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Abstract
Software complexity has increased considerably over

recent years, needing special target architectures as NoC­
based MPSoCs to fulfill the heavy storage, communication
and computation requirements. The design of these systems
requires efficient methodologies aggregating partitioning
and mapping. In these sense, this paper explores partitioning
and mapping influence on energy consumption of
homogeneous NoC-Based MPSoC. In addition, it compares
two strategies to achieve efficient dynamic mappings: one
that map tasks directly onto processors and another one that
applies a previous static task-partitioning and uses this
information to choose the dynamic task mapping.
Experiments with various synthetic and four embedded
applications show the efficiency of the second strategy that
minimizes an average of23.5% on energy consumption.
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1. Introduction
Recent years have brought a large quantity of

application, demanding huge computational power, large
memory sizes, reduced energy consumption and efficient
communication, which boast the research and development
of special target architectures, like a NoC-based MPSoC.
This one implements the complete system functionality into
a single chip and support the heavy communication
requirements of hundreds processors with efficient energy
consumption.

From the processing point of view, homogeneous
MPSoCs are those composed by processors of the same type
and heterogeneous MPSoCs are those composed by at least
two processors with different architectures.

Heterogeneous MPSoCs can support a wide variety of
applications, since each processor has specific computation
and communication features. Otherwise, homogeneous
MPSoCs are easier to program, increase the mapping and
partitioning possibilities, and enable global load balancing
through application-task migration. Furthermore, the
homogeneity may minimize the global energy consumption
and area occupation for some set of applications [1].

This work employs homogeneous NoC-based MPSoC as
target architecture, and presents a partial design flow
containing the application-task partitioning into groups of
tasks, where each group is mapped onto tiles of the target
architecture. Whereas tile is a limited area of target
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architecture, compnsmg a processor, a router, a local
memory and auxiliary circuits.

Several works relate to task mapping onto NoC-based
architectures and some ones describe the tasks partitioning
into groups ([2 - 13]), but none evaluate the effect of using
static partitioning as a previous step of the dynamic
mapping. Here, we compare two approaches: (i) the
traditional one that during the run time map tasks onto
processors and (ii) the one proposed here, which performs a
previous analysis of tasks affinity by a partitioning step and
uses this information to choose fast and efficient mappings.

Moreover, several works uses the same name "mapping"
to define both mapping and partitioning, while the name
"partitioning" is used only to explore hardware/software
division.

This paper is organized as follows. Section 2 presents the
partitioning and the mapping problem formulation together
with the underlying data structures and the energy model.
Section 3 shows the language used to describe parallel
applications. Section 4 describes the methodology and the
tools used to accomplish the experimental results. Section 5
employs an application to exemplify the methodology.
Section 6 shows a synthetic application tool and
experimental results, and Section 7 concludes the paper.

2. Problem Formulation
The complete homogeneous MPSoC design implies

several steps with some specificity according to the
application description nature and the target architecture.
Here, we describe two design activities, which are the
partitioning and the mapping.

Parallel applications are described as a set of
communicating tasks. According to some requirements (e.g.
energy consumption minimization) and some constraints
(e.g. memory size limit, quantity of target processors) a
given design flow enables associating tasks of the parallel
application to tiles of the target architecture.

The traditional flow associates tasks directly to tiles,
which is called here as task mapping. On the other hand, our
flow considers tasks affinity to generate groups. The
grouping of all application tasks, which is the task
partitioning activity, generates a partition. The next step is
to perform the selection of the best place that each group of
tasks will be associated, which is the task-group mapping
onto tiles activity.

To better understand the concepts of partitioning and
mapping of the proposed flow, Figure 1 exemplifies the
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partitioning of a hypothetical application composed by 22 
tasks into 6 groups and the corresponding mapping of these 
task-groups onto tiles of 2D-mesh NoC architecture. The 
application is composed by a set of parallel communicating 
tasks T = {t1, t2, …, t22}. The tasks partitioning, which is 
represented by continuous arrows, generates 
G = {g1, g2, …, g6} that is a set of task-groups. 

Finally, task-groups mapping onto tiles is represented by 
the dotted arrows. These one associates each element of G to 
an element of the set of NoC tiles Γ = {τ1, τ2, …, τ6}. In 
addition, each tile contains a single element of the set of 
processors P = {p1, p2, …, p6}. 
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Figure 1 – Partitioning and mapping understanding. 

2.1. Partitioning and Mapping Complexities 
The partitioning of tasks into groups is an activity with 

complexity proportional to the Bell number O(Bell(n)) [15], 
where n is the quantity of tasks, since there is no order 
relation between task-groups and even within a group. The 
task-groups mapping onto tiles (containing processors) of 
the target architecture is O(t!) complex, where t is the 
quantity of tiles, because it reflects all combinations of 
positions of groups in all tiles. 

 
Figure 2 – Number of combinations against the quantity of 
elements: (i) Partitioning of tasks into groups, (ii) Mapping of task-
groups onto tiles, and (iii) Mapping of tasks onto tiles. 

The task mapping onto tiles of the target architecture 

adds the complexities of partitioning tasks across groups and 
the mapping of these groups onto tiles. In this case, the 
complexity is much higher O(Bell(n) � t!). 

Figure 2 shows that the number of solutions to be 
explored with mapping tasks onto tiles is much higher than 
others are. Thus, even applying good algorithms, the results 
obtained with this activity tend to be worse, when compared 
to those obtained with the flow proposed here, mainly in the 
cases where it is done at run time, since the mapping has a 
short time to be accomplished, requiring fast but sometimes 
inefficient algorithms. 

2.2. Structures Definitions 
The partitioning and mapping have three main data 

structures that are set out below. 
Definition 1: A Task Communication Graph (TCG) is a 
directed graph <T, V>. The set of vertices T = {t1, t2, …, tm} 
represents the set of m tasks in one parallel application. 
Assuming vab is the bits amount of all packets sent from a 
task ta to a task tb, then the set of edges V is {(ta, tb) | 
ta, tb ∈ T and vab ≠ 0}, and each edge is labeled with the 
value vab. V represents all communications between the 
application tasks. 
Definition 2: A Communication Weighted Graph (CWG) is 
a directed graph <P, W>, similar to the TCG. However, the 
set of vertices P = {p1, p2, …, pn} represents the set of 
processors in one application. The quantity of processors n 
is equal to the total quantity of tiles, since each tile has a 
single processor. Furthermore, wab is the total quantity of 
bits sent from a processor pa to a processor pb. Then the set 
of edges W is {(pa, pb) | pa, pb ∈ P and wab ≠ 0}, and each 
edge is labeled with the value wab. W represents all 
communications between the MPSoC processors, while 
CWG reveals information of application’s relative 
communication volume. 

The mapping is performed regarding to a 2D mesh NoC 
using wormhole and deterministic XY routing algorithm. 
The communication resource graph stated below captures 
the NoC topology. 
Definition 3: A Communication Resource Graph (CRG) is a 
directed graph <Γ, L>, where the vertex set is the set of tiles 
Γ = {τ1, τ2, …, τn} and the edge set L = {(τi, τj), ∀ τi, τj ∈ Γ} 
gives the set of paths from τi to τj. The value n is again the 
total quantity of tiles and is equal to the product of NoC 
lines and columns. CRG edges and vertices represent 
physical links and routers of the target architecture, 
respectively. The CRG definition is equivalent to the 
architecture characterization graph in [16] and to the NoC 
topology graph in [17]. 

2.3. Energy Model 
Both, processors (with the whole memory hierarchy) and 

communication architecture originate energy consumption. 
The sum of the energy consumed by the execution of all 

tasks grouped on a processor enable estimating its energy 
consumption. This value is used, together with the 
communication volume between tasks, to choose good 
partitions. On the other hand, the amount of bits transmitted 
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between tasks grouped and mapped onto different 
processors contributes to estimate the energy consumption 
used to choose good mappings. 

The approach used here to model the NoC’s energy 
consumption is similar to those shown in [16] and [18]. 
Dynamic energy consumption is proportional to switching 
activity, arising from packets moving across the NoC, 
consuming energy on the links and inside of each router. 
The concept of bit energy EBit [18] is used to estimate the 
dynamic energy consumption of each bit, when this flips its 
polarity from a previous value. EBit is split into three 
components: (i) bit dynamic energy consumed by the router 
(wires, buffers and logic gates) (ERbit); (ii) bit dynamic 
energy consumed on horizontal (ELHbit) and vertical 
(ELVbit) links between tiles; and (iii) bit dynamic energy 
consumed on the links between the router and the local 
processor (ECbit). Equation (1) expresses the relationship 
between these quantities, which computes the dynamic 
energy consumption of a bit passing through a router, a 
vertical or horizontal link and a local link. 
(1) EBit = ERbit + (ELHbit or ELVbit) + ECbit 

ERbit depends on the buffer structure and technology to 
estimate how many bit-flips occur to write, to read and to 
preserve the information. ELbit is directly proportional to 
the tile dimension. For regular 2D-mesh NoCs with square 
tiles, it is reasonable to consider that ELHbit and ELVbit 
have the same value. Therefore, the next equation uses ELbit 
as a simplified representation of ELHbit and ELVbit. 
Equation (2) computes the dynamic energy consumed by a 
single bit traversing a NoC, from tile τi to tile τj, where η 
corresponds to the number of routers through where this bit 
passes. 
(2) EBitij = η × ERbit + (η - 1) × ELbit + 2 × ECbit 

Let τi and τj be the tiles to which pa and pb are 
respectively mapped. Then, the dynamic energy consumed 
by a pa→pb communication is given by EBitab = wab × EBitij. 
Equation (3) gives the total amount of NoC’s dynamic 
energy consumption (ENoC) that is computed for all bits of 
all communications between processors (|W|). 

(3) ENoC = ∑
=

|W|

1i
Bit (i)E

ab
, ∀ pa, pb ∈ P 

2.4. Energy Parameter Extraction and Model Validation 
To acquire ERbit, ELbit and ECbit values, an initial 

estimation was performed according to the characterization 
of Hermes NoC [19] (2D mesh) on a 70nm CMOS 
technology, which is the target communication architecture 
used here. Next, a 2 × 3 NoC described in electrical level 
was simulated several times, having synthetic patterns as 
inputs from the local links, simulating hypothetical 
applications. The same input patterns were applied to the 
high-level tool that uses Equation (3) to energy consumption 
estimation. Then the initial values of ERbit, ELbit and ECbit 
were refined to minimize the average difference between 
high-level estimation and the electrical level, which is the 
reference used here. This process permits to achieve high-

level estimation of energy consumption with less than 7% of 
average deviation. 

3. Input Description 
A set of XML tags capture the parallel application 

behavior, which describes some relevant aspects to 
partitioning and mapping targeting homogeneous MPSoC. 
These tags concern some target architecture features, some 
aspects of parallel communication and of each task 
according to the processor type. The main purpose of using 
XML is the documentation easiness and data structure 
sharing across different design tools. 

Figure 3 depicts the XML description structure. The 
MPSOC_SPECIFICATION tag encloses the following tags: 
PROCESSOR_TYPE, PROCESSOR_TASK_TABLE and TASK_TABLE. 

<MPSOC_SPECIFICATION>
 <PROCESSOR_TYPE > ... </PROCESSOR_TYPE > 
 <PROCESSOR_TASK_TABLE> ... </PROCESSOR_TASK_TABLE>
 <TASK_TABLE> ... </TASK_TABLE> 
</MPSOC_SPECIFICATION>  

Figure 3 – XML structure for parallel application description. 

Figure 4 portrays the PROCESSOR_TYPE tag structure, which 
encloses FEATURES and LIST tags. The first one enables to 
describe physical characteristics of the processor type, such 
as dimensions (width and height) in mm and operation 
frequency in MHz. Processor dimensions permit to estimate 
the length of the links, and subsequently the energy 
consumed by these links. The LIST tag contains the name list 
of all processors. The task partitioning process uses the 
quantity of processors information to compute the quantity 
of task groups. 

<PROCESSOR_TYPE type = "MIPS"> 
 <FEATURES frequency = "2100" width = "1.5" height = "2.0"/>
 <LIST> P1 P2 P3 </LIST> 
</PROCESSOR_TYPE>  

Figure 4 – Example of basic structure of PROCESSOR_TYPE tag, 
which contains three 2.1GHz MIPS processor. 

Figure 5 depicts the PROCESSOR_TASK_TABLE tag, which 
contains the application tasks characterization when running 
on a given processor type. The partitioning uses the average 
energy consumed (energy) in uJ as a requirement to compose 
the partitioning cost function and the percentage of 
processor use (processorUse) in percentage as a constraint to 
limit the quantity of tasks that may be grouped and mapped 
onto the same processor. 

<PROCESSOR_TASK_TABLE> 
 <TASK id = "T1" energy = "10.5" processorUse = "25"/> 
 <TASK id = "T2" energy = "22.0" processorUse = "10.5"/>
 <TASK id = "T3" energy = "5.0" processorUse = "5.5"/> 
</PROCESSOR_TASK_TABLE>  

Figure 5 – Example of XML structure containing task-processor 
characterizations. 

The TASK_TABLE tag, illustrated in Figure 6, specifies all 
communications between application tasks. For instance, 
task T1 sends 160 kB to task T2. This information is used to 
assemble the TCG described in Section 2.2. This one is the 
basic data structure used on the task-partitioning algorithm. 
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<TASK_TABLE> 
 <SOURCE_TASK source = "T1"> 
  <COMMUNICATION target = "T2" volume = "160"/> 
  <COMMUNICATION target = "T3" volume = "50.5"/>
 </SOURCE_TASK> 
 <SOURCE_TASK source = "T2"> 
  <COMMUNICATION target = "T1" volume = "50"/> 
  <COMMUNICATION target = "T3" volume = "30.5"/>
 </SOURCE_TASK> 
 <SOURCE_TASK source = "T3"> 
  <COMMUNICATION target = "T1" volume = "160"/> 
 </SOURCE_TASK> 
</TASK_TABLE>  

Figure 6 – Example of XML tag structure that describes all inter-
tasks communications. 

4. Methodology Description 
Figure 7 illustrates the flows described in Section 2, 

which are implemented inside CAFES [20], a framework for 
MPSoC design. The task mapping flow is represented by 
dashed arrows, while the proposed one is symbolized by 
continuous arrows. In addition, dotted arrows represent 
input information for mapping and / or partitioning. 

Task partitioning into groups has as entries: (i) 
application description, which has all tasks and their 
communications; (ii) Processors list, which has the name 
and quantity of processors enabling to compute the quantity 
of task groups; (iii) Processor use that is a constraint to limit 
the quantity of task grouped into the same processor; and 
(iv) NoC energy parameters that is used to compute the 
energy consumption of a given partition. 

 Application description (TCG) 

Partitioned 
application (CWG) 

NoC description (CRG) 

Partitioning 
Processor list 

Processor's energy 

Processor use 

Mapped application

NoC energy parameters 

Mapping 

 
Figure 7 – Design flows showing the partitioning and mapping. 

To task partitioning problem, this work applies a 
stochastic approach with simulated annealing algorithm 
(SA) [21], which implements a double nested loop. The 
outer loop tries to find very different partitions aiming to 
look for global minima. On the other hand, the inner loop 
explores small partition changes, aiming to find local 
minima. The algorithm looks for the minimum partitioning 
cost, which results from the best-searched partition. 

The partitioning cost function takes into account the 
minimization of the overall communication volume. The 
algorithm tries to achieve a minimum cost, which implies to 
cluster into the same processor high communicating tasks. 
In addition, the algorithm tries to balance the processor use 
through fair distribution of tasks over the available 
processors, respecting processor use constraint. In other 
words, tasks that communicate most are grouped as far as 

they do not compromise more than the maximum processor 
use for each processor - a parameter set according to the 
application requirements. The processor use constraint is 
neglected only in cases where there are no other available 
processors, i.e. the task association to every processor 
always implies more than the maximum processor use. The 
partitioning tool generates a CWG description (Section 2.2) 
that contains all processor-tasks associations. 

The SA algorithm achieves good results for static 
partitioning problem, since the designer has much time to 
perform it. On the other hand, dynamic mapping requires 
fast decisions to not postpone the application execution 
implying a simpler but efficient algorithm. 

This work implements two mapping algorithms: (i) one 
that has as input the TCG description, which maps the most 
communicating tasks onto the same processor, while the 
maximum processor use is not reached. When it happens a 
new neighbor tile is searched using a mapping cost function; 
and (ii) the second one that has as input the CWG 
description. This algorithm searches in the set of task groups 
for the tile where at least one other task of the same group 
had been previously mapped. If no previous task was 
mapped, the algorithm uses the same mapping cost function 
of the previous algorithm to search the new target tile. 

The mapping cost function takes into account the 
communication volume between processors and the NoC 
energy parameters to compute the energy consumed on a 
given mapping. Considering a given pair of communicating 
processors, together with CRG and NoC parameters, the 
energy consumption is computed through the energy model 
described on Section 2.3. The energy consumption achieved 
by task running on processor is used only to compute the 
total energy consumption, but does not affect the mapping 
choice. 

For both flows, the mapping generates a file containing 
all processor-tile associations that implies a minimum 
energy consumption of all evaluated maps. 

Partitioning and mapping cost functions use the same 
NoC energy parameters stated by Equation (2). However, 
while mapping specifies the exact processor place into the 
NoC, the partitioning only explores the communication 
needs, but the number of hops there is between two 
communicating processors is unknown. In these sense, 
partitioning cost function uses the concept of average of 
hops that enables to compute the average energy 
consumption of all possible paths. Let X and Y be the 
number of tiles in horizontal and vertical dimension of a 
NoC, respectively, than Equation (4) computes the total 
number of hops of all paths that all processors have 
regarding to XY routing algorithm. 

The average of hops is computed dividing the 
summation of all hops of all paths of all processors by the 
total number of communications, which is stated by 
Equations (5)(6) and (7). 

(4) ݏ݌݋ܪ݈ܽݐ݋ݐ ൌ ෍ ෍ ෍ ෍ ሺ|ݔ െ ݅| ൅ ݕ| െ ݆|௒ ି ଵ
௝ ୀ ଴ ሻ௑ ି ଵ

௜ ୀ ଴
௒ ି ଵ
௬ ୀ ଴

௑ ି ଵ
௫ ୀ ଴  

(5) #Processors = ܺ × ܻ 
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(6) maxComm = #ܲݏݎ݋ݏݏ݁ܿ݋ݎ  × ሺ#ܲݏݎ݋ݏݏ݁ܿ݋ݎ െ 1ሻ 

݁݃ܽݎ݁ݒܣݏ݌݋݄ (7) ൌ    ݉݉݋ܥݔܽ݉ݏ݌݋ܪ݈ܽݐ݋ݐ 
The ݄݁݃ܽݎ݁ݒܣݏ݌݋ value is used on Equation (2) in place 

of η, which results an average value of EBitij. This one 
multiplied by the communication volume is the energy 
consumption estimation of each communication, which is 
used during the partitioning. 

5. Methodology Exemplification 
This Section exemplifies the methodology used here. It 

starts with a partial XML structure (Figure 8) containing: (i) 
four PowerPC processors (P0, P1, P2 and P3), each one placed 
inside a single tile; (ii) the description of a synthetic parallel 
application composed by 6 tasks (T0, T1, T2, T3, T4 and T5); (iii) 
the tasks characterization on PowerPC processor; and (iv) the 
communications between tasks. 

<PROCESSOR_TYPE type = "PowerPC"> 
 <FEATURES frequency = "2100" width = "1.5" height = "2.0"/> 
 <LIST> P0 P1 P2 P3 </LIST> 
</PROCESSOR_TYPE> 
<PROCESSOR_TASK_TABLE> 
 <TASK id = "T0" energy = "20.68" processorUse = "63.82"/> 
 <TASK id = "T1" energy = "21.53" processorUse = "33.45"/> 
 <TASK id = "T2" energy = "36.18" processorUse = "27.13"/> 
 <TASK id = "T3" energy = "8.75" processorUse = "69.18"/> 
 <TASK id = "T4" energy = "22.59" processorUse = "25.47"/> 
 <TASK id = "T5" energy = "16.67" processorUse = "55.96"/> 
</PROCESSOR_TASK_TABLE> 
<TASK_TABLE> 
 <SOURCE_TASK source = "T0"> 
  <COMMUNICATION target = "T2" volume = "1868"/></SOURCE_TASK>
 <SOURCE_TASK source = "T1"> 
  <COMMUNICATION target = "T5" volume = "681"/> 
  <COMMUNICATION target = "T2" volume = "2183"/></SOURCE_TASK>
 <SOURCE_TASK source = "T2"> 
  <COMMUNICATION target = "T1" volume = "1516"/></SOURCE_TASK>
 <SOURCE_TASK source = "T3"> 
  <COMMUNICATION target = "T1" volume = "2212"/></SOURCE_TASK>
 <SOURCE_TASK source = "T4"> 
  <COMMUNICATION target = "T3" volume = "683"/> 
  <COMMUNICATION target = "T2" volume = "1774"/></SOURCE_TASK>
 <SOURCE_TASK source = "T5"> 
  <COMMUNICATION target = "T4" volume = "1266"/></SOURCE_TASK>
</TASK_TABLE>  

Figure 8 – Example of a synthetic application description. 

Having as input the description of Figure 8, the 
partitioning tool generated the following task group 
association: {(G0, T3), (G1, T5), (G2, (T1, T2, T4)), (G3, T0)} and 
Figure 9 (a) shows a graphical description of the CWG, 
which is the output description of the partitioning tool. 

 

Groups Tasks 
G0 T3 
G1 T5 
G2 T1, T2, T4 
G3 T0 

 

(a) (b) 
Figure 9 – (a) Graphical CWG description of a synthetic 
application partitioned into 4 groups; (b) Tasks-group association. 

CWG vertices and edges are P = {G0, G1, G2, G3} and 
W = {(G0, G2), (G2, G0), (G1, G2), (G2, G1), (G3, G2)}, 
respectively. The edge labels wG0_G2 = 2212, wG2_G0 = 683, 
wG1_G2 = 1266, wG2_G1 = 681 and wG3_G2 = 1868 can be easily 

extracted from Figure 8 with the task-group partitioning 
described above. 

The mapping tool has as input the above CWG, the 
topology (CRG) and the energy parameters of the target 
architecture. Figure 10 depicts the associations ((τ1, G3), 
(τ2, G0), (τ3, G1), (τ4, G2)) generated by mapping. 

τ1 τ2 

τ3 τ4 

 
Figure 10 – A processor mapping onto a 2D-mesh NoC 
architecture with energy consumption annotated inside links and 
routers. E.g.: inside the router R[0,0], the dynamic energy 
consumed by the buffers (Eb) and switches (Es) are 28.58uJ and 
3.33uJ respectively; The dynamic energy consumed in link 
between router and processor P0 are 1.02uJ and 3.32uJ; The 
dynamic energy consumed by vertical and horizontal links are 
8.41uJ, 3.87uJ and 18:36uJ. 

Each link of the communication architecture is 
associated to an estimated value of the dynamic energy 
consumption, which depends on the energy parameters and 
on the quantity of flits, which passes through the 
communication links. The energy parameters of local links 
and links between routers are ECbit and ELbit, respectively. 
Furthermore, each router contains the energy consumed in 
buffers (Eb) and switches (Es). The sum of Eb and Es is the 
ERbit parameter of Section 2.3. Besides, Energy provides an 
overall estimation of the NoC's energy consumption 
(161.16 μJ). The energy consumption values are achieved by 
the characterization of Hermes NoC [19] on a 70nm CMOS 
technology. 

6. Experimental Results 
6.1 Synthetic Application Generator 

To achieve fair and meaningful results, it is necessary to 
study a wide range of applications, which is a very time 
consuming task. Besides, it is hard to find a set of 
applications, which covers several parallel aspects needed to 
evaluate MPSoC designs. With this purpose, it was 
developed a generator of synthetic parallel applications that 
allows characterizing several application classes according 
to the input parameters. 

Figure 11 shows the interface of synthetic application 
generator. There are six parameterizable fields inside three 
set of parameters: (i) Task characterization, (ii) Task 
communications and (iii) Others. 
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Figure 11 – Interface of synthetic application generator. 

The Task characterization set contains fields that allow 
characterizing the tasks of the application when running on 
the chosen processor: (i) Energy consumption is the average 
of energy consumed by each task; (ii) Processor use allows 
modeling the average consumption of processing time for 
each task (in percentage). 

The Task communications set encloses two fields 
describing application communication aspects: (i) Number 
of communication is the normal distribution of all 
communications that a task performs during the application 
execution; (ii) Communication volume filed contains the 
number of phits each communication has. All these first four 
fields allow generating values according to normal 
distributions. The designer specifies the main, the standard 
deviation, the minimum and the maximum values, and the 
tool generates a random XML description that contains the 
application built according to the Gauss parameters 
portrayed in each field. 

The Others set encloses three fields: (i) General that 
contains the fields Quantity of processors and Quantity of 
tasks, which express the exact quantities of processors and 
of tasks that the application contains, respectively; (ii) XML 
File Name, which is the output file name, where the 
synthetic application will be stored; and (iii) Processor, 
containing operating frequency, width, height, and name of 
the processor type. 

The Synthetic Application Tools encloses three buttons: 
(i) Default values that completes all fields with default 
values; (ii) Random values that completes all fields, except 
the XML File Name, with values randomly generated; and 
(iii) Generate that generates a XML file containing a 
synthetic application according to the specified parameters. 

6.2 Results 
All experiments were designed in order to evaluate the 

effect of using static partitioning as a previous step of the 
dynamic mapping on energy savings, which is the approach 
proposed here. All tabulated values show, in percentage, 
how much the use of a static partitioning before dynamic 
mapping allows minimizing the energy consumption. 

Table 1 summarizes the first set of experiments, which is 
composed by synthetic applications with 50 tasks, processor 
use varying randomly from 10% to 80%, 16 processors, and 
a set of number of communications (10%, 20%, 40%, 60%, 
80% and 100%) combined with a set of communication 
volume (1, 10, 100, 1000 and 10000). The number of 

communications is expressed in percentages - 100% means 
that all tasks communicate with all other tasks, 0% is the 
absence of communications and intermediate values are 
linearly computed. 

Table 1 - Results of energy consumption minimization for 30 
synthetic applications with variable number of communications 
between tasks and quantity of bits of each communication. 

Energy 
savings (%) 

Number of communications (%)
10 20 40 60 80 100 ACV

C
om

m
un

ic
at

io
n 

vo
lu

m
e 

1 19.7 18.4 16.4 16.0 15.7 8.8 15.8

10 19.1 17.3 14.5 15.4 14.8 14.2 15.9

100 18.2 15.9 16.4 14.3 11.7 15.7 15.4

1000 20.1 15.7 15.2 13.2 13.5 13.0 15.1

10000 17.1 19.6 15.9 13.5 13.1 12.5 15.3
ANC 18.8 17.4 15.7 14.5 13.8 12.8 15.5

 

Legend: ACV - Average of communication volume 
 ANC - Average of number of communications  

The column ACV shows how much the number of bits 
transmitted between tasks affects on energy consumption 
minimization. It is a fact that the increase of communication 
volume raises the energy consumed by the target 
architecture. However, Table 1 shows that the average of 
energy savings is similar for all communication volumes. It 
means that this feature does not affect the efficiency of the 
approaches evaluated here, and the total average of all 
minimizations of energy consumption is 15.5%. 

The line ANC shows the effect of number of 
communications between tasks variation on energy savings. 
The results achieved with number of communications 
variation are similar to the ones achieved with the 
communication volume variation. Nevertheless, our 
approach is more efficient on energy savings for a small 
number of communications, because there are more 
scenarios that allow approximating the heavily 
communicating tasks. 

Table 2 - Results of energy consumption minimization for 36 
synthetic applications achieved by the combination of 6 quantities 
of tasks and 6 sizes of NoCs. 

Energy 
savings (%) 

Quantity of tasks
10 20 40 60 80 100 ANS

N
oC

 s
iz

es
 

2 x 3 2.4 6.5 10.9 16.6 23.8 48.3 18.1
3 x 3 3.5 7.7 11.2 19.4 34.6 68.8 24.2
3 x 4 7.7 12.3 18.3 23.4 35.9 73.6 28.5
4 x 4 9.3 15.3 19.3 20.1 39.9 79.7 30.6
4 x 5 12.5 18.6 23.1 28.9 45.6 89.0 36.3
5 x 5 15.0 25.5 26.8 31.2 49.6 93.1 40.2

AQT 8.4 14.3 18.3 23.3 38.2 75.4 29.7
 

Legend: ANS - Average of NoC sizes 
 AQT - Average of quantity of tasks  

Table 2 shows the results of the second set of 
experiments. This set is composed by synthetic applications, 
where, for all applications, any task communicates with 40% 
of the remaining tasks of the application, each 
communication between tasks has 100 phits (phit is 16 bit 
length) and the processor use varies randomly between 10% 
and 80%. Combining six quantities of tasks (10, 20, 30, 40, 
50 and 100) with six NoC sizes (2×3, 3×3, 3×4, 4×4, 4×5 and 
5×5) totalizes 36 synthetic applications. Some combinations 
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have empty tiles - not populated by tasks (e.g. a 3×4 NoC 
with 10 tasks implies two empty tiles), and other 
combinations will have more than a task by tile (e.g. a 3×3 
NoC with 10 tasks implies that at least one tile have more 
than one task). Since each tile contains a processor, there are 
six quantities of processors: 6, 9, 12, 16, 20 and 25, for each 
size of NoC, respectively. 

The energy consumption minimization achieved with our 
approach is not meaningful when applied to applications 
with small quantity of tasks running on small NoCs. On the 
other hand, for large applications or large NoCs the 
efficiency of our approach is evident, since it deals better 
with these complexities. Column ANS illustrates the effect 
of NoC size variation on energy savings, where it is clear the 
increase of energy savings provided by our approach, when 
the NoC's complexity increases. 

Line AQT illustrates the effect of quantity of tasks 
variation on energy consumption minimization. It implies 
the most important part of the energy savings in relation to 
the experiments conducted here, which is justified by the 
increase of task grouping possibilities when the quantity of 
tasks increases and these possibilities are well captured by 
the static partitioning step of our approach. 

Four embedded applications comprise the last set of 
experiments: (i) a digital PBX (privative branch exchange); 
(ii) an image recognition system (IRS); (iii) a distributed 
algorithm for Romberg's integral calculus; and (iv) a 
multimedia system (MMS). Table 3 depicts some relevant 
features of these applications and Table 4 shows the values 
of energy consumption minimization for these applications. 

Table 3 - Characteristics of the four embedded applications. 
Application features PBX IRS Romberg MMS

NoC size (lines x columns) 2 x 3 2 x 3 3 x 4 4 x 4
Quantity of processors 5 6 10 16
Quantity of tasks 24 12 30 34
Number of communications 142 53 60 182
Average communication volume (bytes) 2,334 30,827 35 22,135

  

Table 4 - Results of energy consumption minimization for 4 
embedded applications. 

Energy savings Embedded applications AveragePBX IRS Romberg MMS
Difference (%) 29.1 9.8 51.0 22.8 28.2

  

Similarly to the results acquired with synthetic 
applications, the efficiency of our approach is achieved in 
applications with more quantity of tasks mapped on more 
complex NoC, which are the cases of Romberg and MMS. 
In addition, the Romberg and PBX applications are mapped 
into NoCs with more tiles than the quantity of processors 
requires, providing more places to map groups of tasks. Our 
approach explores better this feature allowing searching for 
better results. Moreover, as stated above, the communication 
volume does not influences on the energy savings, as much 
that the results of Romberg application shows much more 
energy consumption minimization than those achieved in 
IRS and MMS applications. 

7. Conclusions 
The task mapping onto tiles of the target architecture is 

an NP-complete design activity, and when performed at 

runtime may not get good results, due to the exiguous time 
and to the large number of solutions to be explored. This 
work proposes to apply the partitioning of tasks into groups 
before the mapping. Once tasks were grouped, the search 
space of the mapping is minimized, which allows building 
efficient dynamic mapping algorithm that may performs an 
ideal task mapping in a short period of time. As a 
consequence, more than one application requirement may be 
better fulfilled. This work used several synthetic and four 
embedded applications to show that when this approach is 
well conducted may lead a significant energy savings. 
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