
A Basis for Formal Robustness Checking∗

Görschwin Fey1,2 Rolf Drechsler2
1VLSI Design & Education Center 2Institute of Computer Science

University of Tokyo, Tokyo 113-0032, Japan University of Bremen, 28359 Bremen, Germany
{fey,drechsle}@informatik.uni-bremen.de

Abstract

Correct input/output behavior of circuits in presence of
internal malfunctions becomes more and more important.
But reliable and efficient methods to measure this robust-
ness are not available yet.

In this paper a formal measure for the robustness of a
circuit is introduced. Then, a first algorithm to determine
the robustness is presented. This is done by reducing the
problem either to sequential equivalence checking or to a
sequence of property checking instances. The technique
also identifies those parts of the circuit that are not robust
from a functional point of view and therefore have to be
hardened during layout.

1 Introduction

The number of safety critical applications that rely on in-
tegrated circuits is growing, e.g. “stear-by-wire” in cars or
important control functions in planes. The functional cor-
rectness is certified by massively applying simulation-based
as well as formal verification methods.

At the same time the number of components integrated
in a single circuit grows rapidly according to Moore’s Law.
Meanwhile the area occupied by a single component shrinks
continuously. The reliability of components decreases and
a circuit becomes sensitive to faults that occur after produc-
tion during in-field application. Among such faults are tran-
sient malfunctions due to environmental radiation that cause
Single Event Upsets (SEU) or static faults caused e.g. by
electro-migration due to aging of the material.

Architectural measures are already applied during circuit
design to ensure that malfunctions of components do not
impact the functional correctness. Thus, the malfunction is
signaled while the input/output behavior is consistent with
the original specification. A simple technique to achieve
such robustness in presence of unreliable components is re-
dundancy. Fault tolerant codes are more sophisticated.

A symbolic approach to analyze the reliability of circuits
has recently been introduced in [7]. Outcome of the anal-
ysis is a probability for faults in the output response of the

∗This work is partially funded by the Advantest Corporation.

circuit. Hints to identify non-robust internal structures are
not provided.

Simulation-based validation techniques are commonly
used to ensure that the circuit fulfills the specification even
in presence of malfunctions. These malfunctions are in-
jected into the internal structures of the circuit. Then, sim-
ulation shows whether the malfunction produces faulty out-
put responses. To improve the coverage of the state space,
emulation techniques can be applied [1]. But these tech-
niques are incomplete in the sense that not all states of the
system can be covered. States that cause faulty behavior
when a malfunction occurs may remain uncovered.

On the contrary, the application of formal methods
proves that any malfunction in any state of the system under
any input sequence (1) is detected and (2) does not cause er-
roneous input/output behavior. First approaches were pro-
posed in [5, 4]. Both methods apply tools for formal verifi-
cation as a “black box”. To prove the robustness of a circuit
with respect to a given fault model, each individual fault has
to be injected by applying a mutant to the circuit descrip-
tion. The resulting faulty circuit is then formally verified
against the correct circuit. An explicit enumeration of all
possible faults is necessary, which is not feasible to capture
multiple faults occurring at the same time. Moreover, the
types of covered faults is limited by the mutants that are
applied. The method in [5] only returns “yes” or “no” to
the question whether the circuit is robust with respect to a
particular fault. Additionally, [4] determines the percent-
age of “robust states” of the system. These answers do not
help when trying to identify parts of the circuit where the
robustness has to be improved by architectural changes or
by hardening the physical circuit structures [14].

Here, a first formal approach is presented to implicitly
consider all faults with respect to different fault models.
The proposed algorithm determines those locations in the
circuit where the fault tolerance has to be improved. For
each location that is not robust, a particular fault and a sim-
ulation trace exciting the faulty output response can be cal-
culated. The robustness of a circuit with respect to a given
fault model is formally defined. When 100% robustness is
achieved, no fault of the given fault model has an impact on
the input/output behavior of the circuit. The calculation of
the robustness measure is reduced to sequential equivalence

checking. Using formal methods, the process to implicitly
consider all faults is explained. A solver for Boolean Sat-
isfiability (SAT) is applied as the proof engine. The basic
technique has similarities to SAT-based diagnosis as intro-
duced in [10]. An inductive approach to improve the perfor-
mance for certain circuits is discussed. Experiments show
the practical applicability.

This paper is structured as follows: Preliminaries are re-
viewed in the following section. The notion of robustness
is introduced together with the appropriate fault models in
Section 3. The algorithm to implicitly consider all faults ac-
cording to a given fault model is presented in Section 4. A
decomposition using an inductive approach is discussed in
Section 5. First experimental results are reported in Section
6. Finally, the work is summarized in the last section.

2 Preliminaries

A circuit C consists of a set of components. Among these
are primary inputs, primary outputs, state elements and in-
ternal combinational components g ∈ C. A Boolean func-
tion is associated with each internal component. A single
gate, a module or a Register Transfer (RT) level expression
may correspond to a component. The structure of the cir-
cuit is defined by a graph. In particular, this graph uniquely
provides predecessors and successors of a component.

The size of the circuit is given by the number of compo-
nents, i.e. by |C|. A part of a circuit is a subset S ⊆ C of the
components. The size of S is given by |S|.

The input/output behavior of the circuit emerges from
the composition of components and their functionality.
Starting from a defined initial state, that is reached by a re-
set sequence, a particular input sequence leads to a unique
output sequence [9].

For the manipulation of Boolean functions there exist
different techniques. In this work SAT provers [3] are ap-
plied. The transformation of a circuit into a SAT instance
requires run time and memory resources linear in the size
of the circuit [13]. The decision whether a SAT instance is
satisfiable is NP-complete [2]. Nonetheless, modern SAT
solvers effectively handle large problem instances [6, 8].

3 Measuring Robustness

Fault models are introduced in this section and motivated
by faults of practical relevance. Then, a formal measure of
robustness is defined with respect to the fault models.

3.1 Fault Models

Faults occurring during in-field application can be
grouped in transient faults, e.g. so called SEUs caused by
radiation, and static faults, e.g. due to electro-migration pro-
cesses. To differentiate the robustness of a circuit with re-
spect to these types, appropriate fault models are introduced
in the following.

Definition 1 A circuit C and a part S ⊆ C of this circuit
are given.

1. Injecting a fault according to the non-deterministic
fault model FN , means to replace the outputs of a com-
ponent g ∈ S by new primary inputs.

2. Injecting a fault according to the combinationally de-
terministic fault model FC , means to replace a com-
ponent g ∈ S by a new combinational subcircuit that
has the same successors as g.

3. Injecting a fault according to the locally deterministic
fault model FL, means to replace a component g ∈
S by a new combinational circuit that has the same
predecessors and successors as g.

The sequence of fault models FN , FC and FL imposes
an increasing number of constraints onto the functional
modification of the circuit. For example, each faulty output
response that can be achieved by injecting a fault according
to FC , can also be created by injecting a fault according to
FN – but not vice versa.

The fault models correspond to different realistic fault
types. Certain types of static faults can be modeled by FL,
e.g. transistor level faults like shorts may result in chang-
ing the function of a gate. On the other hand any fault that
leads to faulty values on the functional level can be modeled
by FN due to the non-determinism introduced by this fault
model. In particular transient faults like SEUs are caught
by this model.

In the following the set CC,S,F,η denotes the set of all
circuits that can be derived from circuit C by injecting η
faults according to fault model F into a part S ⊆ C.

3.2 Definition

A circuit is called robust if no fault changes the in-
put/output behavior. Nonetheless, for example a SEU that
occurs at a primary output of a circuit may inevitably mod-
ify the output response of the circuit. To avoid this, indi-
vidual parts of a circuit can be hardened during fabrication,
e.g. by using larger structures to realize the components.
But this kind of robustness cannot be captured on a Boolean
model of the circuit without layout or mapping information.
Therefore a more sophisticated definition of robustness that
can be applied to parts of the circuit is necessary.

Moreover, in some cases robustness with respect to sin-
gle faults may not be sufficient, because even a local phe-
nomenon may cause a malfunction of multiple components.
Therefore the notion of robustness is defined with respect to
multiple faults as well.

Both aspects – the consideration of parts of a circuit and
multiple faults – are covered by the following definitions. A
robust subcircuit is defined as follows.

Definition 2 A circuit C, a fault model F and an integer
η ≥ 1 are given. A part S ⊆ C of C is called (F , η)-robust
if no injection of η faults into S according to F changes the
input/output behavior of C.

This is the basis to define the robustness of a circuit C
for η-fold faults with respect to a fault model F . Using the
largest (F , η)-robust part S of the circuit is not sufficient
in presence of multiple faults in general. Some other part
T that is not (F , η)-robust may share components with S.
Therefore the largest part S of C is determined that does
not have a component which occurs in an η-fold fault that
changes the input/output behavior of C.

Definition 3 A circuit C, a fault model F and an integer
η ≥ 1 are given. The (F , η)-robustness of C is given by
RF,η = |S|

|C| , where S is a maximal subset of C such that
forall T ⊆ C if

S ∩ T �= ∅ and |T | ≤ η

then
T is (F , |T |)-robust.

The robustness of a circuit with respect to a given formal
property can be defined analogously. Consequently, the al-
gorithm that is introduced in the next section can by applied
to calculate the robustness with respect to a property.

4 Calculating Robustness

Sequential equivalence checking can obviously be used
to calculate the robustness of a circuit. The sequential
equivalence of the original circuit to all possible faulty cir-
cuits has to be verified to proof robustness. This is summa-
rized by the following theorem.

Theorem 1 A circuit C and a set of faulty circuits CC,S,F,η

are given. A part S is (F , η)-robust if and only if each cir-
cuit C′ ∈ C is sequentially equivalent to C.

Despite the direct mapping of state elements between the
faulty circuit and the original circuit, a simple reduction to
combinational equivalence is not possible in general. A
fault may change the state transition function without im-
pact on the input/output behavior. Moreover, the number
of derived faulty circuits is very large. An enumeration of
all these circuits would be too time consuming. Therefore
an algorithm to consider all faulty circuits in a single SAT
instance is presented.

The new approach “borrows” ideas that were originally
proposed for diagnosis based on SAT [11, 12]. During di-
agnosis a modification of the circuit is needed that allows
to correct faulty behavior. In the context of robustness
checking, a modification that causes incorrect behavior is
required.

Initially, the approach is explained for fault model FN

and then extended to handle the other fault models. The cre-
ation of the SAT instance is explained in terms of a circuit
that is transformed into conjunctive normal form afterward.

Figure 1 shows the overall flow in pseudo code. The
algorithm computes the robustness of a circuit C with re-
spect to fault model F and η-fold faults. At first all non-
robust parts up to size η are determined and collected, then

1 f u n c t i o n l a r g e s t R o b u s t P a r t (C , F , η , tmax)
2 c r e a t e a copy C′ of C ;
3 foreach component g ∈ C′ do
4 r e p l a c e g by g′[g, fg ,F] ;
5 done ;
6 f o r t = 1 . . . tmax do
7 u n r o l l C′ and C f o r t c y c l e s ;
8 f o r c e a t l e a s t one p a i r o f POs t o

d i f f e r e n t v a l u e s ;
9 c o n v e r t t o SAT i n s t a n c e ;

10 f o r k = 1 . . . η do
11 c o n s t r a i n

∑
fg = k ;

12 whi le (s a t i s f i a b l e) do
13 G = {g|fg == 1} ;
14 T := T ∪ G ;
15 add c o n s t r a i n t

∨
g∈G(fg == 0) ;

16 done ;
17 done ;
18 done ;
19 S := C \ T ;
20 re turn S ;
21 end f u n c t i o n ;

Figure 1. Algorithm to compute robustness

S is calculated. First a copy C′ of C is created (line 2). As
shown in Figure 2(a) a fault predicate fg is associated with
each component g ∈ C′ (lines 3-4). If fg = 1, the function
of g is modified; otherwise g behaves as in the fault free
case. Next, the sequential equivalence check of C′ and C
is performed. Both circuits are “unrolled” for t time steps
(line 7). The fault predicate of each component remains the
same for all time steps to reduce the complexity. Moreover,
a difference at least at one pair of primary outputs of the two
circuits is forced (line 8). The result is illustrated in Figure
2(b). This SAT instance is only satisfiable if the modifica-
tion of a component causes different output responses of the
circuits. If in-equivalence cannot be shown, the number of
time steps considered is increased up to tmax (line 6). To
guarantee that all components are calculated, the modifica-
tion of which causes faulty behavior, tmax has to be at least
equal to the maximal sequential depth of a product automa-
ton of C and Ĉ ∈ CC,S,F,η.

Now, by calculating all satisfying assignments (lines 10-
17), all components are determined that cause faulty behav-
ior when modified according to FN . Additionally, the num-
ber of fault predicates set to 1 is restricted to at most k (line
11) and iteratively incremented up to η (line 10). By this,
all non-robust subcircuits up to η-fold faults are retrieved.
These non-robust components are joined into the set T (line
14). The complement set of T with respect to C yields the
set S of Definition 3 (line 20).

The algorithm presented so far is restricted to FN . This
results from the modification of a component g as shown in
Figure 2(a). In the faulty case fg = 1, the component g may
behave non-deterministically like a primary input. For fault
models FC and FL additional constraints are necessary that
force g to behave deterministically.

For fault model FC this means in more detail: If the
assignment of state bits and primary inputs in time step t is

g
g’

fg

(a) Component

S

I

O

S

I

O

S

I

O

S

I

O

S

I

O

S

I

O

g’

f g

1 g’2 g’t

C’ C’ C’

C C C

<k

(b) Structure

Figure 2. SAT instance

equal to that in time step t′ then the output value of g has to
be identical in both time steps.

For fault model FL deterministic behavior is only re-
quired with respect to the direct predecessors of g.

From the previous explanation it is clear that the algo-
rithm in Figure 1 computes the robustness of a circuit.

Theorem 2 A circuit C, a fault model F and a positive inte-
ger η are given. Furthermore let S :=largestRobustPart(C,
F , η, tmax). The circuit C has a robustness of RF,η = |S|

|C| if
tmax is larger or equal to the sequential depth of the product
automaton of C and C′.

Instead of calculating the exact robustness, the determi-
nation of an upper bound for RF,η is possible. For this pur-
pose tmax is set to a smaller value than the sequential depth
of C and Ĉ ∈ CC,S,F,η.

5 Using Induction

Sequential equivalence checking needs a large amount
of resources regarding time and memory. Using property
checking, the problem can be decomposed.

Often a fault tolerant circuit includes logic to signal the
occurrence of an internal malfunction. This functionality
can be instrumented to decompose the sequential equiv-
alence checking problem. An inductive proof is applied
that consists of multiple formal properties. Each individ-
ual property only argues over a few cycles. The base of this
proof is an invariant that describes the fault free state of the
system. The robustness of the circuit is then calculated with
almost the same algorithm as introduced above. Instead of
the fault free circuit, the property is used as the reference
to model correct behavior. A disadvantage of this approach
is that it is not fully automatic. The properties and, espe-
cially, the invariant (to avoid reachability analysis) have to
be determined manually for each circuit.

The inductive proof is structured as follows:

1. Precondition:

Starting from the initial state, the system state is cap-
tured by an invariant Inv in the fault free case.

2. Step:

The assumption is that no fault occurred so far, i.e. the
invariant Inv is valid. Then, a case split is done for the
fault free and the faulty case.

(a) There occurs no fault.
A property proves that the circuit transitions from
a fault free state into another fault free state and
that the logic for fault detection does not signal a
malfunction, i.e. the invariant Inv is verified.

(b) A fault occurs.
A property proves that a transition into a state that
is unreachable if no fault occurs is recognized by
the fault detection logic, i.e. if the invariant Inv
becomes invalid, the occurrence of a fault is sig-
naled.

The precondition and case (a) of the induction step are
proven by a traditional property checker. Step 2.(b) requires
the modeling technique presented in Section 4.

Knowing Inv makes reachability analysis for faulty cir-
cuits superfluous. The objective is to prove that any tran-
sition into a – in the fault free case – unreachable state is
detected. The number of time steps that have to be con-
sidered depends on the functionality of the fault detection
logic. In the simplest case, each occurrence of an unreach-
able state is detected immediately. Then the consideration
of a single time step is sufficient.

6 Experimental Results

In the following several robust and non-robust circuits
are considered. All experiments are carried out with respect
to the fault model FN . All run times are measured on an
AMD Athlon 64 3500+ with 1 GB running Linux. The re-
sources were restricted to 1800 seconds of CPU time and to
768 MB of memory. A time out is denoted by ‘TO’ in all
tables.

Three series of experiments were performed. First, IS-
CAS benchmark circuits that are typically non-robust are
analyzed to evaluate the performance of the algorithm. Sec-
ond, robust circuits were created and the robustness was de-
termined. Finally, the inductive approach using property
checking is exemplary carried out for one benchmark.

6.1 ISCAS’89 Benchmarks

Results for some of the ISCAS’89 benchmarks are
shown in Table 1. Only “interesting data” is reported,
i.e. for those benchmarks that provide some insight into
the algorithms and where at least one algorithm finished.
The (FN , η)-robustness of the circuits is determined for
η ∈ {1, 2}. Here tmax was not determined analytically;
fixed values considered instead, i.e. 5, 10 and 15. Given
are the name of the circuit (C), the value used for tmax, the
number of gates contained in the overall problem instance

Table 1. Run times for ISCAS benchmarks
single double

C tmax #gt tmV |C| |S|RFN ,1 tm1 |S|RFN ,2 tm2

s1196 51058 0.6 529 0 0.0% 3.6 0 0.0% 3.7
s1196 101058 0.6 529 0 0.0% 3.6 0 0.0% 3.8
s1196 151058 0.6 529 0 0.0% 3.6 0 0.0% 3.8
s1238 51016 0.5 508 0 0.0% 2.9 0 0.0% 3.0
s1238 101016 0.5 508 0 0.0% 2.8 0 0.0% 3.0
s1238 151016 0.5 508 0 0.0% 2.8 0 0.0% 2.9
s1423 51314556.7 657 10 2.0%1378.0 - - TO
s1423 101314 TO 657 0 0.0% 135.0 - - TO
s1423 151314 TO 657 0 0.0% 608.1 - - TO
s1488 51306 4.0 653 0 0.0% 8.1 0 0.0% 9.8
s1488 101306117.6 653 0 0.0% 21.8 0 0.0% 41.1
s1488 151306638.4 653 0 0.0% 58.3 0 0.0% 122.5
s1494 51294 2.1 647 0 0.0% 9.6 0 0.0% 10.9
s1494 101294121.8 647 0 0.0% 20.2 0 0.0% 44.9
s1494 151294680.4 647 0 0.0% 44.7 0 0.0% 127.7
s298 5 238 0.1 119 0 0.0% 0.2 0 0.0% 0.2
s298 10 238 0.4 119 0 0.0% 0.6 0 0.0% 0.7
s298 15 238 1.9 119 0 0.0% 3.0 0 0.0% 3.6
s382 5 316 0.1 158 2 1.0% 0.3 2 1.0% 0.3
s382 10 316 1.9 158 0 0.0% 0.9 0 0.0% 3.8
s382 15 316 26.9 158 0 0.0% 1.3 0 0.0% 87.2
s400 5 324 0.1 162 2 1.0% 0.3 2 1.0% 0.3
s400 10 324 1.5 162 0 0.0% 0.8 0 0.0% 3.6
s400 15 324 38.0 162 0 0.0% 1.5 0 0.0% 35.3
s420 5 436 0.0 218 0 0.0% 0.5 0 0.0% 0.5
s420 10 436 0.3 218 0 0.0% 0.9 0 0.0% 1.5
s420 15 436 8.7 218 0 0.0% 1.2 0 0.0% 5.8
s4863 54684 TO2342 0 0.0% 255.9 - - TO
s4863 104684 TO2342 0 0.0%1600.4 - - TO
s4863 154684 TO2342 - - TO - - TO
s510 5 422 0.4 211 0 0.0% 1.0 0 0.0% 1.5
s510 10 422 35.8 211 0 0.0% 3.1 0 0.0% 16.2
s510 15 422236.8 211 0 0.0% 7.9 0 0.0% 66.9
s526 5 386 0.3 193 0 0.0% 0.8 0 0.0% 1.0
s526 10 386 23.7 193 0 0.0% 13.4 0 0.0% 41.1
s526 15 386831.0 193 0 0.0% 13.6 0 0.0%1023.5
s526n 5 388 0.3 194 0 0.0% 0.8 0 0.0% 1.0
s526n 10 388 21.3 194 0 0.0% 12.9 0 0.0% 40.5
s526n 15 388975.9 194 0 0.0% 14.5 0 0.0% 791.8
s5378 55558 16.02776 137 5.0% 393.4 124 4.0% 415.5
s5378 105558249.72779 - - TO - - TO
s5378 155558 TO2779 - - TO - - TO
s641 5 758 6.4 379 0 0.0% 3.2 0 0.0% 35.8
s641 10 758 TO 379 0 0.0% 13.2 - - TO
s641 15 758 TO 379 0 0.0% 21.4 - - TO

(#gt), and the run time in seconds to verify the sequential
equivalence of two correct versions of the circuit for tmax

time frames (tmV). This was done by unrolling the two
circuits into a SAT instance (i.e. without exploiting inter-
nal equivalence, structural knowledge etc.). Then, data for
calculating the robustness with respect to single and double
faults is reported. The number of gates in the faulty circuit
(|C|), the number of components not contained in any non-
robust subcircuit (|S|), the robustness (RFN ,η, η ∈ {1, 2}),
and the run time in seconds (tmη, η ∈ {1, 2}) are presented.

The ISCAS circuits are non-robust, i.e. RFN ,η =
0, η ∈ {1, 2}). On first sight this seems to contradict
the known number of untestable Stuck-At Faults (SAF) in
these circuits. An untestable SAF is a signal line with a
constant value. In FN this value can be switched non-
deterministically – which usually changes the behavior of
the circuit.

In most cases the exact robustness of 0 can already be
determined for tmax = 5. Only for a few exceptions a larger
value is needed (e.g. s1423, s382, s400).

The run time is tightly correlated to the value of tmax.
In comparison to the plain equivalence check, checking the
robustness for a small value of tmax typically needs a longer
run time. For tmax = 10, robustness checking is often
faster. In our interpretation this is due to the benchmark cir-
cuits that are “highly non-robust”: injecting faults leads to
easily satisfiable problem instances that are efficiently han-
dled by the SAT solver.

Robustness checking with respect to double faults is al-
ways slower than that for single faults – often by more than
one factor of magnitude. The search space grows exponen-
tially with the number of faults. Nonetheless, especially for
long run times, sequential equivalence checking takes even
longer than robustness checking (e.g. s1494, s420).

6.2 Robust Circuits

Results for two robust benchmark circuits are reported
in Table 2. Robustness was achieved by Triple Modular
Redundancy (TMR). The output values are determined by
taking the majority of three instances of the circuit. The
reported data are the same as previously with the exception
of #cmp and |C|. Here, the problem instances were derived
from Verilog code and an expression in the Verilog code
was considered as a single component [12].

The circuit r s1269 is a TMR version of the ISCAS’89
benchmark s1269. This circuit could only be handled for
tmax = 5. Only faults in non-redundant parts of the circuit
(e.g. the reset logic) may cause incorrect behavior. As a
result a robustness of 99.4% is achieved. The robustness
significantly drops to 14.8% for double faults. But this is
only an upper bound as a higher value of tmax may yield
more inconsistencies.

The circuit rCounter is a counter with TMR. This cir-
cuit contains fault detection logic. If the internal value of
one instance deviates, a fault is signaled. Therefore a devi-
ation from the specification is detected immediately for sin-
gle faults. As a result the circuit is (FN , 1)-robust. Again,
some parts of the circuit are not redundant. Therefore the
robustness is below 100%. The robustness with respect to
double faults is only 1.9%.

The run time for robustness checking is quite high and
increases drastically for larger values of tmax. In particu-
lar the maximal sequential depth of the product automaton
of the fault free circuit and the faulty circuit cannot be met
to determine the exact robustness. For this purpose an im-
provement of the efficiency of the technique is necessary.

In case of rCounter this can be done by using the in-
ductive approach to exploit the fault detection logic. The
precondition and case (a) of the induction step are proven
using a property checker. Table 3(a) shows the results. The
number of components contained in the problem instance
is larger compared to Table 2. This is due to the fault de-
tection logic that is contained in the problem instance now.

Table 2. Run times for robust circuits
single double

C tmax #cmp tmV |C| |S| RFN ,1 tm1 |C| |S| RFN ,2 tm2

r s1269b 5 2459 14.59s 933 927 99.0% 2727.68s 933 - - TO
rCounter 5 204 0.18s 52 50 96.0% 0.79s 52 1 2.0% 3.99s
rCounter 10 204 1.99s 52 50 96.0% 9.24s 52 1 2.0% 78.31s
rCounter 15 204 13.25s 52 50 96.0% 97.61s 52 1 2.0% 3966.72s

Table 3. Induction
(a) Induction: precondition and step, case(a)

tmV
C |C| #FF #gt prec. case (a)
rCounter 62 25 370 <0.1s <0.1s

(b) Step; case(b)

η |S| RFN ,η tmη

single 62 100% 0.2s
double 40 65% 0.43s
triple 8 13% 4.14s

The numbers of flip flops (#FF) and gates (#gt) are also re-
ported. Finally, the run time in CPU seconds to verify the
precondition (prec.) and case (a) of the induction step (case
(a)) are shown. These times are moderate because only two
time frames are considered within the property. Both steps
are independent of the number of faults considered.

Robustness checking is performed in case (b) of the in-
duction step. Table 3(b) provides the data for single, double
and triple faults. For single faults 100% robustness is de-
termined. In contrast to the sequential equivalence check,
a fault in the reset logic is not detected because the prop-
erty asserts that no reset occurs. For double faults 65% ro-
bustness is determined which is much higher than the value
computed by equivalence checking. Faults often either oc-
cur in the reset logic or in one instance of the counter lead-
ing to an increased robustness. For triple faults 13% robust-
ness is retrieved – again, these are faults in the reset logic
that are not covered by the property. The robustness derived
from property checking depends on the particular formula-
tion of the property. Therefore the interpretation is more
difficult compared to equivalence checking.

The most important result is the drastic reduction of run
time using the inductive approach. Even for triple faults the
run time is acceptable.

Overall, measuring robustness by implicitly enumerat-
ing all faults is possible. A significant improvement of the
efficiency is achieved by using induction.

7 Summary

An approach to automatically calculate the robustness of
circuits was proposed. Using sequential equivalence check-
ing a fully automatic flow is created. The run time to calcu-
late the robustness is significant in this case. By an induc-
tive approach the run time can be reduced. The method is
only semi-automatic in this case, because the corresponding
properties have to be created manually.

The presented algorithm still suffers from the high com-
putational complexity of the underlying problem. There-
fore, future work mainly aims at improving the efficiency of
the process, e.g. by applying random simulation or sequen-
tial test generation as a preprocessing step to determine non-
robust circuit areas. The consideration of other techniques
than TMR to achieve robustness is another important direc-
tion of future work. Finally, the exact relationship between
the fault models and empirical data from in-field failures
has to be investigated.

References

[1] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda,
and M. Violante. An FPGA-based approach for speeding-
up fault injection campaigns on safety-critical circuits. Jour.
of Electronic Testing: Theory and Applications, 18(3):261–
271, 2002.

[2] S. Cook. The complexity of theorem proving procedures.
In 3. ACM Symposium on Theory of Computing, pages 151–
158, 1971.

[3] M. Davis, G. Logeman, and D. Loveland. A machine pro-
gram for theorem proving. Comm. of the ACM, 5:394–397,
1962.

[4] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and
H. T. Vierhaus. Evaluating coverage of error detection logic
for soft errors using formal methods. In Design, Automation
and Test in Europe, pages 176–181, 2006.

[5] R. Leveugle. A new approach for early dependability evalu-
ation based on formal property checking and controlled mu-
tations. In IEEE International On-Line Testing Symposium,
pages 260–265, 2005.

[6] J. Marques-Silva and K. Sakallah. Conflict analysis in
search algorithms for propositional satisfiability. In IEEE In-
ternational Conference on Tools with Artificial Intelligence,
1996.

[7] M. Miskov-Zivanov and D. Marculescu. Circuit reliability
analysis using symbolic techniques. IEEE Trans. on CAD,
25(12):2638–2649, 2006.

[8] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conf., pages 530–535, 2001.

[9] C. Pixley. A theory and implementation of sequential hard-
ware equivalence. IEEE Trans. on CAD, 11(12):1469–1478,
1992.

[10] A. Smith, A. Veneris, M. Ali, and A. Viglas. Fault diagno-
sis and logic debugging using boolean satisfiability. IEEE
Trans. on CAD, 24(10):1606–1621, 2005.

[11] A. Smith, A. Veneris, and A. Viglas. Design diagnosis us-
ing Boolean satisfiability. In ASP Design Automation Conf.,
pages 218–223, 2004.

[12] S. Staber, G. Fey, R. Bloem, and R. Drechsler. Automatic
fault localization for property checking. In Haifa Verifi-
cation Conference, volume 4383 of LNCS, pages 50–64.
Springer, 2006.

[13] G. Tseitin. On the complexity of derivation in propositional
calculus. In Studies in Constructive Mathematics and Math-
ematical Logic, Part 2, pages 115–125, 1968. (Reprinted in:
J. Siekmann, G. Wrightson (Ed.), Automation of Reasoning,
Vol. 2, Springer, Berlin, 1983, pp. 466-483.).

[14] Q. Zhou and K. Mohanram. Gate sizing to radiation harden
combinational logic. IEEE Trans. on CAD, 25(1):155–166,
2006.

