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ABSTRACT
The power delivery network (PDN) is a major consumer of
interconnect resources in deep-submicron designs (i.e., more
than 30% of the entire routing area) [18]. Hence, efficient
early-stage PDN optimization enables the designers to en-
sure a desired power-performance envelope. On the other
hand as technology scales, gate delays become more sensitive
to power supply variation. In addition, emerging 3D designs
are more prone to supply voltage and temperature variation
due to increased power density. In this paper, we develop
accurate inverter cell delay and output slew models under
supply voltage and temperature variation. Our models are
within 6% of SPICE simulations on average. We use our
single-cell delay and output slew models to estimate the de-
lay of a path (i.e., an inverter chain, etc.). We also present a
methodology to find the worst-case input configuration (i.e.,
input slew, output load, cell size, noise magnitude, noise
slew, noise offset and temperature) that causes the delay of
the given path is maximized. We believe that our models
can efficiently drive accurate worst-case performance-driven
PDN optimization.

Categories and Subject Descriptors
B.7 [INTEGRATED CIRCUITS]: Performance Analysis
and Design Aids

General Terms
Design, Performance

Keywords
Supply voltage noise, temperature variation, nonparametric
regression modeling, worst-case delay variation

1. INTRODUCTION
In sub-65nm designs, power/ground voltage level fluctu-

ations (PG noise) has become a primary concern for power
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integrity as circuit timing becomes more susceptible to sup-
ply voltage noise. Thus, designers must take into considera-
tion the impact of supply voltage noise to ensure successful
chip design [14]. Rising supply voltage variation has be-
come a challenge for power distribution system (PDS) veri-
fication. Typically, PDS verification is based on simulation;
however, all possible current waveforms and load circuits are
not known early in the design cycle. Hence, it is important to
develop methods of accurately predicting worst-case supply
voltage noise to ensure that the design timing is met.

Existing works [8, 19, 20] on supply voltage noise and its
implications on power distribution network (PDN) optimiza-
tion or PDS verification are oblivious to the timing impacts
of supply voltage noise. In this work, we develop early-stage
closed-form performance models under supply voltage and
temperature variations that aid designers to assess the im-
pact of their PDN design choices on the performance of the
design. Timing degradation due to PG noise is often esti-
mated by considering voltage drops through static IR-drop
analysis. However, these analyses fail to capture the dy-
namic behavior of the supply voltage noise.

On the other hand, temperature variation affects transis-
tor characteristics including threshold voltage, drive current,
drive resistance, and off-current. Hence, it is important to
accurately model the impact of temperature on circuit per-
formance. Exiting literature [1, 6] propose closed-form ex-
pressions that consider the impact of temperature on cell
delay; however, in this work we consider the combined ef-
fect of supply voltage and temperature variation on circuit
performance.

In addition, emerging 3D designs are more prone to sup-
ply voltage noise due to increase in power/current demand
and variations among tiers. Compensation of the supply
voltage variation requires a fair amount of the silicon real
estate (e.g., decoupling capacitance allocation, etc.), routing
resources, and increased packaging cost. Increased power
density in 3D designs also requires close attention to the
impact of temperature on circuit performance. Hence, to
guarantee a given performance envelope, designers need to
characterize the impact of supply voltage and temperature
variation on circuit timing. Furthermore, [22] points out to
a number of problems caused by dynamic effects of supply
voltage noise. These effects include (1) change in maximum
frequency of a critical path, (2) degradation of the clock net-
work performance, etc. Thus, designers must consider the
dynamic effect of supply voltage noise early in the design
cycle.

Finally, the PDN is a major consumer of resources (e.g.,

91



more than 30% of the entire routing area) in wire-limited
deep-submicron designs [18]. Conventionally, the PDN is
designed to satisfy power integrity constraints, but without
understanding the true implications of supply noise on delay,
correct optimization of PDN is impossible. To close this gap,
our present work gives a methodology for closed-form model-
ing of the delay impact of supply voltage noise (characterized
by noise slew, offset, and magnitude). We believe our models
can efficiently drive accurate worst-case performance-driven
PDN optimization, as shown in Figure 1.
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Figure 1: Accurate worst-case performance-driven
power distribution network optimization flow.

In this paper, we propose a new modeling paradigm in
which we use machine learning-based nonparametric regres-
sion techniques to develop accurate early-stage performance
models under dynamic supply voltage and temperature vari-
ations. The contributions of our work are as follows.

• We propose a framework for gate delay modeling under
supply voltage and temperature variations, using ma-
chine learning-based nonparametric regression meth-
ods. Further, we introduce a reproducible flow to aid
automatic generation of accurate performance estima-
tion models (e.g., using generic critical paths).

• We develop early-stage performance models using our
basic gate delay models, to enable worst-case perfor-
mance prediction that can efficiently drive PDN opti-
mization.

• We validate our models against SPICE simulations us-
ing 65nm foundry SPICE models.

The remainder of this paper is organized as follows. In
Section 2 we review and contrast prior related work. Sec-
tion 3 describes our implementation flow and the scope of
our study. Section 4 describes our modeling methodology
using machine learning-based regression techniques. In Sec-
tion 5 we describe the impact of different parameters on gate
delay and output slew, and present our proposed worst-case
performance model. In Section 6 we validate our proposed
models against SPICE simulations. Finally, Section 7 con-
cludes the paper.

2. RELATED WORK
Gate delay models under supply voltage noise can be clas-

sified as (1) static or (2) dynamic; with the former type,
the dynamic behavior of the noise waveform is ignored. The
majority of the existing literature focuses on the former type
[3, 7, 11, 15, 17]. Hashimoto et al. [7] propose to replace
supply voltage noise with an equivalent power/ground volt-
age. However, this method assigns static voltage value (time-
invariant) during the static timing analysis (STA), and can-
not appropriately capture the dynamic behavior of the noise

waveform. Martorell et al. [11] present a probabilistic ap-
proach to estimate supply voltage noise bound given per-
formance criteria. However, they assume that all gates in
a combinational path have the same supply voltage value;
this assumption is incorrect due to the presence of dynamic
supply voltage noise.

Chen et al. [3] propose closed-form equations to estimate
the change in delay of buffers in the presence of supply volt-
age noise. However, the authors do not consider specific
noise waveform characteristics (magnitude, offset, and slew)
in their analysis. In another effort, Weng et al. [17] propose
a methodology to improve the accuracy of gate delay cal-
culation under supply voltage noise by taking into account
(time-varying) IR drop waveforms. To capture the dynamic
impact of supply voltage noise, the authors of [17] discretize
the noise waveform and assign an equivalent DC value across
different time intervals. The DC values are calculated as the
average supply voltage values over the entire interval. This
method still does not capture the ‘true’ dynamic behavior of
the supply noise waveform. To assess the impact of supply
voltage noise on circuit performance, [15] suggests that using
average supply voltage, rather than dynamic behavior, can
be well-correlated with measurements; however, the authors
fail to demonstrate the limitations of timing analysis using
static IR-drop analysis as noted in [14].

Recently, Okumura et al. [14] have proposed a gate delay
calculation approach which considers the dynamic behav-
ior of the supply voltage noise by considering noise wave-
form slew and magnitude. However, in their characteriza-
tion setup they do not allow all the relevant parameters (i.e.,
input slew, noise slew, noise magnitude, etc.) to change si-
multaneously; this limits the applicability of their proposed
model. In our present work, we develop new gate delay and
output slew models under supply voltage and temperature
variations, where all the relevant parameters can interact
with one another.

3. IMPLEMENTATION FLOW
Figure 2 shows our implementation flow, which beings

with SPICE simulations using foundry SPICE models and
extracted or CDL SPICE netlists for each gate type. We
measure the 50% delay and output slew of each gate with
respect to a number of different parameters. In our exper-
iments we have three main axes: (1) cell delay parameters,
(2) supply voltage noise parameters, and (3) temperature.
These parameters, and the values that they take on in our
experiments, are explained below. Cell delay parameters in-
clude (1) input slew slewin, (2) output load loadout, and
(3) cell size cellsize. For supply voltage we use 0.9V as the
nominal value, with noise waveform superimposed on it.

Supply voltage noise parameters include (1) noise ampli-
tude ampnoise, (2) noise slew slewnoise, and (3) noise offset
offsetnoise. Noise offset denotes the noise transition time
with respect to that of the input signal transition. Finally,
temperature denotes the operating temperature of the tran-
sistors. In our studies, we use two different cells (1) in-
verter, and (2) 2-input NAND to show the applicability of
our modeling approach. For worst-case performance model
we implement our basic cell delay and output slew models
in C++. Using our basic delay and output slew models we
construct path delay models with arbitrary number of stages
and a mix of different cells. We run a total of 30720 SPICE
simulations and gather delay and output slew values corre-
sponding to different parameters (cf. Table 1).

We use Synopsys HSPICE v.Y-2006.03 [24] for SPICE
simulations using 65nm foundry SPICE models and netlists.
We perform our experiment using typical corner and normal-
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Figure 2: Implementation flow.

Vth (NVT) transistors. We also use MARS3.0 [23] to imple-
ment nonparametric regression techniques.

Table 1: List of parameters used in our studies.
Parameter Values

slewin {0.00056, 0.00112, 0.0392, 0.1728,0.56, 0.7088}ns
loadout {0.0009, 0.0049, 0.0208, 0.0842}pF
cellsize INV: {1, 4, 8, 20}

ND2D: {1, 2, 4, 8}
ampnoise {0, 0.054, 0.144, 0.27}V
slewnoise {0.01, 0.04, 0.07, 0.09}ns

offsetnoise {-0.15, -0.05, 0, 0.05, 0.15}ns
temp {-40, 25, 80, 125}◦C

4. MODELING METHODOLOGY

4.1 Modeling Flow
Previous delay estimation techniques do not consider dy-

namic impact of supply voltage noise on cell delay [7, 11,
15]. By contrast, we propose to pursue a different modeling
paradigm in which we use machine learning-based nonpara-
metric regression techniques to capture the dynamic impact
of supply voltage noise on cell delay. To illustrate the basic
idea, consider the following baseline model generation flow:

• We begin with a parameterized SPICE netlist for a
given inverter cell. We refer to this as a configurable in-
verter SPICE specification, which will be used to gener-
ate the representative inverter cell delay under different
cell and supply voltage noise parameters. For example,
a given SPICE simulation setup can be configured with
respect to (1) input slew, (2) output load, (3) inverter
size, (4) supply voltage noise magnitude, (5) supply
voltage noise width (i.e., frequency), (6) voltage noise
offset (i.e., with respect to the input transition), and
(7) temperature.

• Using a small subset of selected configurations for
training, we run through each configuration in this
training set through SPICE simulations, to obtain an
accurate cell delay for each instance.

• Finally, we apply machine learning-based nonparamet-
ric techniques on the training set of delay to derive the
corresponding cell delay estimation models.

In general, the modeling problem aims to approximate a
function of several to many variables using only the depen-
dent variable space. This generic formulation has applica-
tions in many disciplines. The goal is to model the depen-
dence of a target variable y on several predictor variables
x1, · · · , xn given R realizations {yi, x1i, · · · , xni}R

1 . The sys-
tem that generates the data is presumed to be described by

y = f(x1, · · · , xn) + ε (1)

over some domain (x1, · · · , xn) ∈ D ⊂ Rn containing the
data [4]. Function f captures the joint predictive relation-
ship of y on x1, · · · , xn, and the additive stochastic noise
component ε usually reflects the dependence of y on quan-
tities other than x1, · · · , xn that are neither controlled nor
observed. Hence, the aim of the regression analysis is to con-

struct a function f̂(x1, · · · , xn) that can accurately approx-
imate f(x1, · · · , xn) over the domain D of interest. There
are two main regression analysis methods: (1) global para-
metric, and (2) nonparametric. The former approach has
limited flexibility, and can produce accurate approximations

only if the assumed underlying function f̂ is close to f . In

the latter approach, f̂ does not take a predetermined form,
but is constructed according to information derived from the
data. Multivariate adaptive regression splines (MARS) is a
nonparametric regression technique which is an extension of
linear models that automatically models nonlinearities and
interactions, and is used in our methodology. In this paper,
we use MARS-based approach to model the dynamic impact
of supply voltage noise on cell delay.

4.2 Multivariate Adaptive Regression Splines
Given different cell and supply voltage noise parameters

X , we apply MARS to construct cell delay model, dcell =

f̂(x1, · · · , xn). Variables x1, · · · , xn denote cell and supply
voltage noise parameters. The general MARS model can be
represented as [21]

ŷ = c0 +

I∑
i=1

ci

J∏
j=1

bij(xij) (2)

where ŷ is the target variable (i.e., inverter delay and output
slew in our problem), c0 is a constant, ci are fitting coeffi-
cients, and bij(xij) is the truncated power basis function1

with xij being the microarchitectural parameter used in the
ith term of the jth product. I is the number of basis functions
and J limits the order of interactions. In our experiments
we set the number of basis functions to 100 and the order
of interactions to 6, i.e., every parameter can interact with
all the other parameters. The basis functions bij(xij) are
defined as

b−ij(x
µarch − tij) = [−(xµarch − tij)]

q
+ (3)

=

{
(tij − xµarch)q xµarch < tij

0 otherwise

b−ij(x
µarch − tij) = [+(xµarch − tij)]

q
+ (4)

=

{
(xµarch − tij)

q x > tij

0 otherwise

where q (≥ 0) is the power to which the splines are raised to

1 Each basis function can be a constant, a hinge function
that is of form max(0, c− x) or max(0, x− c), or a product
of two or more hinge functions.
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adjust the degree of ŷ smoothness, and tij is called a knot.
When q = 0 simple linear splines are applied.

The optimal MARS model is built in two passes. (1) For-
ward pass: MARS starts with just an intercept, and then
repeatedly adds basis function in pairs to the model. Total
number of basis functions is an input to the modeling. Back-
ward pass: during the forward pass MARS usually builds an
overfit model; to build a model with better generalization
ability, the backward pass prunes the model using a gener-
alized cross-validation (GCV) scheme

GCV (K) =
1

n

∑n
k=1(yk − ŷ)2

[1− C(M)
n

]2
(5)

where n is the number of observations in the data set, K is
the number of non-constant terms, and C(M) is a complexity
penalty function to avoid overfitting.

5. ACCURATE CELL DELAY MODELING
In this section, we discuss the impact of supply voltage

noise and temperature variation on cell delay, and note that
delay modeling under supply voltage and temperature vari-
ation is a nontrivial task. We show an example of our
proposed delay and output slew models derived from ma-
chine learning-based nonparametric regression techniques.
We also propose a methodology to find the worst-case in-
put configuration that maximizes the delay of a given path.

5.1 Cell Delay and Output Slew Models
In the existing literature [7, 11], supply voltage variation

is assumed to be constant (time-invariant). When the sup-
ply voltage varies slowly with respect to the clock period,
this is reasonable. This assumption enables to predict the
timing impact of the supply voltage noise: the worst-case de-
lay corresponds to the worst-case noise that can occur when
the target cell is switching. In other words, when the supply
voltage varies slowly, the delay degradation is proportional to
the peak of the noise [15]. However, to better capture the im-
pact of time-varying supply voltage noise we must consider
the noise waveform characteristics including (1) noise ampli-
tude, (2) noise slew, and (3) noise offset. Figure 3 shows the
impact of noise slew on cell inverter delay. We observe that
noise slew affects cell delay only when it is comparable to
input slew. Hence, we must take into consideration the spe-
cific noise waveform characteristics to ensure more accurate
delay modeling.

Existing PDN optimization frameworks [19, 20] use fluc-
tuation area, i.e., the area under the noise waveform, as
the metric to represent the supply voltage noise. How-
ever, it is easy to see that such an approach can in-
cur significant error in the delay estimation. Consider
two scenarios: (1) slewnoise=0.2ns, ampnoise=0.2V and (2)
slewnoise=0.4ns, ampnoise=0.1V. Using a triangular wave-
form to represent the supply noise, the two scenarios have
different noise waveforms, yet have similar areas under the
noise curve. When we evaluate gate delay under each of
these scenarios, we observe 22% difference. (In this eval-
uation, we use a single inverter, with other parameters
values being slewin=0.4ns, loadout=0.002pF, cellsize=1X,
offsetnoise=0ns, and temp=25◦C.) We conclude that to ac-
curately model the impact of supply voltage noise on cell
delay, we must consider both noise slew and noise magni-
tude parameters, and not simply the area under the noise
waveform.

The other important supply voltage noise characteristic
is noise offset, which denotes the time of the voltage noise
transition relative to the time of the input signal transition.
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Figure 3: Delay of an inverter cell versus noise slew,
for different input slew values.

We expect that as long as the supply voltage noise waveform
is outside of the input signal transition window, it should
not have any impact on cell delay. However, when the noise
waveform overlaps with the input signal transition, there will
be an effect on cell delay. Figure 4 shows the impact of noise
offset on cell delay. In our experiment, input slew and noise
slew are 0.09ns and 0.1ns, respectively. In our delay model,
we explicitly consider noise offset as an input to the model.
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Figure 4: Impact of supply voltage noise offset on
cell delay.

In addition, cell characteristics are influenced by tem-
perature. Temperature impacts cell delay through voltage
threshold, mobility, etc. parameters [6]. For example, as
temperature decreases, both threshold voltage and mobil-
ity increase; the latter causes increased saturation current.
However, the impact of temperature on cell delay depends
on the gate voltage. The gate voltage at which the temper-
ature shifts of threshold voltage and mobility exactly com-
pensate each other’s effects on delay is typically called zero-
temperature-coefficient (ZTC) [10]. Hence, cell delay can in-
crease or decrease with the increase in temperature. These
complex relationships between cell delay and the aforemen-
tioned parameters make delay modeling a nontrivial task.

Finally, since our gate delay model depends on input slew,
we must also model output slew of the previous stage of the
critical path. Given the above discussion, we note that ap-
proximating CMOS gate delay is a nontrivial task with non-
obvious implications, as seen from Figure 3. This has mo-
tivated us to explore machine learning-based nonparametric
regression techniques to develop accurate cell delay and out-
put slew models. Figure 5 illustrates the form of resulting
inverter delay and output slew models using 65nm foundry
SPICE models.2

2Note that our methodology can be straightforwardly ap-
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Delay Model
b1 = max( 0, loadout – 0.0208);
b2 = max(0,0.0208 - loadout); · · ·
b98 = max(0, offsetnoise – 0.05)×b92;
b100 = max(0, offsetnoise + 2.4e-12)×b37;
dcell = 1.018e− 11 + 7.353e− 10× b1 − 5.890e− 10× b2

- 2.172e− 11× b3 + · · · − 1.708e− 7× b96 +
2.431e− 7× b98 − 3.031e− 8× b100

Output Slew Model
b1 = max( 0, loadout – 0.0009);
b2 = max(0,cellsize – 4)×b1; · · ·
b99 = max(0, 0.05 – slewnoise)×b55;
b100 = max(0, offsetnoise + 0.15)×b94;
slewout = 1.227e− 11 + 1.529× b1 − 2.051e− 10× b2

+ 2.050e− 9× b3 + · · · − 1.081e− 8× b98

- 4.327e− 9× b99 − 7.422e− 9× b100

Figure 5: Sample inverter delay and output slew
models in 65nm.

5.2 Worst-case Performance Model
In this subsection we formalize the problem of finding the

worst-case performance under dynamic supply voltage and
temperature variations. We are interested in the specific con-
figuration, i.e., set of seven parameters (7-tuple) described in
Table 1, that causes the delay of a given path with arbitrary
number of stages to be maximum.3 Note that we construct
our path delay model using our basic cell delay and output
slew models. Our proposed delay and output slew models
are essentially mappings f and g, respectively, from the set
of all 7-tuples Q (cf. Table 1) to the positive reals, i.e.,
f : Q →R+ and g : Q →R+, where Q = slewin× loadout×
cellsize × ampnoise × slewnoise × offsetnoise × temp.

For a single stage the problem of finding the worst-case
configuration seeks ~q∗ ∈ Q such that f(~q∗) is maximized.
With more than one stage in a path, i.e., k > 1, the out-
put slew of the previous stage becomes the input slew to
current stage, and the noise offset must be adjusted accord-
ingly. Then, we seek ~q1

∗ such that f(~q1
∗) + · · · f(~qk

∗) is
maximized, where ~qm

∗ = ~q1
∗ for all stages 1 < m < k,

except that the slewin component is replaced by g( ~qm−1
∗)

and the offsetnoise component is adjusted at the begin-
ning of each stage. Note that the worst-case configuration
is always going to be an element of the cross-product of the
various sets of parameter values. In other words, it is one
of |slewin| × |loadout| × |cellsize| × |ampnoise| × |slewnoise| ×
|slewnoise| × |offsetnoise| × |temp| configurations. In our
studies, the worst-case configuration is out of 30720 differ-
ent configurations.

6. EXPERIMENTAL RESULTS AND VALI-
DATION

To generate our models, we randomly select 10% of our
entire data set as training data; we then test the models
on the other 90% of the data. To show that the selection of
the training set does not substantially affect model accuracy,
we randomly select 10% of the entire data set five times and
show the corresponding models’ maximum and average error
values (Table 2).

To show the accuracy of our worst-case performance
model, we compare our worst-case predictions with SPICE

plied to future technologies, as long as necessary SPICE
models and device-level netlists are available.
3In our experiments a path consists of (1) only inverter, (2)
only 2-input NAND, and (3) a mix of inverter and 2-input
NAND.

Table 2: Model stability versus random selection of
the training set.

Experiments delay % diff output slew % diff
max avg max avg

Exp 1 56.993 5.660 55.117 6.012
Exp 2 53.342 5.458 56.896 5.976
Exp 3 53.661 5.401 56.237 5.526
Exp 4 55.419 5.552 54.883 5.311
Exp 5 55.015 5.609 55.614 5.672

simulations. We construct three different paths with differ-
ent number of stages, each consists of (1) only inverters, (2)
only 2-input NAND, and (3) a mix of inverter and 2-input
NAND gates. For (3), we construct the path starting with
an inverter, and then alternating 2-input NAND gates with
inverter gates. In our experiments, one of the NAND gate
inputs is connected to supply voltage (vdd). We evaluate our
predictions using two metrics: (1) correlation of our predic-
tions against SPICE results, and (2) relative (%) difference
in delays between our proposed model and SPICE. For (1)
we rank our model predictions (total of 30720 data points)
in descending order with respect to the delay of the given
path. Each delay value corresponds to a set of parameters
(i.e., 7-tuple including all the parameters shown in Table
1). Next, we compare our predicted worst-case configuration
with SPICE, and find the rank (rankSPICE) of our predicted
worst-case configuration within SPICE results. For multi-
stage paths with k > 1 stages, we need to adjust the noise
offset for each stage. To perform this we need to identify
the time at which the input to stage i, where i = 1 · · · k,
makes the transition. This value can be estimated by cal-

culating the delay up to stage i− 1, and subtracting
slewi

in
1.6

from it, where slewi
in is the input slew to stage i, and

slewi
in

1.6

determines the 50% output slew transition.4

Tables 3, 4, and 5 show the comparison our our worst-
case performance model with SPICE for a path consists of
(1) only inverter, (2) only 2-input NAND, and (3) a mix of
inverter and 2-input NAND gates, respectively. The second
and third columns, represent our (2) and (1) comparison
metrics, respectively. The fourth column shows where the
SPICE worst-case configuration is ranked according to our
proposed model (rankMARS). We observe that our path
delay models are within 4.3% of SPICE simulations. In ad-
dition, our predictions are always ranked in the top 3 (out of
30720 configurations) of the SPICE list (rankSPICE). We
note that the ability of our worst-case performance model
to correctly predict worst-case configuration is beneficial for
early-stage design and optimization of power distribution
networks. Finally, the SPICE-computed worst-case perfor-
mance value is always among top 5 predictions of our model.

Table 3: Comparison of our proposed worst-case
performance model and SPICE for an inverter chain.
Rank values are out of 30720 configurations.

#Stage delay % diff rankSPICE rankMARS

1 1.08 1 1
3 3.54 3 2
5 4.29 1 1
10 3.26 2 4
20 2.42 1 1
30 2.88 1 1

4In our experiments, 10%-90% transition time is the slew
value.
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Table 4: Comparison of proposed worst-case perfor-
mance model and SPICE for a 2-input NAND chain.
Rank values are out of 30720 configurations.

#Stage delay % diff rankSPICE rankMARS

1 1.34 1 1
3 3.21 1 1
5 3.69 2 3
10 3.11 1 1
20 3.43 2 3
30 2.37 2 2

Table 5: Comparison of proposed worst-case per-
formance model and SPICE for a mixed inverter-
NAND chain. Rank values are out of 30720 config-
urations.

#Stage delay % diff rankSPICE rankMARS

1 1.08 1 1
3 2.73 2 4
5 3.24 3 5
10 3.36 1 1
20 3.93 2 4
30 2.85 1 1

7. CONCLUSIONS
In this paper, we have developed a methodology, based on

nonparametric regression, to obtain accurate closed-form cell
delay and output slew models under dynamic supply voltage
and temperature variations. Our proposed models are within
6%, on average, of SPICE simulations. We show that our
basic gate delay and output slew models can be used to con-
struct delay estimates under supply noise for arbitrary criti-
cal paths. We also show that our models can accurately find
the worst-case supply noise configuration that leads to worst-
case delay performance. We believe that our proposed mod-
els can be beneficial in an accurate worst-case performance-
driven power distribution network optimization, such as that
shown in Figure 1.
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