., bi is the
amount of budget assigned to edge i. We construct
vector b by multiplying b’ by (T/T’). Vector b created by
this operation is a valid budget distribution (because it
meets the constraint of having at most T unit of budget
on each VCC/GND to output path) and its total budget is
(T/T’)·Gain(G, T’), which is greater than Gain(G, T)
according to the assumption. Therefore, Gain(G, T) is
not the maximum budget distributed under timing
relaxation T, which contradicts the assumption. Hence,
the assumption of Gain(G, T) < (T/T’) ·Gain(G, T’) does
not hold. Similarly, we can construct b’ from b to show
that the inequality Gain(G, T) > (T/T’)·Gain(G, T’) does
not hold, therefore the lemma is proved ■

 Corollary.1: The budget distribution solution for an
SP graph is scalable by the timing constraint.

Lemma.2: For any SP graph G, if T = T1 + T2, then:

Gain(G, T) = Gain(G, T1) + Gain(G, T2)

Proof: Let vectors b, b1 and b2 represent the budget
distributions for G under timing relaxation T, T1 and T2
respectively. Assume Gain(G, T) < Gain(G, T1) +
Gain(G, T2). We construct b = b1 + b2. Therefore, the
amount of budget distributed on each VCC to output (or
GND to output) path by b, is not greater than T = T1 +
T2. Hence, b is a valid budget distribution whose gain is
equal to Gain(G, T1) + Gain(G, T2), which is greater
than Gain(G, T) according to the assumption. This
contradicts with the optimality of Gain(G, T). Similarly,
we can decompose b into b1 and b2 to show that Gain(G,
T) > Gain(G, T1) + Gain(G, T2) assumption is not true,
which proves the lemma ■

Theorem.1: Assume that SP graph G(V, E) is created

by parallel composition of SP graphs G1(V1, E1) and
G2(V2, E2). Then,

Gain(G, T) = Gain(G1, T) + Gain(G2, T).

 Proof: Let vectors b, b1 and b2 represent the budget
distributions for G, G1 and G2 under timing constraint T.
If Gain(G, T) < Gain(G1, T) + Gain(G2, T), we can
construct b by merging b1 and b2. Since, G is created by
parallel composition of G1 and G2, b is a valid budget
distribution for G and it meets the timing constraint of T.
The gain of the new budget distribution for G is
Gain(G1, T) + Gain(G2, T), which contradicts the
assumption.

If we assume Gain(G, T) > Gain(G1, T) + Gain(G2, T),
b can be similarly decomposed into b1 and b2 to show
the a contradiction. Hence, Gain(G, T) = Gain(G1, T) +
Gain(G2, T) ■

 Theorem.2: Assume that SP graph G(V, E) is created
series composition of SP graphs G1(V1, E1) and G2(V2,
E2). Then,

Gain(G, T) = MAX(Gain(G1, T), Gain(G2, T)).

 Proof: Since the total budget along any path must not
exceed T, the timing relaxation B has to be divided
between G1 and G2. Assume that B1 and B2 represent the
timing relaxation assigned to G1 and G2 respectively,
therefore B1+B2=B.

Without loss of generality, assume that Gain(G1,B1) ≤
(B1/B2).Gain(G2,B2). According to Corollary.1, (B1/B2)
·Gain(G2,B2)= Gain(G2,B1). And according to lemma 2,
Gain(G1,B1)+Gain(G2, B2) ≤ Gain(G2,B1)+Gain(G2,B2)=
Gain(G2, B). In other words, assigning all of the timing
relaxation B to one of the two constituting subgraphs
will not harm the solution quality. Therefore, Gain(G, B)
= MAX(Gain(G1, B), Gain(G2, B) ■

 Corollary.2: There is an optimal budget assignment
in which, edges receive either budget B or no budget at
all.

 In summary, we proved that for optimally assigning
the budget to an SP graph, we should solve two
subproblems of smaller size at each parallel
composition, and one problem at each series
composition point. The subproblems can be also solved
recursively according to the same rule. However, the
question of “which subgraph to pick at a series
composition point” is not answered yet. We will address
this issue in the rest of this section. The aforementioned
method optimally assigns the budget B to some of the
edges in the graph. However, it does not try to distribute
the budget to many edges of the graph. The optimal
budget assignment can be distributed according to the
following lemma:

Figure 3. An SP graph and its corresponding binary
tree. Leaves denote graph edges and internal nodes
represent composition rules. The budget is assigned
to gray leaves, which are denoted by dashed edges
in graph.

Lemma.3: Given a path of k edges with budget B
assigned to one of them, the budget can be reassigned
such that all k edges are relaxed by budget B/k. This
budget reassignment preserves the solution’s quality
(optimality).

The results of Lemma 3 can be integrated with Corollary
2 to construct the optimal budget assignment algorithm.
By definition, an SP graph G (V, E) can be modeled
using a binary tree, whose internal nodes represent series
(S) and parallel (P) composition rules and its leaves
denote edges with two terminals (see Figure.3).
According to Corollary.2, there is an optimal solution in
which, each tree leaf is either selected for assigning
budget B or not selected at all. It follows that the optimal
algorithm can traverse the tree in a bottom-up fashion to
select the proper leaves. It can make decisions as to what
path to take at “S” nodes, based on the number of leaves
that can be relaxed by budget B. The information of such
leaves can be propagated to upper levels recursively.
Figure 3 illustrates a sample SP graph and the
corresponding optimal solution.

Furthermore, according to Lemma 3 the budget
assigned to an edge can be safely reassigned among
other adjacent edges on the same serial path. Note that
nodes on the serial path can be connected to other parts
of the graph only at either terminals of the path. For
finding serial paths of an SP graph, immediate nodes
with type ‘S’ are merged into one node. Then, all of the
children of the new ‘S’ super-node are on the same serial
path and the budget can be reassigned among those that
are leaves, while preserving the optimality of the
solution.

Figure.4 outlines the pseudo code of the optimal budget
distribution algorithm. “relaxable edges” in the pseudo
code represent those edges of the graph that can
potentially accept the budget B. The maximum budget
that can be assigned is determined at the root. The edges
that contribute to the maximum budget should be relaxed
by B/k, where k is the number of edges in their
corresponding serial path.

S

S

S

S S

P

P

P
Algorithm OPTIMAL-SP-Budgeting:

For all nodes of the tree in reverse order of their level Do:

 if node is a leaf

 relaxable edges = 1;

 elseif node is a “P” operation

relaxable edges = relaxable edges of left child +

 relaxable edges of right child;

 else (node is a “S” operation)

relaxable edges = MAX (relaxable edges of left child,

 relaxable edges of right child)

maximum achievable budget = root->relaxable edges;

for all edges that contributed to root->relaxable edges

Budget (ei) = B / # of edges in the corresponding serial path;

5.1. Complexity Analysis

Algorithm OPTIMAL-SP-Budgeting, visits each node
of the binary tree exactly once. Hence, it runs in O(n)
time in terms of the size of the input SP graph. It is
evident that this also constitutes the lower bound for any
other algorithm, because any algorithm has to read the
input graph, which requires linear number of operations
in terms of the size of the input. Therefore, our
algorithm is optimal in terms of both complexity and
solution quality.

6. Experimental Results

 We used functional units extracted from MCNC91
benchmarks for our experimental analysis. The input
benchmark expressions from MCNC91 combinatorial
suite were optimized using SIS [7] Algebraic
Optimization Script. The resulting optimized logic-level
functions were then transferred to transistor level circuit
layouts and inputted to HSPICE. The simulations were
performed at 0.18µm process technology. The functional
units vary from 20 transistors to as large as 62
transistors. HSPICE is used for average and maximum
power consumption analysis on the generated circuits.
Randomly generated input vectors are used to drive the
input voltages for the simulations. Figure.6 demonstrates
the change in average power consumption over the
given budget values. The x-axis indicates different
budget values for the experiments that range from 10%
to 300%.

0

2

4

6

8

10

12

14

10
%
20
%
30
%
40
%
50
%
70
%
80
%
10
0%
15
0%
20
0%
30
0%

Budget(%)

Po
w

er
(N

or
m

al
iz

ed
) B12(F1)

B12(F2)
B12(F3)
B12(F4)
CLIP(F8)
MISEX2(F9)
ALU4(F14)
VG2(F16)
X5XP1(F17)

Figure 6. Average Power Consumption of

benchmark circuits over different budget values
(power values are normalized)

The budget values are selected from a wide range to
encompass the range that can be assigned to the
functional units by the initial budgeting algorithm. It is
important to note that functional units are assigned
different budget values according to the criticality of the
delay that they impose on the circuit. Those functional
units that are contributing to the high-delay paths (but
not on the critical path) might be assigned budgets as
low as 10% or even less. However, for functional units
that are not on the critical path, much higher budgets can
be assigned. The decrease in maximum power

consumption follows a similar pattern with the average
consumption as well. It is important to note that the
results in power gain vary for different algorithms. In
order to illustrate the effects of budget distribution
algorithm on the overall results, we have conducted a
second set of experiments with an alternative budget
distribution algorithm. This algorithm is based on a
similar idea to commonly used Zero Slack Algorithm.
The amount of budget is distributed to the transistors
without special preference on any transistor and the
scheme tries to maximize the number of transistors that
are affected by the budgeting.

Table 2 and 3 illustrate the percentage difference in
the power consumption results between the two
algorithms. As the results indicate, the amount of gain
that can be attained through budgeting is heavily
dependent on the budget distribution method. Our
algorithm outperforms in all of the benchmark circuits
for all budget values. The difference in the resulting
power consumption is as high as 59% and 65% in
average and maximum power dissipation values
respectively. In general the running time was in the
order of seconds for the experimented functional units.
The complexity of the algorithm is optimal in terms of
the input size, which is linear in number of transistors in
the circuits.

7. Conclusion
 In this paper we propose an optimal and efficient
budget distribution technique at transistor level. Our
experiments illustrate that this method yields significant
power improvements. The improvements are as high as
59% in average and 65% in maximum power
consumption compared to an alternative budget
distribution algorithm based on a similar idea to ZSA.
Furthermore the algorithm has linear time complexity,
which is optimal in input size. In this work we applied
our budget distribution idea to transistor level power
optimization. However, our technique is general and can
be applied toward other optimization objectives.

 8. References

[1] J. P. Fishburn and A. E. Dunlop, “TILOS: A
Posynomial Programming Approach to Transistor
Sizing”, Proceedings of the 1985 International
Conference on Computer-Aided Design, pp. 326-328,
November 1985.

[2] V. Sundararajan, S.S. Sapatnekar, K.K. Parhi,
“MINFLOTRANSIT: Min-Cost Flow Based Transistor
Sizing Tool”, Design Automation Conference, 2000

[3] S. Sapatnekar, V. Rao, P. Vaidya, S. Kang, “An
exact solution to the Transistor Sizing Problem for
CMOS Circuits using convex optimization”, IEEE
Transactions on Computer Aided Design, vol. 12, pp.
1621-1634, 1993.

Table 3. Percentage difference between average power dissipation of Optimal-SP-Budgeting and the alternative

[4] C. Chen, C.N. Chu, D. F. Wong, “Fast and Exact
Simultaneous Gate and Wire Sizing by Lagrangian
Relaxation”, Proceedings of 1998 IEEE/ACM International
Conference on Computer Aided Design, pp. 617-624, 1998.

[5] H.Y. Chen, S. M. Kang, “A Circuit Optimization Aid
for CMOS High Performance Circuits”, Integration VLSI
Journal, Vol. 10, pp. 185-212, 1991.

[6] Z. Dai and K. Asada, “MOSIZ: A two-step Transistor
Sizing Algorithm Based on Optimal Timing Assignment
Method for Multistage complex Gates”, Proceedings of the
1989 Custom Integrated Circuits Conference”, pp. 17.3.1-
17.3.4, 1989.

[7] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K.
Brayton, and A.L. Sangiovanni-Vincentelli, “SIS: A
System for Sequential Circuit Synthesis”, Technical Report
No. UCB/ERL M92/41, University of California Berkeley,
1992.

[8] R. Nair, C.L. Berman, P.S. Hauge, E.J. Yoffa,
“Generation of Performance Constraints for Layout”,
Proceedings of IEEE Transactions on Computer Aided
Design, Vol.8, No.8, pp 860-874, August 1989.

[9] Y. Liao, C.K. Wong, “An Algorithm to Compact
VLSI Symbolic Layout with Mixed Constraints”,
Proceedings of IEEE Transactions on Computer Aided
Design, Vol.2, No.2, April, 1983.

[10] J.F. Lee, D.T. Trang, “VLSI Layout Compaction with
Grid and Mixed Constraints”, Proceedings of IEEE
Transactions on Computer Aided Design, Vol.6, No.5, Sep,
1987.

[11] E. Felt, E. Charbon, E. Malavasi, A. Sangiovanni-
Vincentelli, “An Efficient Methodology for Symbolic
Compaction of Analog ICs with Multiple Symmetry
Constraints”, Proceedings of Conference on European
Design Automation, Nov., 1992.

[12] T. Vao, P.M. Vaidya, C.L. Liu, “A New Performance
Driven Placement Algorithm”, Proceedings of International
Conference on Computer Aided Design, pp.4447, 1991.

[13] H. Youssef, E. Shragowitz, “Timing Constraints for
Correct Performance”, Proceedings of International
Conference on Computer Aided Design, pp.2427,1990

[14] A.R. Conn, I.M. Elfadel, W.W. Molzen, P.R. O'Brien,
P.N.Strenski, C. Visweswariah, C.B. Whan, "Gradient-
Based Optimization of Custom Circuits Using a Static-
Timing Formulation" Design Automation Conference
1999.

% Diff (Avg) 10% 20% 30% 40% 50% 70% 80% 100% 150% 200% 300%
B12(F1) 2.645 5.229 7.706 8.099 12.301 17.237 19.212 22.433 33.231 42.437 59.069
B12(F2) 2.379 4.498 6.706 8.789 10.917 14.922 16.78 20.006 28.703 36.874 50.78
B12(F3) 1.072 2.096 3.127 4.146 5.162 7.1513 8.0879 9..962 14.48 19.123 27.222
B12(F4) 1.464 2.895 4.189 5.51 6.7404 9.2557 10.381 12.989 18.531 23.872 33.792

CLIP(F8) 2.295 4.566 6.724 8.847 11.074 15.193 17.388 21.342 31.005 40.646 58.09
MISEX2(F9) 1.959 3.956 5.558 7.327 9.092 12.354 14.019 17.221 24.606 31.05 44.424
ALU4(F14) 1.453 2.849 4.485 5.57 6.799 9.288 10.492 12.863 18.279 23.126 31.526
VG2(F16) 1.085 2.112 3.068 4.043 4.986 6.644 7.4311 8.9302 12.217 14.908 19.062

X5XP1(F17) 1.1 2.149 3.092 4.068 4.985 6.658 7.4658 8.984 12.242 14.976 19.17

Table 2. Percentage difference between maximum power dissipation of Optimal-SP-Budgeting and alternative method

% Diff (Max) 10% 20% 30% 40% 50% 70% 80% 100% 150% 200% 300%
B12(F1) 3.015 5.827 8.647 8.89 13.945 19.694 22.081 26.651 37.87 47.864 65.608
B12(F2) 2.469 4.753 7.05 9.197 11.365 15.516 17.406 21.238 29.887 37.52 50.166
B12(F3) 1.777 3.39 5.112 6.783 8.305 11.448 12.859 15.649 22.712 30.465 40.326
B12(F4) 1.823 3.609 5.231 6.885 8.500 11.554 12.975 15.861 22.484 28.649 39.166

CLIP(F8) 1.186 2.411 3.468 4.535 5.655 7.3169 8.882 10.676 15.267 20.217 28.685
MISEX2(F9) 1.262 2.578 3.772 4.923 6.168 8.3118 9.469 11.602 16.588 21.202 29.388
ALU4(F14) 1.878 3.766 6.151 7.308 8.997 12.361 13.986 17.182 24.664 31.626 44.298
VG2(F16) 2.677 5.234 7.65 10.06 12.499 17.046 19.204 23.517 33.347 41.894 57.678

X5XP1(F17) 2.463 4.854 7.089 9.355 11.559 15.692 17.685 21.569 30.335 38.198 51.719

