
A QoS Scheduler for Real-Time Embedded Systems

David Matschulat, César A. M. Marcon, Fabiano Hessel

PPGCC - FACIN – PUCRS - Av. Ipiranga, 6681, Porto Alegre, RS – Brazil

Fabiano.Hessel@pucrs.br

Abstract

The increasing demand for real-time embedded

applications makes evident the need for end-to-end

Quality of Service (QoS) provisioning. In order to

achieve the end-to-end QoS, we propose the

implementation of the control and management of QoS

mechanisms in the operating system scheduler. A new

scheduling algorithm, named ER-EDF, is proposed

and compared to previous scheduler solutions. This

approach was validated through a set of benchmarks

and we conclude that ER-EDF adds performance and

simplified hard real-time support to real-time

embedded applications.

1. Introduction

Real-Time Operating Systems (RTOS) services and

mechanisms (e.g. scheduling) with QoS support

emerged to provide predictability to the critical

systems. However, the current generation of RTOS

schedulers lacks adequate support for applications with

stringent QoS requirements. Since processing and

communication requirements are distinct for each

media type, different QoS guarantees are necessaries to

maintain synchronization characteristics, temporal

constraints, and reliability of an application.

The key issues of this paper is to discuss and

propose an adequate support for QoS provisioning and

service adaptability that can be built in a general

purpose RTOS. In this sense, we present a new

scheduling algorithm for QoS provisioning (ER-EDF).

In this paper, we mainly focus on the QoS provisioning

for hard real-time tasks.

In order to validate the proposed approach, three

algorithms were implemented in an RTOS: EDF,

Reservation EDF (R-EDF) and Enhanced R-EDF (ER-

EDF). The main issue of the ER-EDF is the

performance enhancements and support for processing

reservation for hard real-time tasks.

The remaining of this paper is organized as follows.

Section 2 presents the related work. Sections 3, the

basic concepts of job and task model are explained.

Section 4 presents the R-EDF algorithm and its

limitations. Section 5 presents the new algorithm ER-

EDF. Section 6 shows the implementation and

experiments created to validate the proposed algorithm.

Finally, Section 7 concludes this work.

2. Related work

Deng [1] proposed a scheduling scheme for hard

real-time applications in open environment. However,

these algorithms usually do not work well where soft

real-time applications coexist with best-effort

applications. Abeni and Buttazzo [2] introduced the

Constant Bandwidth Server (CBS), which schedules

tasks based on budget reservation. CBS restricts the

execution of tasks to its budget to protect other tasks,

thus allowing unnecessary deadline misses.

Zhu [3] proposed the Diff-EDF scheduler, which

offers guarantees to tasks by changing a task’s

deadlines based on its desired miss-rate. Diff-EDF

lacks support to multiple classes and hard real-time

tasks. SMART [4] and Rialto [5] allow applications to

specify real-time requirements for a computation unit.

These approaches may incur a large overhead, since

real-time applications usually contain a lot of code

blocks with timing constraints and it is necessary to

specify time constraints for each individual code block.

Yuan [6] introduced the R-EDF algorithm, which

targets the mix of soft real-time applications and best-

effort applications. However, the algorithm can deliver

unexpected results for soft real-time applications

generating undesirable delays. This work improves R-

EDF algorithm by hard real-time supporting and a

better overall performance of the application.

3. Job and Task Models

Models of real-time systems may use the concepts

of task and job to represent the behavior of

applications. A task is a part of an application, since

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.94

564

9th International Symposium on Quality Electronic Design

0-7695-3117-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ISQED.2008.94

564

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:17:13 UTC from IEEE Xplore. Restrictions apply.

that an application can be seen as a set of tasks. A job

computes part of a task, having a release time and

deadline.

Together with the release time and deadline, a job

has the processing time P and the relative deadline R,

which, for this work, it is also considered the period of

the task. The utilization θ of a job J is θ(J) = P/R. The

task T is composed by a set of jobs (T = {J1, J2, ...,

Jn}, where n ≥ 1). In a task T with n jobs, the

utilization of the task is
n

i

i

J

n

)(
1

∑
=

=)(Τ

θθθθ

θθθθ . The current

job list (CJL) of a task is the set of jobs that have

already been released but not yet completed. That is,

CJL(T) = {Js, …, Jm}, where Jm is the latest released

job.

4. R-EDF Concepts and Limitations

R-EDF is based on the EDF, and proposes to add

QoS to task scheduling. It is accomplished by reserving

the processing time via parameterization. R-EDF

classifies five types of tasks:

• Periodic Constant Processing Time (PCPT) jobs

have constant processing time and relative

deadline, resulting in constant utilization.

• Events are a special kind of PCPT with only one

job.

• Periodic Variable Processing Time (PVPT) jobs

have constant relative deadline and variable

processing time.

• Aperiodic/Sporadic Constant Utilization

(ASCU) jobs have arbitrary relative deadlines and

processing time.

• Best-effort tasks have no timing restrictions, but

should not starve.

Utilization θ and peak utilization ψψψψ are defined, as

the average utilization of all jobs of a task and the

maximum utilization among all jobs of a task,

respectively. Each task reserves the processing time for

all its jobs at the beginning of the task, based on θ for

soft real-time tasks and ψψψψ for hard real-time tasks.

When a job exceeds its reservation limit, it enters in the

overrun state. The job returns to the ready state when

the next release time of the task comes.

Therefore, a system with M processor has capacity

M. R-EDF statistically multiplexes the processor

capacity between real-time and best-effort tasks. The

time-sharing capacity CTS is the unreserved capacity,

which is shared among all best-effort tasks. CTS has a

lower bound ββββ, such that CTS ≥ β, to protect best-effort

tasks from starvation. Real-time capacity CRTp and

peak capacity PCRTp of a processor p (1 ≤ p ≤ M) are,

respectively, the sum of the utilizations of the tasks and

the sum of peak utilization of tasks bound to a

processor. That is,)(
1

i

m

i

RTp TC ∑
=

= θθθθ and

)(
1

i

m

i

RTp TC ∑
=

= θθθθ , where Ti (1 ≤ i ≤ m) are real-time

tasks bound to a processor p. The system is classified

as being real-time overloaded if PCRTp > 1, or

βMPC

M

p
RTp∑

=

>
1

 - for the whole system. Otherwise, the

system is under loaded. Analyzing the R-EDF

algorithm’s behavior, a limitation was found: the

restrictive reservation. This limitation appears when a

job uses all its reserved time and enters in the overrun

state. In the most cases would be time available to

complete the execution of the job in the period

(expanding automatically the reservation). In the

proposed algorithm (ER-EDF) we solve this issue by

allowing tasks to execute in the extra available time

(see Section 5). In addition, R-EDF does not support

hard real-time tasks, since it assumes that a job can

miss its deadline when the reservation is reached. In

this algorithm, if a task enters in the overrun state, it

will miss its deadline.

5. The ER-EDF Algorithm

Enhanced R-EDF (ER-EDF) is an improvement of

R-EDF. It was conceived to improve the QoS delivered

to soft real-time tasks and provide reservation for hard-

real time ones.

The hard real-time reservation is accomplished with

the establishment of reservations based on the peak

utilization ψψψψ of a task. This allows the scheduling of

hard real-time, soft real-time and best effort tasks in the

same system.

5.1. Admission Control

Changes in the admission control were introduced to

effect the proposed alterations. At the creation time,

each task informs the scheduler if it is a soft or hard

real-time task. The admission control algorithm is

presented below.

Step 1: real-time capacity CRTp and peak real-time capacity
PCRTp of each processor p are set to 0 and the time-sharing
capacity CTS is set to M.

Step 2: A real-time task with utilization θ and peak utilization ψψψψ
requests reservation:

If the task is hard real-time then (reserve using ψψψψ)

565565

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:17:13 UTC from IEEE Xplore. Restrictions apply.

If the time-sharing capacity can be reduced to admit

this task CTS - ψψψψ > ββββ, and a processor p can fulfill the

requirement CRTp + ψψψψ ≤ 1 then

Task is bound to the processor p, with: CRTp =

CRTp + ψψψψ; PCRTp = PCRTp + ψψψψ; CTS = CTS - ψψψψ

Else

Task is rejected.

Else (reserve using utilization θ):

If the time-sharing capacity can be reduced to admit

this task CTS - θ > ββββ and a processor p can fulfill the
requirement CRTp + θ ≤ 1 then

Task is bound to the processor p, with: CRTp =

CRTp + θ; PCRTp = PCRTp + ψψψψ; CTS = CTS - θ

Else

Task is rejected

Step 3: If a real-time task with utilization θ and peak utilization

ψψψψ, bound to a processor p, releases its reservation, then:

If the task is hard real-time, then

CRTp = CRTp-ψψψψ; PCRTp = PCRTp-ψψψψ; CTS = CTS+ψψψψ.

Else

CRTp = CRTp - θ; PCRTp = PCRTp - ψψψψ; CTS = CTS + θ.

End if

5.2. Scheduling

ER-EDF incorporates modifications to allow better

use of the processing capacity. These modifications are

conceived to allow a task to exit its overrun state and

execute in the available time. The modifications

include:

1. Forbid a task to enter in the overrun state when

there is not any real-time task ready;

2. At the end of a job, remove the task with the

earliest deadline from the overrun state if no other real-

time task is ready to execute.

Like its predecessor, ER-EDF only activates the

overrun protection mechanism when the system is

overloaded. Consequently, ER-EDF has analogous

behavior as the EDF algorithm, when the system is

under loaded. The ER-EDF algorithm is described

next.

Step 1: Selection a task for execution.

If any real-time task is ready, then

Select one whose latest released job has the earliest
deadline and execute jobs in the CJL in order;

Else if there is a task in the overrun state, then

Select the task in the overrun state whose latest
released job has the earliest deadline, put it in the
ready state and execute jobs in the CJL in order.

Else

Invoke the best-effort task scheduler.

Step 2: The scheduler waits until the next time unit.

If a running task finishes all its jobs, then

It enters the waiting state;

Else if the system is overloaded and the CJL of the current
task is not empty and the task used all its reserved time,
then

If there is any real-time task ready then

Current task enters the overrun state.

Else if the ran utilization of the current task is greater

or equal than (1- ββββ), then

It enters the overrun state.

Else

It continues to execute.

Check all tasks for reached release times and set them to
the ready state.

Step 3: Go to step 1.

6. Implementation/Experiments

The Spartan-3 Starter Board [7], together with

MIPS soft-core processor, was used to validate the

proposed algorithms. The operating system used is

EPOS
1
.

The first experiment has 4 tasks. Each task has 500

jobs to execute simultaneously. The first three are

PCPT tasks (θ = ψψψψ). Thus, PCPT tasks have similar

behavior to tasks marked as hard real-time.

Table 1 presents the parameters used to generate the

experiment data. Task 2 is the only one marked as hard

real-time. Task 4 is a PVPT task where each job

receives a generated utilization based on a linear

distribution, where the minimum is 10% and the

maximum is 42%.

Table 1: Parameters for first experiment

The deadline miss results for the four tasks of the

execution are presented in Figure 1. In this experiment,

the hard real-time parameter was disabled in R-EDF

and ER-EDF to verify the similar behavior for PCPT

tasks. Even though only the second task is marked as

hard real-time, all first three behave similarly, losing

0% of its deadlines. In the execution of the EDF

algorithm, all tasks miss deadlines. R-EDF and ER-

EDF present no deadline miss for PCPT tasks, which is

therefore compensated in the PVPT task. However,

ER-EDF presents lower deadline miss rate compared to

R-EDF.

1
 Available in http://epos.lisha.ufsc.br/

566566

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:17:13 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Deadline miss comparison

The next experiment shows two tasks with different

periods executing in an overloaded environment. The

first task is a hard real-time PCPT with constant

utilization of 50%. The second is a PVPT with

numbers generated by a linear distribution. Table 2

shows the parameters for the second experiment.

Table 2: Parameters for second experiment

Figure 2 compares EDF, R-EDF and ER-EDF

showing their deadline miss rate EDF presents an

undesirable behavior showing considerable deadline

miss rate for both tasks. R-EDF shows the first task

correctly being treated as hard real-time with 0%

deadline miss. ER-EDF shows analogous execution to

R-EDF. However, ER-EDF presents an improvement

of 30% on the second task over R-EDF.

Figure 2: Deadline miss comparison

7. Conclusions

This work introduced a new real-time scheduler

algorithm to provide quality of service to applications.

The new algorithm – Enhanced R-EDF – is based on

R-EDF, a multiclass real-time scheduler. R-EDF

presents some limitations that are overcome by the new

algorithm. In addition, the support for hard real-time

tasks was added, which is fundamental to applications

that require great responsiveness, and allows the

existence of hard real-time, soft-real time and best

effort tasks in the same system.

ER-EDF showed significant improvement over its

predecessor R-EDF. The addition of hard real-time

support allows developers to parameterize the

application to fulfill application’s real-time

requirements. However, the enhancement of real-time

execution costs to the best-effort tasks more starvation

time.

8. References

[1] Z. Deng and J. Liu. Scheduling Real-Time Applications

in an Open Environment. IEEE Real-Time Systems

Symposium, p. 308-319, 1997.

[2] L. Abeni and G. Buttazzo. Resource Reservation in

Dynamic Real-Time Systems. Real-Time Systems, v.

27, n. 2, pp. 123-167, 2004.

[3] H. Zhu et al. Diff-EDF: A Simple Mechanism for

Differentiated EDF Service. IEEE Real Time

Technology and Applications Symposium, pp. 268–

277, 2005.

[4] J. Nieh and M. Lam. The Design, Implementation and

Evaluation of SMART: A Scheduler for Multimedia

Applications. SOSP, pp. 184–197, 1997.

[5] M. Jones et al. An Overview of the Rialto Real-Time

Architecture. ACM SIGOPS European Workshop,

pp. 249-256, 1996.

[6] W. Yuan, K. Nahrstedt, and K. Kim. R-EDF: A

reservation-based EDF scheduling algorithm for

multiple multimedia task classes. IEEE Real Time

Technology and Applications Symposium, pp. 149-

154, 2001.

[7] Xilinx, Inc. Spartan-3 Starter Kit Board - User Guide,

2005. Available at

www.xilinx.com/bvdocs/userguides/ug130.pdf.

567567

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 18,2022 at 13:17:13 UTC from IEEE Xplore. Restrictions apply.

