
Partitioning and Dynamic Mapping Evaluation for Energy
Consumption Minimization on NoC-Based MPSoC

Eduardo Antunes, Matheus Soares, Alexandra Aguiar, Sergio
Johann F., Marcos Sartori, Fabiano Hessel, Cesar Marcon

PPGCC - Post-Graduation Program in Computer Science
PUCRS - Pontifical University Catholic of Rio Grande do SuI

Corresponding author: cesar.marcon@pucrs.br

Abstract
Software complexity has increased considerably over

recent years, needing special target architectures as NoC­
based MPSoCs to fulfill the heavy storage, communication
and computation requirements. The design of these systems
requires efficient methodologies aggregating partitioning
and mapping. In these sense, this paper explores partitioning
and mapping influence on energy consumption of
homogeneous NoC-Based MPSoC. In addition, it compares
two strategies to achieve efficient dynamic mappings: one
that map tasks directly onto processors and another one that
applies a previous static task-partitioning and uses this
information to choose the dynamic task mapping.
Experiments with various synthetic and four embedded
applications show the efficiency of the second strategy that
minimizes an average of23.5% on energy consumption.

Keywords
Partitioning, Mapping, MPSoC, NoC

1. Introduction
Recent years have brought a large quantity of

application, demanding huge computational power, large
memory sizes, reduced energy consumption and efficient
communication, which boast the research and development
of special target architectures, like a NoC-based MPSoC.
This one implements the complete system functionality into
a single chip and support the heavy communication
requirements of hundreds processors with efficient energy
consumption.

From the processing point of view, homogeneous
MPSoCs are those composed by processors of the same type
and heterogeneous MPSoCs are those composed by at least
two processors with different architectures.

Heterogeneous MPSoCs can support a wide variety of
applications, since each processor has specific computation
and communication features. Otherwise, homogeneous
MPSoCs are easier to program, increase the mapping and
partitioning possibilities, and enable global load balancing
through application-task migration. Furthermore, the
homogeneity may minimize the global energy consumption
and area occupation for some set of applications [1].

This work employs homogeneous NoC-based MPSoC as
target architecture, and presents a partial design flow
containing the application-task partitioning into groups of
tasks, where each group is mapped onto tiles of the target
architecture. Whereas tile is a limited area of target

978-1-4673-1036-9/12/$31.00 ©2012 IEEE 451

architecture, compnsmg a processor, a router, a local
memory and auxiliary circuits.

Several works relate to task mapping onto NoC-based
architectures and some ones describe the tasks partitioning
into groups ([2 - 13]), but none evaluate the effect of using
static partitioning as a previous step of the dynamic
mapping. Here, we compare two approaches: (i) the
traditional one that during the run time map tasks onto
processors and (ii) the one proposed here, which performs a
previous analysis of tasks affinity by a partitioning step and
uses this information to choose fast and efficient mappings.

Moreover, several works uses the same name "mapping"
to define both mapping and partitioning, while the name
"partitioning" is used only to explore hardware/software
division.

This paper is organized as follows. Section 2 presents the
partitioning and the mapping problem formulation together
with the underlying data structures and the energy model.
Section 3 shows the language used to describe parallel
applications. Section 4 describes the methodology and the
tools used to accomplish the experimental results. Section 5
employs an application to exemplify the methodology.
Section 6 shows a synthetic application tool and
experimental results, and Section 7 concludes the paper.

2. Problem Formulation
The complete homogeneous MPSoC design implies

several steps with some specificity according to the
application description nature and the target architecture.
Here, we describe two design activities, which are the
partitioning and the mapping.

Parallel applications are described as a set of
communicating tasks. According to some requirements (e.g.
energy consumption minimization) and some constraints
(e.g. memory size limit, quantity of target processors) a
given design flow enables associating tasks of the parallel
application to tiles of the target architecture.

The traditional flow associates tasks directly to tiles,
which is called here as task mapping. On the other hand, our
flow considers tasks affinity to generate groups. The
grouping of all application tasks, which is the task
partitioning activity, generates a partition. The next step is
to perform the selection of the best place that each group of
tasks will be associated, which is the task-group mapping
onto tiles activity.

To better understand the concepts of partitioning and
mapping of the proposed flow, Figure 1 exemplifies the

13th Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:18:51 UTC from IEEE Xplore. Restrictions apply.

Antunes et al, Partitioning and Dynamic Mapping...

partitioning of a hypothetical application composed by 22
tasks into 6 groups and the corresponding mapping of these
task-groups onto tiles of 2D-mesh NoC architecture. The
application is composed by a set of parallel communicating
tasks T = {t1, t2, …, t22}. The tasks partitioning, which is
represented by continuous arrows, generates
G = {g1, g2, …, g6} that is a set of task-groups.

Finally, task-groups mapping onto tiles is represented by
the dotted arrows. These one associates each element of G to
an element of the set of NoC tiles Γ = {τ1, τ2, …, τ6}. In
addition, each tile contains a single element of the set of
processors P = {p1, p2, …, p6}.

t1

t4t2

t6
t5 t7

t9

t11
t12

t22

t16

t20

t21 t18 t17

t19 t15 t14

t13

t12 t2
t14

t11

t10

t16

t22
t7 t19 t9

t1 t15
t13

t3 t20
t17

t21

t4

g1 g2 g3 g4 g5 g6

t5 t18
t6

Partitioning

Mapping

t8

t8

t3 t10

Router

p1
τ1

Router

p4
τ4

Router

p2
τ2

Router

p5
τ5

Router

p3
τ3

Router

p6
τ6

Figure 1 – Partitioning and mapping understanding.

2.1. Partitioning and Mapping Complexities
The partitioning of tasks into groups is an activity with

complexity proportional to the Bell number O(Bell(n)) [15],
where n is the quantity of tasks, since there is no order
relation between task-groups and even within a group. The
task-groups mapping onto tiles (containing processors) of
the target architecture is O(t!) complex, where t is the
quantity of tiles, because it reflects all combinations of
positions of groups in all tiles.

Figure 2 – Number of combinations against the quantity of
elements: (i) Partitioning of tasks into groups, (ii) Mapping of task-
groups onto tiles, and (iii) Mapping of tasks onto tiles.

The task mapping onto tiles of the target architecture

adds the complexities of partitioning tasks across groups and
the mapping of these groups onto tiles. In this case, the
complexity is much higher O(Bell(n) � t!).

Figure 2 shows that the number of solutions to be
explored with mapping tasks onto tiles is much higher than
others are. Thus, even applying good algorithms, the results
obtained with this activity tend to be worse, when compared
to those obtained with the flow proposed here, mainly in the
cases where it is done at run time, since the mapping has a
short time to be accomplished, requiring fast but sometimes
inefficient algorithms.

2.2. Structures Definitions
The partitioning and mapping have three main data

structures that are set out below.
Definition 1: A Task Communication Graph (TCG) is a
directed graph <T, V>. The set of vertices T = {t1, t2, …, tm}
represents the set of m tasks in one parallel application.
Assuming vab is the bits amount of all packets sent from a
task ta to a task tb, then the set of edges V is {(ta, tb) |
ta, tb ∈ T and vab ≠ 0}, and each edge is labeled with the
value vab. V represents all communications between the
application tasks.
Definition 2: A Communication Weighted Graph (CWG) is
a directed graph <P, W>, similar to the TCG. However, the
set of vertices P = {p1, p2, …, pn} represents the set of
processors in one application. The quantity of processors n
is equal to the total quantity of tiles, since each tile has a
single processor. Furthermore, wab is the total quantity of
bits sent from a processor pa to a processor pb. Then the set
of edges W is {(pa, pb) | pa, pb ∈ P and wab ≠ 0}, and each
edge is labeled with the value wab. W represents all
communications between the MPSoC processors, while
CWG reveals information of application’s relative
communication volume.

The mapping is performed regarding to a 2D mesh NoC
using wormhole and deterministic XY routing algorithm.
The communication resource graph stated below captures
the NoC topology.
Definition 3: A Communication Resource Graph (CRG) is a
directed graph <Γ, L>, where the vertex set is the set of tiles
Γ = {τ1, τ2, …, τn} and the edge set L = {(τi, τj), ∀ τi, τj ∈ Γ}
gives the set of paths from τi to τj. The value n is again the
total quantity of tiles and is equal to the product of NoC
lines and columns. CRG edges and vertices represent
physical links and routers of the target architecture,
respectively. The CRG definition is equivalent to the
architecture characterization graph in [16] and to the NoC
topology graph in [17].

2.3. Energy Model
Both, processors (with the whole memory hierarchy) and

communication architecture originate energy consumption.
The sum of the energy consumed by the execution of all

tasks grouped on a processor enable estimating its energy
consumption. This value is used, together with the
communication volume between tasks, to choose good
partitions. On the other hand, the amount of bits transmitted

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:18:51 UTC from IEEE Xplore. Restrictions apply.

Antunes et al, Partitioning and Dynamic Mapping...

between tasks grouped and mapped onto different
processors contributes to estimate the energy consumption
used to choose good mappings.

The approach used here to model the NoC’s energy
consumption is similar to those shown in [16] and [18].
Dynamic energy consumption is proportional to switching
activity, arising from packets moving across the NoC,
consuming energy on the links and inside of each router.
The concept of bit energy EBit [18] is used to estimate the
dynamic energy consumption of each bit, when this flips its
polarity from a previous value. EBit is split into three
components: (i) bit dynamic energy consumed by the router
(wires, buffers and logic gates) (ERbit); (ii) bit dynamic
energy consumed on horizontal (ELHbit) and vertical
(ELVbit) links between tiles; and (iii) bit dynamic energy
consumed on the links between the router and the local
processor (ECbit). Equation (1) expresses the relationship
between these quantities, which computes the dynamic
energy consumption of a bit passing through a router, a
vertical or horizontal link and a local link.
(1) EBit = ERbit + (ELHbit or ELVbit) + ECbit

ERbit depends on the buffer structure and technology to
estimate how many bit-flips occur to write, to read and to
preserve the information. ELbit is directly proportional to
the tile dimension. For regular 2D-mesh NoCs with square
tiles, it is reasonable to consider that ELHbit and ELVbit
have the same value. Therefore, the next equation uses ELbit
as a simplified representation of ELHbit and ELVbit.
Equation (2) computes the dynamic energy consumed by a
single bit traversing a NoC, from tile τi to tile τj, where η
corresponds to the number of routers through where this bit
passes.
(2) EBitij = η × ERbit + (η - 1) × ELbit + 2 × ECbit

Let τi and τj be the tiles to which pa and pb are
respectively mapped. Then, the dynamic energy consumed
by a pa→pb communication is given by EBitab = wab × EBitij.
Equation (3) gives the total amount of NoC’s dynamic
energy consumption (ENoC) that is computed for all bits of
all communications between processors (|W|).

(3) ENoC = ∑
=

|W|

1i
Bit (i)E

ab
, ∀ pa, pb ∈ P

2.4. Energy Parameter Extraction and Model Validation
To acquire ERbit, ELbit and ECbit values, an initial

estimation was performed according to the characterization
of Hermes NoC [19] (2D mesh) on a 70nm CMOS
technology, which is the target communication architecture
used here. Next, a 2 × 3 NoC described in electrical level
was simulated several times, having synthetic patterns as
inputs from the local links, simulating hypothetical
applications. The same input patterns were applied to the
high-level tool that uses Equation (3) to energy consumption
estimation. Then the initial values of ERbit, ELbit and ECbit
were refined to minimize the average difference between
high-level estimation and the electrical level, which is the
reference used here. This process permits to achieve high-

level estimation of energy consumption with less than 7% of
average deviation.

3. Input Description
A set of XML tags capture the parallel application

behavior, which describes some relevant aspects to
partitioning and mapping targeting homogeneous MPSoC.
These tags concern some target architecture features, some
aspects of parallel communication and of each task
according to the processor type. The main purpose of using
XML is the documentation easiness and data structure
sharing across different design tools.

Figure 3 depicts the XML description structure. The
MPSOC_SPECIFICATION tag encloses the following tags:
PROCESSOR_TYPE, PROCESSOR_TASK_TABLE and TASK_TABLE.

<MPSOC_SPECIFICATION>
 <PROCESSOR_TYPE > ... </PROCESSOR_TYPE >
 <PROCESSOR_TASK_TABLE> ... </PROCESSOR_TASK_TABLE>
 <TASK_TABLE> ... </TASK_TABLE>
</MPSOC_SPECIFICATION>

Figure 3 – XML structure for parallel application description.

Figure 4 portrays the PROCESSOR_TYPE tag structure, which
encloses FEATURES and LIST tags. The first one enables to
describe physical characteristics of the processor type, such
as dimensions (width and height) in mm and operation
frequency in MHz. Processor dimensions permit to estimate
the length of the links, and subsequently the energy
consumed by these links. The LIST tag contains the name list
of all processors. The task partitioning process uses the
quantity of processors information to compute the quantity
of task groups.

<PROCESSOR_TYPE type = "MIPS">
 <FEATURES frequency = "2100" width = "1.5" height = "2.0"/>
 <LIST> P1 P2 P3 </LIST>
</PROCESSOR_TYPE>

Figure 4 – Example of basic structure of PROCESSOR_TYPE tag,
which contains three 2.1GHz MIPS processor.

Figure 5 depicts the PROCESSOR_TASK_TABLE tag, which
contains the application tasks characterization when running
on a given processor type. The partitioning uses the average
energy consumed (energy) in uJ as a requirement to compose
the partitioning cost function and the percentage of
processor use (processorUse) in percentage as a constraint to
limit the quantity of tasks that may be grouped and mapped
onto the same processor.

<PROCESSOR_TASK_TABLE>
 <TASK id = "T1" energy = "10.5" processorUse = "25"/>
 <TASK id = "T2" energy = "22.0" processorUse = "10.5"/>
 <TASK id = "T3" energy = "5.0" processorUse = "5.5"/>
</PROCESSOR_TASK_TABLE>

Figure 5 – Example of XML structure containing task-processor
characterizations.

The TASK_TABLE tag, illustrated in Figure 6, specifies all
communications between application tasks. For instance,
task T1 sends 160 kB to task T2. This information is used to
assemble the TCG described in Section 2.2. This one is the
basic data structure used on the task-partitioning algorithm.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:18:51 UTC from IEEE Xplore. Restrictions apply.

Antunes et al, Partitioning and Dynamic Mapping...

<TASK_TABLE>
 <SOURCE_TASK source = "T1">
 <COMMUNICATION target = "T2" volume = "160"/>
 <COMMUNICATION target = "T3" volume = "50.5"/>
 </SOURCE_TASK>
 <SOURCE_TASK source = "T2">
 <COMMUNICATION target = "T1" volume = "50"/>
 <COMMUNICATION target = "T3" volume = "30.5"/>
 </SOURCE_TASK>
 <SOURCE_TASK source = "T3">
 <COMMUNICATION target = "T1" volume = "160"/>
 </SOURCE_TASK>
</TASK_TABLE>

Figure 6 – Example of XML tag structure that describes all inter-
tasks communications.

4. Methodology Description
Figure 7 illustrates the flows described in Section 2,

which are implemented inside CAFES [20], a framework for
MPSoC design. The task mapping flow is represented by
dashed arrows, while the proposed one is symbolized by
continuous arrows. In addition, dotted arrows represent
input information for mapping and / or partitioning.

Task partitioning into groups has as entries: (i)
application description, which has all tasks and their
communications; (ii) Processors list, which has the name
and quantity of processors enabling to compute the quantity
of task groups; (iii) Processor use that is a constraint to limit
the quantity of task grouped into the same processor; and
(iv) NoC energy parameters that is used to compute the
energy consumption of a given partition.

 Application description (TCG)

Partitioned
application (CWG)

NoC description (CRG)

Partitioning
Processor list

Processor's energy

Processor use

Mapped application

NoC energy parameters

Mapping

Figure 7 – Design flows showing the partitioning and mapping.

To task partitioning problem, this work applies a
stochastic approach with simulated annealing algorithm
(SA) [21], which implements a double nested loop. The
outer loop tries to find very different partitions aiming to
look for global minima. On the other hand, the inner loop
explores small partition changes, aiming to find local
minima. The algorithm looks for the minimum partitioning
cost, which results from the best-searched partition.

The partitioning cost function takes into account the
minimization of the overall communication volume. The
algorithm tries to achieve a minimum cost, which implies to
cluster into the same processor high communicating tasks.
In addition, the algorithm tries to balance the processor use
through fair distribution of tasks over the available
processors, respecting processor use constraint. In other
words, tasks that communicate most are grouped as far as

they do not compromise more than the maximum processor
use for each processor - a parameter set according to the
application requirements. The processor use constraint is
neglected only in cases where there are no other available
processors, i.e. the task association to every processor
always implies more than the maximum processor use. The
partitioning tool generates a CWG description (Section 2.2)
that contains all processor-tasks associations.

The SA algorithm achieves good results for static
partitioning problem, since the designer has much time to
perform it. On the other hand, dynamic mapping requires
fast decisions to not postpone the application execution
implying a simpler but efficient algorithm.

This work implements two mapping algorithms: (i) one
that has as input the TCG description, which maps the most
communicating tasks onto the same processor, while the
maximum processor use is not reached. When it happens a
new neighbor tile is searched using a mapping cost function;
and (ii) the second one that has as input the CWG
description. This algorithm searches in the set of task groups
for the tile where at least one other task of the same group
had been previously mapped. If no previous task was
mapped, the algorithm uses the same mapping cost function
of the previous algorithm to search the new target tile.

The mapping cost function takes into account the
communication volume between processors and the NoC
energy parameters to compute the energy consumed on a
given mapping. Considering a given pair of communicating
processors, together with CRG and NoC parameters, the
energy consumption is computed through the energy model
described on Section 2.3. The energy consumption achieved
by task running on processor is used only to compute the
total energy consumption, but does not affect the mapping
choice.

For both flows, the mapping generates a file containing
all processor-tile associations that implies a minimum
energy consumption of all evaluated maps.

Partitioning and mapping cost functions use the same
NoC energy parameters stated by Equation (2). However,
while mapping specifies the exact processor place into the
NoC, the partitioning only explores the communication
needs, but the number of hops there is between two
communicating processors is unknown. In these sense,
partitioning cost function uses the concept of average of
hops that enables to compute the average energy
consumption of all possible paths. Let X and Y be the
number of tiles in horizontal and vertical dimension of a
NoC, respectively, than Equation (4) computes the total
number of hops of all paths that all processors have
regarding to XY routing algorithm.

The average of hops is computed dividing the
summation of all hops of all paths of all processors by the
total number of communications, which is stated by
Equations (5)(6) and (7).

(4) ݏ݌݋ܪ݈ܽݐ݋ݐ ൌ ෍ ෍ ෍ ෍ ሺ|ݔ െ ݅| ൅ ݕ| െ ݆|௒ ି ଵ
௝ ୀ ଴ ሻ௑ ି ଵ

௜ ୀ ଴
௒ ି ଵ
௬ ୀ ଴

௑ ି ଵ
௫ ୀ ଴

(5) #Processors = ܺ × ܻ

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:18:51 UTC from IEEE Xplore. Restrictions apply.

Antunes et al, Partitioning and Dynamic Mapping...

(6) maxComm = #ܲݏݎ݋ݏݏ݁ܿ݋ݎ × ሺ#ܲݏݎ݋ݏݏ݁ܿ݋ݎ െ 1ሻ

݁݃ܽݎ݁ݒܣݏ݌݋݄ (7) ൌ ݉݉݋ܥݔܽ݉ݏ݌݋ܪ݈ܽݐ݋ݐ
The ݄݁݃ܽݎ݁ݒܣݏ݌݋ value is used on Equation (2) in place

of η, which results an average value of EBitij. This one
multiplied by the communication volume is the energy
consumption estimation of each communication, which is
used during the partitioning.

5. Methodology Exemplification
This Section exemplifies the methodology used here. It

starts with a partial XML structure (Figure 8) containing: (i)
four PowerPC processors (P0, P1, P2 and P3), each one placed
inside a single tile; (ii) the description of a synthetic parallel
application composed by 6 tasks (T0, T1, T2, T3, T4 and T5); (iii)
the tasks characterization on PowerPC processor; and (iv) the
communications between tasks.

<PROCESSOR_TYPE type = "PowerPC">
 <FEATURES frequency = "2100" width = "1.5" height = "2.0"/>
 <LIST> P0 P1 P2 P3 </LIST>
</PROCESSOR_TYPE>
<PROCESSOR_TASK_TABLE>
 <TASK id = "T0" energy = "20.68" processorUse = "63.82"/>
 <TASK id = "T1" energy = "21.53" processorUse = "33.45"/>
 <TASK id = "T2" energy = "36.18" processorUse = "27.13"/>
 <TASK id = "T3" energy = "8.75" processorUse = "69.18"/>
 <TASK id = "T4" energy = "22.59" processorUse = "25.47"/>
 <TASK id = "T5" energy = "16.67" processorUse = "55.96"/>
</PROCESSOR_TASK_TABLE>
<TASK_TABLE>
 <SOURCE_TASK source = "T0">
 <COMMUNICATION target = "T2" volume = "1868"/></SOURCE_TASK>
 <SOURCE_TASK source = "T1">
 <COMMUNICATION target = "T5" volume = "681"/>
 <COMMUNICATION target = "T2" volume = "2183"/></SOURCE_TASK>
 <SOURCE_TASK source = "T2">
 <COMMUNICATION target = "T1" volume = "1516"/></SOURCE_TASK>
 <SOURCE_TASK source = "T3">
 <COMMUNICATION target = "T1" volume = "2212"/></SOURCE_TASK>
 <SOURCE_TASK source = "T4">
 <COMMUNICATION target = "T3" volume = "683"/>
 <COMMUNICATION target = "T2" volume = "1774"/></SOURCE_TASK>
 <SOURCE_TASK source = "T5">
 <COMMUNICATION target = "T4" volume = "1266"/></SOURCE_TASK>
</TASK_TABLE>

Figure 8 – Example of a synthetic application description.

Having as input the description of Figure 8, the
partitioning tool generated the following task group
association: {(G0, T3), (G1, T5), (G2, (T1, T2, T4)), (G3, T0)} and
Figure 9 (a) shows a graphical description of the CWG,
which is the output description of the partitioning tool.

Groups Tasks
G0 T3
G1 T5
G2 T1, T2, T4
G3 T0

(a) (b)
Figure 9 – (a) Graphical CWG description of a synthetic
application partitioned into 4 groups; (b) Tasks-group association.

CWG vertices and edges are P = {G0, G1, G2, G3} and
W = {(G0, G2), (G2, G0), (G1, G2), (G2, G1), (G3, G2)},
respectively. The edge labels wG0_G2 = 2212, wG2_G0 = 683,
wG1_G2 = 1266, wG2_G1 = 681 and wG3_G2 = 1868 can be easily

extracted from Figure 8 with the task-group partitioning
described above.

The mapping tool has as input the above CWG, the
topology (CRG) and the energy parameters of the target
architecture. Figure 10 depicts the associations ((τ1, G3),
(τ2, G0), (τ3, G1), (τ4, G2)) generated by mapping.

τ1 τ2

τ3 τ4

Figure 10 – A processor mapping onto a 2D-mesh NoC
architecture with energy consumption annotated inside links and
routers. E.g.: inside the router R[0,0], the dynamic energy
consumed by the buffers (Eb) and switches (Es) are 28.58uJ and
3.33uJ respectively; The dynamic energy consumed in link
between router and processor P0 are 1.02uJ and 3.32uJ; The
dynamic energy consumed by vertical and horizontal links are
8.41uJ, 3.87uJ and 18:36uJ.

Each link of the communication architecture is
associated to an estimated value of the dynamic energy
consumption, which depends on the energy parameters and
on the quantity of flits, which passes through the
communication links. The energy parameters of local links
and links between routers are ECbit and ELbit, respectively.
Furthermore, each router contains the energy consumed in
buffers (Eb) and switches (Es). The sum of Eb and Es is the
ERbit parameter of Section 2.3. Besides, Energy provides an
overall estimation of the NoC's energy consumption
(161.16 μJ). The energy consumption values are achieved by
the characterization of Hermes NoC [19] on a 70nm CMOS
technology.

6. Experimental Results
6.1 Synthetic Application Generator

To achieve fair and meaningful results, it is necessary to
study a wide range of applications, which is a very time
consuming task. Besides, it is hard to find a set of
applications, which covers several parallel aspects needed to
evaluate MPSoC designs. With this purpose, it was
developed a generator of synthetic parallel applications that
allows characterizing several application classes according
to the input parameters.

Figure 11 shows the interface of synthetic application
generator. There are six parameterizable fields inside three
set of parameters: (i) Task characterization, (ii) Task
communications and (iii) Others.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:18:51 UTC from IEEE Xplore. Restrictions apply.

Antunes et al, Partitioning and Dynamic Mapping...

Figure 11 – Interface of synthetic application generator.

The Task characterization set contains fields that allow
characterizing the tasks of the application when running on
the chosen processor: (i) Energy consumption is the average
of energy consumed by each task; (ii) Processor use allows
modeling the average consumption of processing time for
each task (in percentage).

The Task communications set encloses two fields
describing application communication aspects: (i) Number
of communication is the normal distribution of all
communications that a task performs during the application
execution; (ii) Communication volume filed contains the
number of phits each communication has. All these first four
fields allow generating values according to normal
distributions. The designer specifies the main, the standard
deviation, the minimum and the maximum values, and the
tool generates a random XML description that contains the
application built according to the Gauss parameters
portrayed in each field.

The Others set encloses three fields: (i) General that
contains the fields Quantity of processors and Quantity of
tasks, which express the exact quantities of processors and
of tasks that the application contains, respectively; (ii) XML
File Name, which is the output file name, where the
synthetic application will be stored; and (iii) Processor,
containing operating frequency, width, height, and name of
the processor type.

The Synthetic Application Tools encloses three buttons:
(i) Default values that completes all fields with default
values; (ii) Random values that completes all fields, except
the XML File Name, with values randomly generated; and
(iii) Generate that generates a XML file containing a
synthetic application according to the specified parameters.

6.2 Results
All experiments were designed in order to evaluate the

effect of using static partitioning as a previous step of the
dynamic mapping on energy savings, which is the approach
proposed here. All tabulated values show, in percentage,
how much the use of a static partitioning before dynamic
mapping allows minimizing the energy consumption.

Table 1 summarizes the first set of experiments, which is
composed by synthetic applications with 50 tasks, processor
use varying randomly from 10% to 80%, 16 processors, and
a set of number of communications (10%, 20%, 40%, 60%,
80% and 100%) combined with a set of communication
volume (1, 10, 100, 1000 and 10000). The number of

communications is expressed in percentages - 100% means
that all tasks communicate with all other tasks, 0% is the
absence of communications and intermediate values are
linearly computed.

Table 1 - Results of energy consumption minimization for 30
synthetic applications with variable number of communications
between tasks and quantity of bits of each communication.

Energy
savings (%)

Number of communications (%)
10 20 40 60 80 100 ACV

C
om

m
un

ic
at

io
n

vo
lu

m
e

1 19.7 18.4 16.4 16.0 15.7 8.8 15.8

10 19.1 17.3 14.5 15.4 14.8 14.2 15.9

100 18.2 15.9 16.4 14.3 11.7 15.7 15.4

1000 20.1 15.7 15.2 13.2 13.5 13.0 15.1

10000 17.1 19.6 15.9 13.5 13.1 12.5 15.3
ANC 18.8 17.4 15.7 14.5 13.8 12.8 15.5

Legend: ACV - Average of communication volume
 ANC - Average of number of communications

The column ACV shows how much the number of bits
transmitted between tasks affects on energy consumption
minimization. It is a fact that the increase of communication
volume raises the energy consumed by the target
architecture. However, Table 1 shows that the average of
energy savings is similar for all communication volumes. It
means that this feature does not affect the efficiency of the
approaches evaluated here, and the total average of all
minimizations of energy consumption is 15.5%.

The line ANC shows the effect of number of
communications between tasks variation on energy savings.
The results achieved with number of communications
variation are similar to the ones achieved with the
communication volume variation. Nevertheless, our
approach is more efficient on energy savings for a small
number of communications, because there are more
scenarios that allow approximating the heavily
communicating tasks.

Table 2 - Results of energy consumption minimization for 36
synthetic applications achieved by the combination of 6 quantities
of tasks and 6 sizes of NoCs.

Energy
savings (%)

Quantity of tasks
10 20 40 60 80 100 ANS

N
oC

 s
iz

es

2 x 3 2.4 6.5 10.9 16.6 23.8 48.3 18.1
3 x 3 3.5 7.7 11.2 19.4 34.6 68.8 24.2
3 x 4 7.7 12.3 18.3 23.4 35.9 73.6 28.5
4 x 4 9.3 15.3 19.3 20.1 39.9 79.7 30.6
4 x 5 12.5 18.6 23.1 28.9 45.6 89.0 36.3
5 x 5 15.0 25.5 26.8 31.2 49.6 93.1 40.2

AQT 8.4 14.3 18.3 23.3 38.2 75.4 29.7

Legend: ANS - Average of NoC sizes
 AQT - Average of quantity of tasks

Table 2 shows the results of the second set of
experiments. This set is composed by synthetic applications,
where, for all applications, any task communicates with 40%
of the remaining tasks of the application, each
communication between tasks has 100 phits (phit is 16 bit
length) and the processor use varies randomly between 10%
and 80%. Combining six quantities of tasks (10, 20, 30, 40,
50 and 100) with six NoC sizes (2×3, 3×3, 3×4, 4×4, 4×5 and
5×5) totalizes 36 synthetic applications. Some combinations

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:18:51 UTC from IEEE Xplore. Restrictions apply.

Antunes et al, Partitioning and Dynamic Mapping...

have empty tiles - not populated by tasks (e.g. a 3×4 NoC
with 10 tasks implies two empty tiles), and other
combinations will have more than a task by tile (e.g. a 3×3
NoC with 10 tasks implies that at least one tile have more
than one task). Since each tile contains a processor, there are
six quantities of processors: 6, 9, 12, 16, 20 and 25, for each
size of NoC, respectively.

The energy consumption minimization achieved with our
approach is not meaningful when applied to applications
with small quantity of tasks running on small NoCs. On the
other hand, for large applications or large NoCs the
efficiency of our approach is evident, since it deals better
with these complexities. Column ANS illustrates the effect
of NoC size variation on energy savings, where it is clear the
increase of energy savings provided by our approach, when
the NoC's complexity increases.

Line AQT illustrates the effect of quantity of tasks
variation on energy consumption minimization. It implies
the most important part of the energy savings in relation to
the experiments conducted here, which is justified by the
increase of task grouping possibilities when the quantity of
tasks increases and these possibilities are well captured by
the static partitioning step of our approach.

Four embedded applications comprise the last set of
experiments: (i) a digital PBX (privative branch exchange);
(ii) an image recognition system (IRS); (iii) a distributed
algorithm for Romberg's integral calculus; and (iv) a
multimedia system (MMS). Table 3 depicts some relevant
features of these applications and Table 4 shows the values
of energy consumption minimization for these applications.

Table 3 - Characteristics of the four embedded applications.
Application features PBX IRS Romberg MMS

NoC size (lines x columns) 2 x 3 2 x 3 3 x 4 4 x 4
Quantity of processors 5 6 10 16
Quantity of tasks 24 12 30 34
Number of communications 142 53 60 182
Average communication volume (bytes) 2,334 30,827 35 22,135

Table 4 - Results of energy consumption minimization for 4
embedded applications.

Energy savings Embedded applications AveragePBX IRS Romberg MMS
Difference (%) 29.1 9.8 51.0 22.8 28.2

Similarly to the results acquired with synthetic
applications, the efficiency of our approach is achieved in
applications with more quantity of tasks mapped on more
complex NoC, which are the cases of Romberg and MMS.
In addition, the Romberg and PBX applications are mapped
into NoCs with more tiles than the quantity of processors
requires, providing more places to map groups of tasks. Our
approach explores better this feature allowing searching for
better results. Moreover, as stated above, the communication
volume does not influences on the energy savings, as much
that the results of Romberg application shows much more
energy consumption minimization than those achieved in
IRS and MMS applications.

7. Conclusions
The task mapping onto tiles of the target architecture is

an NP-complete design activity, and when performed at

runtime may not get good results, due to the exiguous time
and to the large number of solutions to be explored. This
work proposes to apply the partitioning of tasks into groups
before the mapping. Once tasks were grouped, the search
space of the mapping is minimized, which allows building
efficient dynamic mapping algorithm that may performs an
ideal task mapping in a short period of time. As a
consequence, more than one application requirement may be
better fulfilled. This work used several synthetic and four
embedded applications to show that when this approach is
well conducted may lead a significant energy savings.

8. Acknowledgment
The Authors acknowledge the support of the Conselho

Nacional de Desenvolvimento Científico e Tecnológico (CNPq-
Brazil) through research grants 308924/2008-8 and 306178/2009-5.

9. References
[1] Jalier, C. et al. Heterogeneous vs. homogeneous MPSoC

approaches for a Mobile LTE modem. DATE, pp.184-189, 2010.
[2] Bononi, L. et al. NoC Topologies Exploration based on Mapping

and Simulation Models. DSD, pp.543-546, 2007.
[3] Chen-Ling, C.; Marculescu, R.; Contention-aware application

mapping for Network-on-Chip communication architectures.
ICCD, pp.164-169, 2008.

[4] Le Beux, S. et al. Combining mapping and partitioning
exploration for NoC-based embedded systems. JSA, v.56(7),
pp.223-232, 2010.

[5] Sahu, P. et al. A new application mapping algorithm for mesh
based Network-on-Chip design. INDICON, pp.1-4, 2010.

[6] Bo Yang et al. Multi-application multi-step mapping method for
many-core Network-on-Chips. NORCHIP, pp.1-6, 2010.

[7] Carvalho, E.; Calazans, N.; Moraes, F. Dynamic Task Mapping for
MPSoCs. IEEE Design & Test, v.27(5), pp. 26-35, 2010.

[8] Leupers, R.; Castrillon, J.; MPSoC programming using the MAPS
compiler. ASP-DAC, pp.897-902, 2010.

[9] Guang, S. et al. Energy-aware run-time mapping for homogeneous
NoC. SoC, pp.8-11, 2010.

[10] Nedjah, N.; Silva, M.; Mourelle, L. Customized computer-aided
application mapping on NoC infrastructure using multi-objective
optimization. JSA, v.57(1), pp.79-94, 2011.

[11] Tsai, K. et. al. Design of low latency on-chip communication based
on hybrid NoC architecture. NEWCAS, pp.257-260, 2010.

[12] Youness, H. et al. A high performance algorithm for scheduling
and hardware-software partitioning on MPSoCs, DTIS, pp.71-76,
2009.

[13] Go�hringer, D. et al. A Design Methodology for Application
Partitioning and Architecture Development of Reconfigurable
Multiprocessor Systems-on-Chip. FCCM, pp.259-262, 2010.

[14] Sherwani, N. A. Algorithms for VLSI Physical Design Automation.
Kluwer Academic Publisher, 1999.

[15] Zwillinger, D. Standard Mathematical Tables and Formulae, CRC
Press, 1996.

[16] Hu, J.; Marculescu, R. Energy-aware mapping for tile-based NoC
architectures under performance constraints. ASP-DAC, pp.233-
239, 2003.

[17] Murali, S.; De Micheli, G. Bandwidth-constrained mapping of
cores onto NoC architectures. DATE, pp.896-901, 2004.

[18] Ye, T.; Benini, L.; De Micheli, G. Analysis of power consumption
on switch fabrics in network routers. DAC, pp.524-529, 2002.

[19] Moraes, F et al. HERMES: an infrastructure for low area
overhead packet-switching networks on chip. Integration, the VLSI
Journal, v.38(1), pp.69-93, 2004.

[20] Marcon, C. et al. CAFES: A framework for intrachip application
modeling and communication architecture design. JPDC, v.71(5),
pp.714-728, 2011.

[21] Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by simulated
annealing, Science, pp.671-680, 1983.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 11,2022 at 20:18:51 UTC from IEEE Xplore. Restrictions apply.

