
 

We present an optimal budget distribution method for 
low power circuit design using transistor sizing. The 
algorithm distributes the available budget inside the 
functional unit by efficient traversalof the Series Parallel 
Graph representation. The technique can be efficiently 
applied at different abstraction levels of the design as 
well as toward other optimization goals (such as area 
optimization). The complexity is O(n) in terms of the 
number of transistors in the circuit. Incorporating our 
method in the design flow yields significant 
improvements in power consumption. Experiments on 
circuits extracted from MCNC91 benchmark suite have 
revealed improvements up to 59% in average power and 
65% in maximum power dissipation compared to an 
alternative budget distribution algorithm. 
 
1. Introduction 
 

Power consumption has become a major issue in 
electronics system design in the past decade. As power 
consumption becomes more critical, power optimization 
methods are incorporated at multiple levels of the design 
hierarchy as opposed to being restricted to a single level.  
Versatile techniques that can serve at various levels are 
highly desirable. 

One such technique that can provide significant 
improvements at various levels of the design hierarchy is 
budgeting. Most of the time design decisions are made 
according to the critical constraints, such as worst case 
delay of the circuit. However, there is usually more 
room for optimization for the non-critical parts of the 
circuit without violating the constraints. Extracting and 
utilizing this potential relaxation on the non-critical parts 
of the circuit yields significant improvements in the 
overall design quality.Budget assignment and 
distribution tools are used along with other optimization 
methods that exploit the potential relaxation budgeting 
tools reveal. Among such methods are voltage scaling, 
transistor sizing…etc. Transistor sizing is a commonly 
used technique for various circuit optimization purposes. 
In many of the past applications, the channel widths of 
the transistors on the critical path are increased to 
improve the worst case delay of the circuit.  
 Given a circuit with the critical path information, the 
constraints on the rest of the functional units can be 
relaxed without affecting the worst-case delay by a 
budgeting algorithm. Existing tools can be used to 
extract potential slack of the functional units given the 
critical path delay. Hence, the problem reduces to 
distributing this given budget to individual transistors 
inside functional units as efficiently as possible. 

In order to illustrate the importance of budget 
distribution scheme let us consider the example in 
Figure.1. 

Figure 1. Alternative budget distribution schemes for 
example circuit. 

Assume that a total size relaxation of B% is available 
to this functional unit by the initial analysis of the 
circuit. We refer to this value, B, as the budget assigned 
to the functional unit for the rest of the paper. The given 
relaxation implies that, the total amount of budget 
allocated to the transistors on any path from VDD to 
GND cannot exceed B. The budget can be assigned to 
more than one path as long as the assignment does not 
violate the above-mentioned constraint. Two alternative 
ways of distributing the given budget under these 
constraints is illustrated in Figure.1. 

Scheme I assigns the total amount B to transistor T1. 
Therefore, it is unable to assign any budget to T2 or T3. 
However, Scheme II exploits the given budget more 
efficiently by assigning budgets to both T2 and T3 of 
amount B. As a result the power improvement for 
Scheme II is better. As the example illustrates, the 
effectiveness of the budget distribution scheme plays a 
critical role in the quality of the overall budget 
allocation. In this paper, we propose a novel and optimal 
method to solve budget distribution on functional units 
in CMOS technology. This method can be incorporated 
into the transistor level tools to optimize the power 
consumption. Series-parallel (SP) graph representation is 
used to model the functional units. The budget 
distribution algorithm is then applied to allocate budget 
efficiently. This budget is utilized to optimize the power 
consumption of the functional units by transistor sizing. 
We illustrate that our method eases the manual effort in 
custom designs at transistor level as well. Yet, our 
budget distribution idea is applicable, but not limited to 
transistor level. Although we apply it for power 
optimization in this paper, the method is quite general 
and can be used toward other optimization objectives 
such as area minimization. 

The rest of the paper is organized as follows: In 
Section II, we outline some related work on transistor 
sizing and budgeting algorithms. Then, in Section III 
series-parallel graph modeling of CMOS circuits is 
presented. In Section IV, we provide the problem 
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formulation. Section V presents our optimal algorithm.  
Experimental results and conclusions are discussed in 
Section VI and Section VII respectively. 

 
2. Related Work 
 
Transistor sizing is a commonly used technique, which 
is well studied in the past decades. In this Section we 
talk about some of the basic studies for sake of brevity. 
Majority of the research on transistor sizing has been on 
improving the critical path delay of a given circuit. 
TILOS [1] is a well-known example to this idea. It is a 
compact and strong technique with great ease of 
implementation. However, it does not have guaranteed 
convergence properties. TILOS is a heuristic approach 
that has been commonly used both in industry and as a 
building block in following academic tools. There are 
exact solutions to the transistor-sizing problem in this 
context as well. However, the running time 
characteristics of these approaches are not well defined 
[3], [4]. There are studies that target different 
optimization goals through transistor sizing. Sapatnekar 
et al. proposed an optimal technique for area 
minimization in [3]. Yet another iterative relaxation 
approach with two-step optimization strategy was 
presented by Chen et al. [4]. This method only deals 
with the cases where the delay is expressed in terms of 
Elmore delay model. Minflotransit [2] by Sundararajan 
et al. is a two-phase iterative relaxation based technique 
for area optimization. It uses a minimum-cost network 
flow formulation in its first phase. The transistor sizes 
are assumed to be fixed and the delay values are 
assumed to be variable at this step. In the second step the 
transistor delays are fixed and the sizes are treated as 
variable parameters. The tool also incorporates the 
TILOS [1] in the initial step as well, to meet the delay 
requirements.  

Budgeting finds many application areas that vary from 
gate/wire sizing to VLSI layout compaction. The main 
goal for VLSI compaction applications is to minimize 
the area of the layout and budgeting idea is used to 
decrease the wire length [9], [10], [11]. The problem is 
then formulated and solved using Linear Programming 
(LP). However, the running time properties of LP 
formulation approach are not favorable. One of the most 
popular and efficient algorithm for delay budgeting is 
Zero Slack Algorithm [8] by Nair et al. The main 
application goal is to generate performance constraints 
for VLSI layout design. However, the algorithm is not 
optimal and the performance depends on the input. As a 
result of its popularity various improved versions of 
Zero Slack Algorithm have been proposed [12], [13].  

Another optimal solution to the transistor sizing problem 
is Eins-tuner [14]. It is based on a large-scale, general 
purpose, non-linear optimization tool called Lancelot. 
The computational complexity of the tool is quite high. 

The running times reported in the experimental results 
are as high as 284,445 sec for an average sized 
benchmark among the benchmark set, which signifies 
the computational complexity of the underlying non-
linear solver. Furthermore in many cases the whole non-
linear optimization might not be desired when a local 
change is needed. These above approaches are either 
suboptimal or possess high algorithmic complexity. The 
method we propose in this work provides optimal budget 
distribution and O(n) algorithmic complexity. (n: 
number of transistors in the functional units). It is based 
on a different approach than many of the other 
complicated underlying optimization tools. It can also be 
used for local and global budget assignment step after 
the initial solution is set. 
 
3. Series-Parallel Graph Modeling 
 
We start by construction and basic properties of the 
series-parallel graphs. 
Definition: The set SP of series-parallel graphs is the 
smallest set of graphs G = (V, E) with two distinguished 
vertices s, t ∈ V for which the following statements are 
true: 

Base Graph: The graph that consists of two vertices and 
an edge e between them, is in SP. The terminals are the 
end points of e. Given a functional unit F consisting of 
transistors {t1, t2…tn} each edge ei in SP graph represents 
transistor ti in F. 

Series Composition: If G1 with terminals s1, t1 and G2 
with vertices s2, t2 are in SP, so is the graph G that is 
obtained by merging t1 and s2 and whose terminals are 
s=s1 and t=t2. A series composition of the SP graph 
represents series connection of the partitions of the 
circuit in our model.  

Parallel Composition: If G1 with terminals s1, t1 and G2 
with vertices s2, t2 are in SP, so is the graph G that is 
obtained by merging s1 with t1 to yield the terminal s and 
by merging s2 with t2 to yield the terminal t. A parallel 
composition in the SP graph represents parallel 
connection of the partitions in the CMOS circuits. All 
CMOS circuits can be modeled using SP graphs as a 
result of the fact that they all are built according to the 
above-mentioned composition statements.  
 
4. Problem Formulation 
 

Most of the circuit constraints are given in terms of 
the critical conditions such as the worst case delay of the 
circuit. However after the initial construction of the 
circuit according to the design constraints, majority of 
the designs can be improved in terms of various 
optimization goals, by utilizing the flexibility in the non-
critical parts of the circuit. By making proper 
modifications on the non-critical parts the design quality 



 

can be significantly enhanced, yet still be able to meet 
the constraints.  

There are many tools, namely budget assignment and 
distribution tools, constructed on this basic idea. The 
extra flexibility in the design is extracted using an initial 
analysis of the circuit.  This extra flexibility assigned to 
higher level blocks are then distributed inside the block 
at lower levels. Our goal in this study is to develop a 
budget distribution tool to efficiently distribute the 
provided flexibility inside the building blocks of the 
circuit. We assume that budget distribution takes place at 
an early stage and the resulting values are provided to 
us. These values might be generated by any budget 
assignment tool according to the design constraints that 
are not known to us. Our basic goal is to input the given 
flexibility provided to us, and distribute it most 
efficiently at the lower levels, hence improve the power 
consumption of the circuit. More specifically, preceding 
the initial analysis of the circuit a higher level budgeting 
tool provides potential relaxation for the individual 
functional units. For instance, for a functional unit j the 
delay can be relaxed by budget B = 10%. This 
corresponds to the maximum allowed delay budget for a 
functional unit without affecting the worst-case timing 
of the circuit. Delay distribution tool then finds an 
effective distribution of this budget among the 
transistors of the functional unit. 

Given an SP graph G (V, E) and the maximum 
allowed timing relaxation B, let bi represent the amount 
of budget allocated to edge ei ∈ E. The optimal budget 
distribution problem then can be formulated as: 

 

∑
∈∀ Ee

ibmax
 

 Subject to: Σ bi ≤ B (on each path in the functional unit) 
 
We assume that the budget assigned to each edge 
(transistor) is directly proportional to its delay. 
Therefore, the formulation constraint ensures that the 
result will meet the design timing constraint.  
 
5. Optimal Budget Distribution Algorithm 
 
 In this section, we present an optimal algorithm for 
budget distribution as formulated in the previous section. 
First, we mention some useful properties of SP graphs 
on which our budget assignment method relies. Then, 
we prove the optimality and efficiency of our algorithm. 

 Lemma.1: Let Gain(G, T) denote the maximum total 
amount of budget that can be assigned to graph G, 
under timing relaxation T. In other words, Gain(G, T) is 
the maximum value of the cost function presented in 
section IV when B=T. Then: 

Gain(G, T)= (T/T’) ·Gain(G, T’). 

 Proof: We prove the lemma by way of contradiction. 
Assume Gain(G, T)<(T/T’)·Gain(G, T’). Let vectors b 
and b’ denote the budget assignment distribution under 
timing relaxation T and T’ respectively, i.e., bi is the 
amount of budget assigned to edge i. We construct 
vector b by multiplying b’ by (T/T’). Vector b created by 
this operation is a valid budget distribution (because it 
meets the constraint of having at most T unit of budget 
on each VCC/GND to output path) and its total budget is 
(T/T’)·Gain(G, T’), which is greater than Gain(G, T) 
according to the assumption. Therefore, Gain(G, T) is 
not the maximum budget distributed under timing 
relaxation T, which contradicts the assumption. Hence, 
the assumption of Gain(G, T) < (T/T’) ·Gain(G, T’) does 
not hold. Similarly, we can construct b’ from b to show 
that the inequality Gain(G, T) > (T/T’)·Gain(G, T’) does 
not hold, therefore the lemma is proved ■ 

 Corollary.1: The budget distribution solution for an 
SP graph is scalable by the timing constraint.  

Lemma.2: For any SP graph G, if T = T1 + T2, then: 

Gain(G, T) = Gain(G, T1) + Gain(G, T2) 

Proof: Let vectors b, b1 and b2 represent the budget 
distributions for G under timing relaxation T, T1 and T2 
respectively. Assume Gain(G, T) < Gain(G, T1) + 
Gain(G, T2). We construct b = b1 + b2. Therefore, the 
amount of budget distributed on each VCC to output (or 
GND to output) path by b, is not greater than T = T1 + 
T2. Hence, b is a valid budget distribution whose gain is 
equal to Gain(G, T1) + Gain(G, T2), which is greater 
than Gain(G, T) according to the assumption. This 
contradicts with the optimality of Gain(G, T). Similarly, 
we can decompose b into b1 and b2 to show that Gain(G, 
T) > Gain(G, T1) + Gain(G, T2) assumption is not true, 
which proves the lemma ■ 

 
Theorem.1: Assume that SP graph G(V, E) is created 

by parallel composition of SP graphs G1(V1, E1) and 
G2(V2, E2). Then,  

Gain(G, T) = Gain(G1, T) + Gain(G2, T). 

 Proof: Let vectors b, b1 and b2 represent the budget 
distributions for G, G1 and G2 under timing constraint T. 
If Gain(G, T) < Gain(G1, T) + Gain(G2, T), we can 
construct b by merging  b1 and b2. Since, G is created by 
parallel composition of G1 and G2, b is a valid budget 
distribution for G and it meets the timing constraint of T. 
The gain of the new budget distribution for G is 
Gain(G1, T) + Gain(G2, T), which contradicts the 
assumption.  

If we assume Gain(G, T) > Gain(G1, T) + Gain(G2, T), 
b can be similarly decomposed into b1 and b2 to show 
the a contradiction. Hence, Gain(G, T) = Gain(G1, T) + 
Gain(G2, T) ■ 



 

 Theorem.2: Assume that SP graph G(V, E) is created 
series composition of SP graphs G1(V1, E1) and G2(V2, 
E2). Then, 

Gain(G, T) = MAX(Gain(G1, T), Gain(G2, T)). 

 Proof: Since the total budget along any path must not 
exceed T, the timing relaxation B has to be divided 
between G1 and G2. Assume that B1 and B2 represent the 
timing relaxation assigned to G1 and G2 respectively, 
therefore B1+B2=B. 

Without loss of generality, assume that Gain(G1,B1) ≤ 
(B1/B2).Gain(G2,B2). According to Corollary.1, (B1/B2) 
·Gain(G2,B2)= Gain(G2,B1). And according to lemma 2, 
Gain(G1,B1)+Gain(G2, B2) ≤ Gain(G2,B1)+Gain(G2,B2)= 
Gain(G2, B). In other words, assigning all of the timing 
relaxation B to one of the two constituting subgraphs 
will not harm the solution quality. Therefore, Gain(G, B) 
= MAX(Gain(G1, B), Gain(G2, B) ■ 

 Corollary.2: There is an optimal budget assignment 
in which, edges receive either budget B or no budget at 
all. 

 In summary, we proved that for optimally assigning 
the budget to an SP graph, we should solve two 
subproblems of smaller size at each parallel 
composition, and one problem at each series 
composition point. The subproblems can be also solved 
recursively according to the same rule. However, the 
question of “which subgraph to pick at a series 
composition point” is not answered yet. We will address 
this issue in the rest of this section. The aforementioned 
method optimally assigns the budget B to some of the 
edges in the graph. However, it does not try to distribute 
the budget to many edges of the graph. The optimal 
budget assignment can be distributed according to the 
following lemma: 

 
Figure 3. An SP graph and its corresponding binary 
tree. Leaves denote graph edges and internal nodes 
represent composition rules. The budget is assigned 
to gray leaves, which are denoted by dashed edges 
in graph. 

Lemma.3: Given a path of k edges with budget B 
assigned to one of them, the budget can be reassigned 
such that all k edges are relaxed by budget B/k. This 
budget reassignment preserves the solution’s quality 
(optimality). 

The results of Lemma 3 can be integrated with Corollary 
2 to construct the optimal budget assignment algorithm. 
By definition, an SP graph G (V, E) can be modeled 
using a binary tree, whose internal nodes represent series 
(S) and parallel (P) composition rules and its leaves 
denote edges with two terminals (see Figure.3). 
According to Corollary.2, there is an optimal solution in 
which, each tree leaf is either selected for assigning 
budget B or not selected at all. It follows that the optimal 
algorithm can traverse the tree in a bottom-up fashion to 
select the proper leaves. It can make decisions as to what 
path to take at “S” nodes, based on the number of leaves 
that can be relaxed by budget B. The information of such 
leaves can be propagated to upper levels recursively. 
Figure 3 illustrates a sample SP graph and the 
corresponding optimal solution. 

Furthermore, according to Lemma 3 the budget 
assigned to an edge can be safely reassigned among 
other adjacent edges on the same serial path. Note that 
nodes on the serial path can be connected to other parts 
of the graph only at either terminals of the path. For 
finding serial paths of an SP graph, immediate nodes 
with type ‘S’ are merged into one node. Then, all of the 
children of the new ‘S’ super-node are on the same serial 
path and the budget can be reassigned among those that 
are leaves, while preserving the optimality of the 
solution. 

Figure.4 outlines the pseudo code of the optimal budget 
distribution algorithm. “relaxable edges” in the pseudo 
code represent those edges of the graph that can 
potentially accept the budget B. The maximum budget 
that can be assigned is determined at the root. The edges 
that contribute to the maximum budget should be relaxed 
by B/k, where k is the number of edges in their 
corresponding serial path. 
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Algorithm OPTIMAL-SP-Budgeting: 

For all nodes of the tree in reverse order of their level Do: 

 if node is a leaf  

  relaxable edges = 1; 

 elseif node is a “P” operation 

relaxable edges = relaxable edges of left child +  

         relaxable edges of right child; 

 else ( node is a “S” operation) 

relaxable edges = MAX (relaxable edges of left child,   
              

                             relaxable edges of right child) 

maximum achievable budget = root->relaxable edges; 

for all edges that contributed to root->relaxable edges 

Budget (ei) = B / # of edges in the corresponding serial path;



 

5.1. Complexity Analysis 

Algorithm OPTIMAL-SP-Budgeting, visits each node 
of the binary tree exactly once. Hence, it runs in O(n) 
time in terms of the size of the input SP graph. It is 
evident that this also constitutes the lower bound for any 
other algorithm, because any algorithm has to read the 
input graph, which requires linear number of operations 
in terms of the size of the input. Therefore, our 
algorithm is optimal in terms of both complexity and 
solution quality. 
 
6. Experimental Results 
 
 We used functional units extracted from MCNC91 
benchmarks for our experimental analysis. The input 
benchmark expressions from MCNC91 combinatorial 
suite were optimized using SIS [7] Algebraic 
Optimization Script. The resulting optimized logic-level 
functions were then transferred to transistor level circuit 
layouts and inputted to HSPICE. The simulations were 
performed at 0.18µm process technology. The functional 
units vary from 20 transistors to as large as 62 
transistors. HSPICE is used for average and maximum 
power consumption analysis on the generated circuits. 
Randomly generated input vectors are used to drive the 
input voltages for the simulations. Figure.6 demonstrates 
the change in average power consumption over the 
given budget values. The x-axis indicates different 
budget values for the experiments that range from 10% 
to 300%.  
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Figure 6.   Average Power Consumption of 

benchmark circuits over different budget values 
(power values are normalized) 

The budget values are selected from a wide range to 
encompass the range that can be assigned to the 
functional units by the initial budgeting algorithm. It is 
important to note that functional units are assigned 
different budget values according to the criticality of the 
delay that they impose on the circuit. Those functional 
units that are contributing to the high-delay paths (but 
not on the critical path) might be assigned budgets as 
low as 10% or even less. However, for functional units 
that are not on the critical path, much higher budgets can 
be assigned.  The decrease in maximum power 

consumption follows a similar pattern with the average 
consumption as well. It is important to note that the 
results in power gain vary for different algorithms. In 
order to illustrate the effects of budget distribution 
algorithm on the overall results, we have conducted a 
second set of experiments with an alternative budget 
distribution algorithm. This algorithm is based on a 
similar idea to commonly used Zero Slack Algorithm. 
The amount of budget is distributed to the transistors 
without special preference on any transistor and the 
scheme tries to maximize the number of transistors that 
are affected by the budgeting.   

Table 2 and 3 illustrate the percentage difference in 
the power consumption results between the two 
algorithms. As the results indicate, the amount of gain 
that can be attained through budgeting is heavily 
dependent on the budget distribution method. Our 
algorithm outperforms in all of the benchmark circuits 
for all budget values. The difference in the resulting 
power consumption is as high as 59% and 65% in 
average and maximum power dissipation values 
respectively.  In general the running time was in the 
order of seconds for the experimented functional units. 
The complexity of the algorithm is optimal in terms of 
the input size, which is linear in number of transistors in 
the circuits.  
 
7. Conclusion 
 In this paper we propose an optimal and efficient 
budget distribution technique at transistor level. Our 
experiments illustrate that this method yields significant 
power improvements. The improvements are as high as 
59% in average and 65% in maximum power 
consumption compared to an alternative budget 
distribution algorithm based on a similar idea to ZSA. 
Furthermore the algorithm has linear time complexity, 
which is optimal in input size. In this work we applied 
our budget distribution idea to transistor level power 
optimization. However, our technique is general and can 
be applied toward other optimization objectives.  
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% Diff (Avg) 10% 20% 30% 40% 50% 70% 80% 100% 150% 200% 300% 
B12(F1) 2.645 5.229 7.706 8.099 12.301 17.237 19.212 22.433 33.231 42.437 59.069 
B12(F2) 2.379 4.498 6.706 8.789 10.917 14.922 16.78 20.006 28.703 36.874 50.78 
B12(F3) 1.072 2.096 3.127 4.146 5.162 7.1513 8.0879 9..962 14.48 19.123 27.222 
B12(F4) 1.464 2.895 4.189 5.51 6.7404 9.2557 10.381 12.989 18.531 23.872 33.792 

CLIP(F8) 2.295 4.566 6.724 8.847 11.074 15.193 17.388 21.342 31.005 40.646 58.09 
MISEX2(F9) 1.959 3.956 5.558 7.327 9.092 12.354 14.019 17.221 24.606 31.05 44.424 
ALU4(F14) 1.453 2.849 4.485 5.57 6.799 9.288 10.492 12.863 18.279 23.126 31.526 
VG2(F16) 1.085 2.112 3.068 4.043 4.986 6.644 7.4311 8.9302 12.217 14.908 19.062 

X5XP1(F17) 1.1 2.149 3.092 4.068 4.985 6.658 7.4658 8.984 12.242 14.976 19.17 

 

Table 2. Percentage difference between maximum power dissipation of Optimal-SP-Budgeting and alternative  method

% Diff (Max) 10% 20% 30% 40% 50% 70% 80% 100% 150% 200% 300% 
B12(F1) 3.015 5.827 8.647 8.89 13.945 19.694 22.081 26.651 37.87 47.864 65.608 
B12(F2) 2.469 4.753 7.05 9.197 11.365 15.516 17.406 21.238 29.887 37.52 50.166 
B12(F3) 1.777 3.39 5.112 6.783 8.305 11.448 12.859 15.649 22.712 30.465 40.326 
B12(F4) 1.823 3.609 5.231 6.885 8.500 11.554 12.975 15.861 22.484 28.649 39.166 

CLIP(F8) 1.186 2.411 3.468 4.535 5.655 7.3169 8.882 10.676 15.267 20.217 28.685 
MISEX2(F9) 1.262 2.578 3.772 4.923 6.168 8.3118 9.469 11.602 16.588 21.202 29.388 
ALU4(F14) 1.878 3.766 6.151 7.308 8.997 12.361 13.986 17.182 24.664 31.626 44.298 
VG2(F16) 2.677 5.234 7.65 10.06 12.499 17.046 19.204 23.517 33.347 41.894 57.678 

X5XP1(F17) 2.463 4.854 7.089 9.355 11.559 15.692 17.685 21.569 30.335 38.198 51.719 


