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Abstract 
State-of-the-art General-Purpose computing on Graphics 

Processing Unit (GPGPU) is facing severe power challenge 
due to the increasing number of cores placed on a chip with 
decreasing feature size. In order to hide the long latency 
operations, GPGPU employs the fine-grained multi-
threading among numerous active threads, leading to the 
sizeable register files with massive power consumption. 
Exploring the optimal power savings in register files 
becomes the critical and first step towards the energy-
efficient GPGPUs. The conventional method to reduce 
dynamic power consumption is the supply voltage scaling, 
and the inter-bank tunneling FETs (TFETs) are the 
promising candidates compared to CMOS for low voltage 
operations regarding to both leakage and performance. 
However, always executing at the low voltage (so that low 
frequency) will result in significant performance 
degradation. In this study, we propose the hybrid CMOS-
TFET based register files. To optimize the register power 
consumption, we allocate TFET-based registers to threads 
whose execution progress can be delayed to some degree to 
avoid the memory contentions with other threads, and the 
CMOS-based registers are still used for threads requiring 
normal execution speed. Our experimental results show that 
the proposed technique achieves 30% energy (including 
both dynamic and leakage) reduction in register files with 
little performance degradation compared to the baseline case 
equipped with naive power optimization technique.   
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1. Introduction 
Modern graphics processing unit (GPU) supports tens of 

thousands of parallel threads and delivers remarkably high 
computing throughput. General-Purpose Computing on 
GPUs (GPGPUs) are becoming the attractive platform for 
general-purpose applications that request high 
computational performance such as scientific computing, 
financial applications, medical data processing, and so on. 
However, GPGPU is facing severe power challenge due to 
the increasing number of cores placed on a single chip with 
decreasing feature size [1].  

In order to hide the latency induced by the function unit 
computation and off-chip memory accesses, GPU employs 
the fine-grained multi-threading that quickly switches 
among a large number of simultaneously active threads. As 
a result, substantial register files are required to keep the 
register context of each thread. For example, Nvidia Fermi 
GPU supports more than 20,000 parallel threads and 
contains 2MB register files [7]. Accessing such sizeable 
register files leads to massive power consumption [2-6]. It 
has been reported that the register files consume 15%-20% 

of the GPU stream multiprocessor’s power [8]. Effectively 
optimizing the register files power consumption is critical 
and the first step towards the energy-efficient GPUs.  

Supply voltage scaling is the fundamental technique to 
reduce the dynamic power consumption, but it is limited by 
the leakage constraints in CMOS digital circuits. Recently, 
Inter-bank Tunneling Field Effect Transistors (TFETs) have 
shown to be the attractive candidates to operate at low 
supply voltages (e.g. 0.3V) with ultra low leakage and 
higher frequency than CMOS [9, 10]. However, at higher 
supply voltage, CMOS devices are able to achieve much 
better performance than TFETs. The unique characteristics 
of CMOS and TFETs at different voltage levels provide 
great opportunity in GPU power savings without hurting the 
performance.  

In the GPGPU applications, all threads in a kernel 
execute the same code [11], and exhibit similar execution 
progress in the fine-grained multi-threading environment. 
When one thread encounters an off-chip memory access, 
other threads are likely to issue the requests at 
approximately the same time, leading to severe memory 
contentions which extend the memory access time. And the 
pipeline in the GPU stream multiprocessor stalls when all 
threads stall due to the long-latency memory accesses. It has 
been found that the performance of numerous GPGPU 
workloads are still bounded by the memory resources even 
modern GPUs provide very high memory bandwidth [30]. In 
order to alleviate the memory contentions and efficiently 
utilize the memory bandwidth, threads can run at different 
paces which effectively avoid the interferences among 
memory requests. It enables the implementation of the 
TFET-based registers in GPGPUs for a number of threads so 
that they can run at a lower frequency without any 
performance degradation, and meanwhile, both the dynamic 
and leakage power of the registers reduces substantially. On 
the other hand, applying TFETs for all registers in the 
GPGPU will cause significant performance penalty since 
many threads still need to execute at high frequency to 
achieve the high computational throughput.   

In this paper, we propose the hybrid CMOS-TFET based 
registers in GPUs to obtain optimal energy reduction with 
negligible performance penalty. The contributions of this 
study are as follows: 

(1) We observe that threads in GPGPU workloads can be 
seriously delayed while executing in the GPU streaming 
multiprocessors due to the memory access interference with 
others. Instead of stalling in the pipeline on the occurrence 
of serious memory contentions, threads can execute at a low 
speed by using TFET-based registers to postpone their 
memory requests. It helps to achieve the win-win scenario: 
preventing the interferences and achieving the attractive 
power savings. 

(2) We propose to build the hybrid TFET-based and 
CMOS-based registers, and perform the memory contention-



 

 

aware register allocation. Based on the access latency of 
previous memory transaction, we predict the thread stall 
time during its following memory access, and allocate 
TFET-based registers to that thread to postpone its execution 
progress to the maximum degree without performance loss. 
By doing this, we maximize the utilization of the TFET-
based registers, thus, optimize the energy consumption 
while maintaining the performance.  

(3) Our evaluation results show that the proposed register 
allocation technique in the hybrid register design exhibits 
the strong capability of reducing the register energy 
consumption (including both dynamic and static energy) by 
30% compared to the case with naive power optimization 
technique (i.e. power gating the unused registers [2]). 
Especially, it achieves 42% energy reduction (16% dynamic 
saving and 26% leakage saving) in memory-intensive 
benchmarks with only 2.5% performance degradation.  

The rest of the paper is organized as follows: Section 2 
provides the background of GPGPU and TFETs. Section 3 
proposes the hybrid CMOS-TFET based registers and the 
memory contention-aware TFET-based register allocation. 
Section 4 describes our experimental methodologies and 
evaluates the proposed mechanism. We discuss the related 
work in Section 5, and conclude with Section 6.   

2. Background 

2.1. General-Purpose Computing on Graphics 

Processing Units (GPGPUs) Architecture 
A typical GPU consists of a scalable number of in-order 

streaming multiprocessors (SM) that can access to multiple 
on-chip memory controllers via an on-chip interconnection 
network [11]. In GPU programming models, highly-parallel 
kernel functions are launched to the GPU for execution. The 
kernel is composed of a grid of light-weighted threads; a 
grid is divided into a set of blocks; each block is composed 
of hundreds of threads. Threads in the kernel are assigned to 
the SMs at the granularity of blocks.  

 

Figure 1.  Streaming Multiprocessor microarchitecture 

Figure 1 illustrates the SM microarchitecture. Threads in 
the SM execute on the single-program multiple-data 
(SPMD) model. A number of individual threads (e.g. 32 
threads) from the same block are grouped together, called 
warp. In the pipeline, threads within a warp execute the 
same instruction but with different data values. As Figure 1 
shows, each warp has a dedicated slot in the warp scheduler. 
At every cycle, a ready warp is selected by the scheduler to 
feed the pipeline. The instruction is then fetched from the 
instruction cache based on the PC of the issued warp, and 
further decoded. In the SM, a number of registers are 
statically allocated to each warp when the block is 
distributed. All threads in the warp access a number of 
registers (i.e. the register vector) simultaneously based on 
the warp ID and the register number, the register values are 
processed in parallel across the streaming processors (SP).  

GPU is usually equipped with its own off-chip external 
memory (e.g. global memory) connected to the on-chip 
memory controllers. The off-chip memory access can last 
hundreds of cycles, and a long latency memory transaction 
from one thread would stall all threads within a warp. In 
other words, the warp cannot proceed until all the memory 
accesses from its threads complete.  

2.2.Tunneling Field Effect Transistors (TFETs) 
The sub-threshold slope of the transistor is the key factor 

in leakage power consumption, and a steep sub-threshold 
device achieves low leakage current. Traditional CMOS 
devices are limited to 60mV/decade sub-threshold slope 
which induces high leakage current during the voltage 
scaling [12]. While TFETs [9] exhibit sub-60mV/decade 
sub-threshold slope and achieve very low leakage power 
consumption at low supply voltage. Figure 2(a) compares 
the OFF-state leakage current (IOFF) and ON current (ION) of 
the two kinds of devices when VCC is 0.3V. As it shows, 
TFETs are able to obtain much lower leakage current and 
stronger driven current, therefore, ultra low leakage with 
high frequency. They are promising for energy-efficient 
computing. On the other hand, as Figure 2(b) exhibits, 
although TFETs are still able to achieve low IOFF at high 
supply voltage (e.g. 0.7V), CMOS devices have larger 
driven current and better performance than TFETs. 

 
(a) (b) 

Figure 2. OFF-state leakage current and ON current of TFET 
and CMOS when VCC is (a) 0.3V and (b) 0.7V (adapted 
from [13]) 

TFETs have the characteristic of uni-direction 
conduction which causes a challenge on designing the 
SRAM storage cell. Recently, many different TFET SRAMs 
have been explored to overcome this limitation [14-17]. By 
comparing those designs on several aspects (e.g. frequency, 
noise margins, power, and area), in this study, we apply the 
6T TFET SRAM proposed by Singh et al. [14] to implement 
the TFET-based register files. 



 

 

3. Hybrid CMOS-TFET based Register Files 

3.1. The Observation on Memory Contentions 
In GPUs, the off-chip memory requests from SMs need 

to go through the on-chip network routing to certain 
memory controller and wait there to be served. When 
numerous requests are issued at similar time by multiple 
SMs, both on-chip network and memory controllers will be 
severely congested which significantly increases the 
memory access time. Unfortunately, such congestion issue 
occurs frequently in GPUs due to the unique characteristic 
of the GPGPU applications: all threads in the kernel across 
SMs execute the same instructions and proceed at similar 
rate in the fine-grained multithreading environment. 
Although there are up to thousands of active threads running 
in each SM, they are unlikely to fully hide the extremely 
long-latency memory transaction caused by the memory 
contentions. As a result, the SM suffers long-time pipeline 
stall. The GPU memory bandwidth is already considered as 
one of the resource constraints for many GPGPU workloads 
even modern GPUs provide pretty high memory bandwidth 
[30].  
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(a) (b) 
Figure 3.  (a) SMs suffer long pipeline stall due to the severe 
memory contentions. (b) Leveraging TFETs to absorb the 
long pipeline stall and alleviate memory contentions. 

Figure 3(a) shows an example of the memory resource 
contentions among SMs. Several SMs encounter the global 
memory access instructions and send out memory requests 
simultaneously. The buffers in network-on-chip (NoC) and 
memory controllers are quickly filled up by those requests 
and they have to be served sequentially to access the DRAM 
buffers (Figure 3(a) takes a snapshot on the NoC and 
memory controllers). Therefore, the memory transactions 
spend longer time to finish, and the pipeline in SMs quickly 
turns to be idle (highlighted as red circles in Figure 3(a)) 
since other active threads in the SM will stall at the memory 
instructions in the near future as well.   

The thread throttling mechanism has been proposed 
recently to alleviate the memory contentions and shrink the 
pipeline idle time [18]. It dynamically stalls certain threads 
to restrict the number of concurrent memory tasks and avoid 
the interferences among memory requests. As can be seen, 
appropriately slowing down the threads before their memory 
accesses can even introduce positive effect on performance. 

Allocating the TFET-based registers to those threads and 
managing them to execute at low frequency during the 
register read/write operations provides the perfect approach 
to control the thread progress. Figure 3(b) demonstrates the 
example of intelligently leveraging the low frequency 
operations on TFETs to absorb the pipeline stall time 
(shown in green rectangles) and meanwhile, separate the 
memory requests from SMs. As it shows, both NoC and 
memory controllers have few queued requests, and the off-
chip memory access time reduces significantly. More 
importantly, the benefit of TFETs on reducing both dynamic 
and leakage energy is effectively explored. Obviously, 
CMOS-based registers are essential during the normal 
execution. In this work, we propose the hybrid CMOS-
TFET based registers, and use TFET-based registers to 
delay threads execution speed to the maximal degree so that 
achieve the goal of maximizing the energy savings without 
hurting the performance. 

3.2. Memory Contention-Aware TFET Register 

Allocation 
As described in Section 2.1., when launching threads to 

the SM, a number of registers are statically designated to 
them according to their resource requirements. The register 
ID encoded in the instruction is used as the index to the 
physical register being read/written. In other words, the 
mapping between the register ID and the physical register is 
fixed all the time. However, when applying the same 
mapping mechanism in the hybrid register, the use of the 
TFET-based registers cannot be managed at the run time.  

In this work, a register renaming table is applied to 
record the physical register number corresponding to the 
register ID encoded in the instruction. A register renaming 
stage is inserted into the SM pipeline following the decode 
stage. Note that this additional stage does not affect back-to-
back instruction latencies. It only induces 1.5% performance 
overhead based on our evaluation across a large set of 
GPGPU benchmarks (detailed experimental methodologies 
are described in Section 4.1.), which also matches the 
observation made in [4]. During the register renaming stage, 
the destination register ID is renamed to a free physical 
register. The renaming table also provides the information of 
physical registers to be read according to the source register 
IDs. Therefore, the thread has the flexibility to map a 
register to either CMOS or TFET based physical register. A 
register in the renaming table is released after its last read, 
and the register lifetime information can be simply obtained 
by the compiler which indicates the last instruction reading 
the register. Since threads in a single warp execute the same 
instruction, they share the same renaming information. The 
execution of a branch instruction may cause warp 
divergence, threads in a diverged warp execute in serial 
fashion. A physical register will not be released until the last 
read finishes across all threads in the warp. 

The critical challenge in the hybrid register design 
becomes the runtime CMOS/TFET physical register 
allocation to the destination register ID in the warp. 
Aggressively utilizing the TFET registers degrades the 
performance significantly; on the other hand, too 
conservatively using the TFET registers fails to achieve the 
goal of maximizing the registers power savings. Moreover, 
the TFET utilization among warps needs to be different to 
well control the warp execution progress and avoid the 



 

 

interferences. As can be seen, it is crucial that the TFET-
based register allocation adapts to the memory access 
pattern of the workloads. For example, randomly or 
periodically renaming the destination registers to TFET 
registers can easily hurt the performance as they are blind to 
the memory accesses. It is highly possible that the TFET 
registers are improperly used when there are few memory 
transactions and the high throughput is expected during that 
period of the workload execution. We propose the MEMory 
contention-aware TFET Register Allocation (named as 
MEM_RA as abbreviation) to achieve the optimal power 
savings with little performance penalty.  

Recall that SM supports the SPMD execution model, 
threads from a warp exhibit the same progress and stall for 
the same amount of time, therefore, the stall time at warp 
level is the finest granularity can be considered. The warp 
stall time due to the off-chip memory access implies the 
severity of the memory contentions. A long waiting time 
means the occurrence of serious contentions, and if the 
memory request from the warp had been postponed by using 
the TFET registers, such contentions may be removed 
successfully. Unfortunately, the waiting time is not available 
until the request has already been serviced and the 
contentions already take place. We use the last value 
prediction mechanism to predict the warp stall time in its 
next global memory transaction based on the previous 
memory access latency, and utilize TFET registers to absorb 
that predicted stall time before the warp sends out its 
memory request. 

Note that the warp has already been slowed down to 
some degree in previous memory transaction, its following 
memory request might not interfere with others and it is 
unnecessary to further delay its progress. This happens in 
kernels with heavy computation tasks which help to separate 
the memory transactions and relief the memory contentions. 
However, the case is different in memory-intensive 
workloads. Even the warp has been delayed before, its 
following memory access can get involved with memory 
transactions from other warps due to the frequently issued 
memory requests, and further postponing its execution 
progress is desired.  

In order to delay the warp appropriately across various 
types of workloads, we sample the memory access latency 
periodically at run time and introduce it into the warp stall 
time prediction. Eq.1 describes the analytical model to 
predict the stall cycles (represented as SC) of a warp based 
on its previous memory access latency (represented by 
prev_acc) and the latest sampled memory access latency 
(represented by sample_acc),  

0, _ _

_
( _ _ ) ,

_

_ _ , _ _

_ _ , _ _ , _ _

if prev acc thr acc

sample acc
prev acc thr acc

SC ref acc

if sample acc ref acc prev acc thr acc

prev acc thr acc if sample acc ref acc prev acc thr acc

≤

 

× − 
=  


< >
 − ≥ >

Eq.1 

where thr_acc is the threshold latency to determine whether 
the warp should be delayed in the near future. It is set as the 
memory access cycles under perfect memory system (e.g. 10 
core cycles in our GPU machine configuration). When the 
prev_acc is no longer than the thr_acc, it implies that the 
previous memory transaction does not run into any 
congestion and the warp proceeds at good speed rate, so no 

delay is required. ref_acc is the referred memory access 
latency describing the memory access time with moderate 
resource contentions. When sample_acc is longer than 
ref_acc, it implies that the kernel currently exhibits the 
memory-intensive characteristic, the aggressive delay on the 
warp execution is preferred. The stall cycle is directly set as 
the extra waiting time in the previous memory access (i.e. 
prev_acc minus thr_acc). To the contrary, a short 
sample_acc compared to ref_acc means that the kernel 
involves heavier computation tasks, the predicted stall time 
is scaled down according to the ratio of sample_acc to 
ref_acc. 

Once the stall time is calculated by using the analytical 
model above, the warp starts to allocate TFET-based 
registers to the destination register IDs in its following 
execution. Generally, the read/write time to TFET-based 
SRAM operating at low supply voltage is as twice as that of 
the CMOS-based SRAM at normal voltage [19]. The access 
time to TFET registers is modeled as 2 cycles in our study. 
In other words, one extra cycle is required to finish the 
TFET register read/write operation. The TFET register 
allocation is disabled when the predicted stall time is 
expected to be fully absorbed. Note that the register read 
time lasts 2 cycles as long as there is one TFET-based 
source register. When a warp diverges at a branch 
instruction, the extra delay is also modeled for all the 
sequentially executed threads if they use TFET registers. A 
warp issues multiple memory transactions when a load 
instruction is executed and the load requests from threads 
belonging to that warp fail to get coalesced. Those 
transactions may complete at different time, as a result, the 
register write back cannot be performed concurrently. 
Writing values to TFET registers in a load instruction is 
likely to induce quite long delay which easily makes the 
warp over-postponed. The TFET register allocation for load 
instructions are skipped in MEM_RA. 

3.3. Implementation  
(1) The Number of the TFET-Based Registers 

Since CMOS- and TFET-based SRAMs have similar size 
[29], we set the total amount of hybrid registers in each SM 
as the same as that (i.e. 16K) in the baseline case with 
default GPU configuration for the fair comparison. The 
partition of CMOS- and TFET-based registers is important 
to the effectiveness of our proposed MEM_RA mechanism. 
Fabricating the sizeable TFET registers forces the use of 
TFET registers when there are insufficient CMOS registers, 
it reduces power by sacrificing the high computational 
throughput; while the small TFET registers cannot provide 
enough TFETs for the energy saving purpose. In the ideal 
case, the number of CMOS-based registers should perfectly 
matches their utilization under the impact of MEM_RA, 
which is largely determined by the warp waiting time during 
the off-chip memory accesses. The quantity of TFET 
registers may be more than required in the ideal case, it is 
better to have idled TFET-based instead of CMOS-based 
registers considering the extremely low leakage power 
consumed by TFET circuits.  

Figure 4 shows the percentage of the warp stall time to 
its total execution time in various types of GPGPU 
benchmarks, the detailed experimental setup is described in 
Section 4. In the computation-intensive benchmarks (e.g. 
CP, LPS, MM, and RAY), there are few memory accesses, 



 

 

and the warp stall time is very close to zero. While the 
numerous memory transactions in the memory-intensive 
benchmarks (e.g. BFS, BP, MT, NE, and NW) causes much 
longer warp stall time. On average across all the 
benchmarks, the stall time is around 22%. In other words, 
CMOS registers should be applied in the remaining 78% of 
the execution time. Therefore, the CMOS registers are 
designed to account for 78% of the total registers, and the 
remains are TFET-based registers. Our 16K hybrid registers 
are composed of 12.5K CMOS-based and 3.5K TFET-based 
registers. We also performed detailed sensitivity analysis on 
varying the size of CMOS registers (e.g. 6K, 10K, and 14K) 
in the total 16K hybrid design, and found that 12.5K CMOS 
register is the optimal design regarding to the total energy 
saving and performance overhead.  
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Figure 4.  The percentage of the warp stall time caused by 
the off-chip memory accesses. It is near zero in CP, LPS, 
MM, and RAY. 

 In GPU SM, the per-block resources (e.g. registers, 
shared memory) are not released until all the threads in the 
block finish execution, they limit the number of blocks that 
can simultaneously run in the SM. Different per-block 
resources become the bottleneck for kernels that have 
different resource requirements. The bottleneck structure is 
prone to be fully utilized while other structures are usually 
underutilized. Therefore, a portion of CMOS registers may 
be free through the entire kernel execution, leading to the 
considerable leakage power consumption. In [2], the power 
gating technique has been introduced into GPU SM to 
remove leakage. We apply it to power off the unused CMOS 
registers in SMs. Information such as the maximum number 
of threads allocated to each SM, and the quantity of physical 
registers required per thread can be easily obtained during 
the kernel launch process. Hence, the total register 
utilization would not exceed the product of those two 
factors. The requirement on CMOS registers can be 
estimated by scaling down the total register utilization to 
78%, and the power gating is enabled on the remaining idled 
CMOS registers for a long time until the kernel completes. 
The energy and time overhead caused by the power gating is 
negligible with regard to the large power reduction by 
keeping those registers in the power-gated mode during the 
entire kernel execution period.  

(2) The Implementation of MEM_RA 

Figure 5 demonstrates the implementation of our 
proposed memory contention-aware TFET-based register 
allocation in the hybrid register design. A counter is 
attached to each warp slot in the warp scheduler. When a 
warp encounters an off-chip memory access, its counter is 
re-set as zero and starts the auto increase every cycle to 
record the memory access latency. Upon the completeness 
of the memory transaction, the cycle number stored in the 
counter is sent to an ALU for the warp stall time prediction, 

meanwhile, the sampled memory access cycles with the 
static information (i.e. threshold latency, referred access 
latency) also input to the ALU. The output is written back to 
the counter, it will be read when the warp enters into the 
pipeline, and a larger-than-one value in the counter implies 
the necessity of writing to the TFET-based register. In [4], 
Gebhart et al. found that 70% of the register values are read 
only once in GPGPU workloads. It implies that most TFET 
register values are read once, therefore, renaming the 
destination register to the TFET register usually causes 2-
cycle extra delay: one additional cycle during the value 
write back, and another one when it is read by a subsequent 
instruction. As can be seen, one TFET register allocation 
takes two cycles of the warp stall time in most cases. And 
the counter value will decrease by two upon a successful 
TFET register allocation. Note that the counter decrease is 
just used to estimate the possible delay to the warp when 
renaming to the TFET registers. For TFET registers being 
read multiple times, the warp stall time will be taken more 
than two cycles. Moreover, the counter auto-increases 
occurs at warp waiting time while its value decrease is 
performed at the normal execution time, there is no overlap 
between the counter auto-increase and decrease processes.   

 

Figure 5.  Memory contention-aware TFET-based register 
allocation 

Considering that the ALU is used once a warp completes 
a memory instruction, and the major computation in it is 
division (as shown in Eq.1.) lasting for tens of cycles, we set 
the referred access latency as 2 to power of n and translate 
the division into logical shift. It will operate based on the 
product of the sampled memory access latency and the 
previous stall time. We performed the detailed sensitivity 
analysis on the referred access latency, and found that 
MEM_RA achieves optimal trade-off between power and 
performance when setting it as 2^7=128 cycles. Note that 
the warp stall time estimation occurs in parallel with the 
write back stage, it does not introduce any extra delay to the 
critical path in the pipeline. 



 

 

As Figure 5 shows, register files are partitioned into 
CMOS-based and TFET-based registers, and each physical 
register vector has a unique identification number. Two 
power supply lines are used to support the high (low) 
voltage operations on CMOS (TFETs) registers. The register 
renaming stage is added into the SM pipeline (shown as the 
dotted rectangle), during which the register renaming table 
is accessed. It is indexed by the warp ID and register number 
encoded in the instruction, and each entry holds the 
corresponding physical register vector number which will be 
used for register access in the following stage. Two FIFO 
buffers are attached to the renaming table to keep the 
released CMOS and TFET register vectors, respectively. 
The top register in each buffer is consumed for the 
renaming, while the bottom is filled by the newly released 
register. In the case that a CMOS register is requested while 
the buffer for CMOS registers is empty, the buffer for TFET 
registers will provide a free TFET register instead, and vice 
versa. Note that there is always at least one free 
CMOS/TFET register available for renaming since the 
required resources have already been well estimated when 
the block is assigned to the SM.   

(3) Hardware and Power Overhead  

The major hardware added into the SM is the register 
renaming pipeline stage including the register renaming 
table, two buffers for the released CMOS and TFET register 
vectors, and some simple combinational logics. In order to 
keep the renaming information for all physical registers, the 
number of entries in the renaming table is equal to the 
amount of register vectors which is 512 in our default GPU 
configuration. Similarly, the total size of the two buffers is 
512 as well. Each entry in those three structures contains 9 
bits. The hardware in the renaming stage causes around 2% 
area overhead to the register files in the SM. In addition, to 
predict the warp stall time, thirty-two 11-bit counters (we set 
the maximum memory access time as 2048 cycles), and the 
unit performing simple integer arithmetic and logic 
operations are added in the SM. The overall hardware 
overhead to the SM register files is 3%. We develop the 
power model (including both dynamic and leakage power) 
for the added hardware, and find that it induces around 2.9% 
power overhead to the register files by running a large set of 
GPGPU benchmarks. 

4. Evaluations 

4.1. Experimental Methodology  
We implement our MEM_RA technique on the cycle-

accurate, open-source, and publicly available simulator 
GPGPU-Sim [20] to obtain the GPGPU performance 
statistics. We build our power model based on the energy 
analysis tool CACTI [21]. We set the high supply voltage as 
0.7V and low supply voltage as 0.3V. The read/write times 
to CMOS- and TFET-based registers and the total execution 
time are collected from the modified GPGPU-Sim to 
evaluate both RF dynamic and leakage energy consumption. 
Our energy estimation is consistent with previous studies [3, 
4, 8]. 

Our baseline GPGPU configuration is set as follows: 
there are 28 SMs in the GPU, SM pipeline width is 32, warp 
size is 32, each SM supports 1024 threads and 8 blocks at 
most, each SM contains 16K 32-bit registers, 16KB shared 
memory, 8KB constant cache, and 64KB texture cache, the 

warp scheduler applies the round robin scheduling policy, 
the immediate post-dominator reconvergence [22] is used to 
handle the branch divergences; the GPU includes 8 DRAM 
controllers, each controller has a 32-entry input buffer, and 
applies out-of-order first-ready first-come first-serve 
scheduling policy [20]; the interconnect topologies is Mesh, 
and the dimension order routing algorithm is used in the 
interconnect, the interconnect router contains two virtual 
channels, and flit size is 16B. We collect a large set of 
available GPGPU workloads from Nvidia CUDA SDK [23], 
Rodinia Benchmark [24], Parboil Benchmark [25] and some 
third party applications. The workloads show significant 
diversity according to their kernel characteristics, branch 
divergence characteristics, memory access patterns, and so 
on.  

4.2. Results  
In order to justify the effectiveness of MEM_RA, we 

compare it with several power reduction techniques. The 
baseline case studied in this paper is employing only 
CMOS-based registers and power gating the unused 
registers during the kernel execution. Another naïve 
mechanism for power saving is simply applying TFETs to 
all SM registers, it is named as all_TFET. In previous work, 
the drowsy cache has been proposed to reduce the cache 
leakage power [26]. Similarly, registers belonging to a warp 
can be put into the sleep mode when the warp stalls in the 
pipeline, but it takes couple of cycles to wake them up for 
further accesses. We also investigate the effect of drowsy 
register from the performance and power perspectives. In 
the hybrid register design, the long access time to TFET 
registers may largely degrade the performance when they 
are randomly used. A straightforward technique to maintain 
performance is to avoid the allocation of TFET registers if 
possible. In other words, the CMOS register is selected for 
renaming as long as there is any one free. We name this 
technique as CMOS_RA, it is applied on the hybrid 12.5K 
CMOS registers and 3.5K TFET registers. Note that the 
power gating technique is integrated into drowsy register 
and CMOS_RA, respectively, for the fair comparison. Since 
TFET has extremely low leakage power, the power gating is 
not triggered in all_TFET mechanism. 

As discussed in Section 3.3., ideally, the size of CMOS 
registers would exactly match their usage. We further 
investigate the effectiveness of MEM_RA when the CMOS 
registers size is set ideally, called idealMEM_RA. (We 
name the MEM_RA using 12.5K CMOS and 3.5K TFET 
registers as MEM_RA for short.) Since benchmarks exhibit 
different memory access patterns, their requirements on 
CMOS registers vary greatly. Although designers rarely 
fabricate a GPU with certain number of CMOS(TFET) 
registers to specifically satisfy a single benchmark’s 
requirement, the results of idealMEM_RA provide a more 
accurate evaluation on the capability of MEM_RA on power 
optimizations while maintaining the performance.  

Figures 6 describes (a) the execution time and (b) the 
overall energy when running the investigated benchmarks 
under the impact of several power reduction techniques 
described above. The results are normalized to the baseline 
case. Note that the performance and energy overhead caused 
by each technique is also included in the results. As Figure 
6(a) shows, all_TFET hurts the GPU performance 
significantly, the execution time is almost doubled in several 



 

 

benchmarks (e.g. BN, CP, MM, and RAY). On average, 
all_TFET degrades the performance by 56%. Although it 
reduces the energy consumption significantly (total energy 
decreases to 16% as shown in Figure 6(b)), it is not worth to 
scarify such large portion of throughput to achieve the low 
energy consumption. Interestingly, the kernel execution time 
under drowsy register mechanism remains the same 
although there is time overhead to wake up registers staying 
in the sleep mode, because the wake up time is trivial with 
regard to the hundred-cycle long memory access. Moreover, 
the energy reduction achieved by drowsy register is small, 
only around 7%.  

(a) 

(b) 
Figure 6.  The (a) normalized execution time (b) normalized 
energy consumption when running benchmarks under several 
power optimization techniques 

 CMOS_RA is performance friendly which causes 5% 
performance penalty on average. Because it uses the CMOS 
registers in majority of the time, and there is no performance 
loss when the benchmark needs less than 12.5K registers. 
However, the performance penalty is high for benchmarks 
requesting a large amount of registers, as TFET registers are 
consumed in that case. For example, the execution time for 
MM increases 65% under CMOS_RA because the RF 
utilization in that benchmark is 100%. 

 As Figure 6 shows, the energy reduction under 
CMOS_RA is 13%, while MEM_RA is able to achieve 30% 
energy savings with similar performance loss (i.e. 8%). Such 
30% energy reduction contributes to around 5% energy 
savings to the entire SM, which is already considered as the 
noticeable energy optimization as discussed in [4]. Different 
from CMOS_RA, MEM_RA intelligently migrates the 
resource usage from CMOS to TFET registers which 
reduces the total dynamic energy. Meanwhile, the extra 
access delay in TFETs absorbs the warp waiting time and 
prevents the interferences among memory requests which 
minimizes the impact on performance. Especially for the 
memory-intensive benchmarks, such as the BFS, BP, MT, 
NE, and NW, MEM_RA generally reduces the energy by 
42% with only 2.5% performance loss.  

One may notice that MEM_RA introduces the long 
execution time in MM as well. Because MM fully utilizes 
the RF resources and contains quite few memory accesses to 
trigger the memory-contention aware TFET register 
allocation. As Figure 6(a) demonstrates, the performance of 
MM maintains the same under idealMEM_RA since the 
GPU will be equipped with all CMOS registers if running 
such type of benchmarks, and it cannot reduce the energy. 
On average, idealMEM_RA slightly outperforms MEM_RA 
on performance but meanwhile, obtains less energy savings. 
In summary, MEM_RA successfully explores the energy-
efficient GPGPUs and its effectiveness is quite close to that 
of idealMEM_RA.   

The performance degradation in SLA is noticeable under 
MEM_RA and idealMEM_RA. Because they use the last 
memory access latency to predict the warp waiting time and 
enable the TFET register allocation correspondingly, the 
prediction accuracy is affected when the next memory 
access pattern differs greatly from the last one. As a result, 
the TFET registers are excessive utilized which hurts the 
performance. Generally, the last value prediction mechanism 
achieves pretty high accuracy for most benchmarks and 
helps MEM_RA to minimize the performance penalty.  

 

Figure 7. Dynamic and leakage energy consumptions under 
baseline case, CMOS_RA, and MEM_RA. 
 

We further split the normalized overall energy obtained 
by MEM_RA into the dynamic and leakage portions and 
present them in Figure 7. The energy partition under the 
baseline case and CMOS_RA is also included in the figure. 
As it shows, CMOS_RA can barely optimize the dynamic 
power since the CMOS register are frequently accessed. 
MEM_RA exhibits strong capability in reducing not only 
leakage but also dynamic energy. On average, the dynamic 
energy reduction compared to the baseline case is 10%, 
while the leakage decreases 20%. In addition, the dynamic 
(leakage) energy savings in memory-intensive benchmarks 
is 16% (26%).  

5. Related Work 
There have been several studies on building hybrid 

storage-cell based structure and furthermore, heterogeneous 
multi-core processors based on CMOS and TFETs to achieve 
the good trade-off between performance and power [13, 19, 
27, 28]. For instance, Narayanan et al. [19] developed the 
hybrid cache architecture that uses a mix of TFET and the 
non-volatile memory. Swaminathan et al. [13] proposed to 
replace some of the CMOS cores with TFET alternatives, and 
dynamically migrate threads between CMOS and TFET 
cores to achieve significant energy savings with negligible 
performance loss. We build the hybrid registers in GPGPU 

Baseline 

CMOS_RA 

MEM_RA 



 

 

and leverage its unique characteristics to fully explore the 
benefit of TFETs for the energy-efficient GPGPU design. 

Many methodologies have been proposed recently to 
reduce the GPGPU registers dynamic power. Gebhart et al. [4] 
proposed register file caching and two-level thread scheduler 
to reduce the number of reads and writes to the large main 
register file and save its dynamic energy. The authors further 
extended their work to the compiler level and explored 
register allocation algorithms to improve register energy 
efficiency [5]. Yu et al. integrated embedded DRAM and 
SRAM cells to reduce area and energy [3]. In addition, 
several works have been done on GPGPU register leakage 
power optimization. Chu et al. [6] explored the fine 
granularity clock gating scheme for registers. Wang et al. [2] 
adopted the power gating technique at architecture level for 
leakage reduction on GPGPUs. Our technique targets on both 
dynamic and leakage savings and it is orthogonal to the 
techniques discussed above.  

6. Conclusions 
Modern GPGPU employs the fine-grained multi-

threading among numerous active threads which leads to the 
large register files consuming massive dynamic and leakage 
power. Exploring the optimal power savings in register files 
become the critical and first step towards the energy-efficient 
GPGPU. The conventional method to reduce dynamic power 
is to scale down the supply voltage which causes substantial 
leakage in CMOS circuits. The TFETs are the promising 
candidates for low voltage operations regarding to both 
leakage and performance. However, always executing at the 
low voltage (so that low frequency) will result in significant 
performance degradation. In this study, we propose the 
hybrid CMOS-TFET based register files. We leverage the 
unique characteristics of GPUs during the off-chip memory 
accesses, and explore the memory contention-aware TFET 
register allocation (MEM_RA) to make use of TFET 
registers in alleviating the memory contentions, and 
meanwhile gaining the attractive energy optimization. Our 
experiment results show that MEM_RA obtains 30% energy 
(including both dynamic and leakage) reduction in register 
files compared to the baseline case with power gating 
technique. Especially, it achieves 42% energy savings in 
memory-intensive benchmarks with only 2.5% performance 
loss. 
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