

Hybrid CMOS-TFET based Register Files for Energy-Efficient GPGPUs

Zhi Li, Jingweijia Tan, Xin Fu

EECS Department, University of Kansas, Lawrence, KS 66045, USA

zli@ku.edu, jtan@ittc.ku.edu, xinfu@ittc.ku.edu

Abstract
State-of-the-art General-Purpose computing on Graphics

Processing Unit (GPGPU) is facing severe power challenge
due to the increasing number of cores placed on a chip with
decreasing feature size. In order to hide the long latency
operations, GPGPU employs the fine-grained multi-
threading among numerous active threads, leading to the
sizeable register files with massive power consumption.
Exploring the optimal power savings in register files
becomes the critical and first step towards the energy-
efficient GPGPUs. The conventional method to reduce
dynamic power consumption is the supply voltage scaling,
and the inter-bank tunneling FETs (TFETs) are the
promising candidates compared to CMOS for low voltage
operations regarding to both leakage and performance.
However, always executing at the low voltage (so that low
frequency) will result in significant performance
degradation. In this study, we propose the hybrid CMOS-
TFET based register files. To optimize the register power
consumption, we allocate TFET-based registers to threads
whose execution progress can be delayed to some degree to
avoid the memory contentions with other threads, and the
CMOS-based registers are still used for threads requiring
normal execution speed. Our experimental results show that
the proposed technique achieves 30% energy (including
both dynamic and leakage) reduction in register files with
little performance degradation compared to the baseline case
equipped with naive power optimization technique.

Keywords
Tunneling field effect transistors, general-purpose

computing on graphics processing units, energy efficiency

1. Introduction
Modern graphics processing unit (GPU) supports tens of

thousands of parallel threads and delivers remarkably high
computing throughput. General-Purpose Computing on
GPUs (GPGPUs) are becoming the attractive platform for
general-purpose applications that request high
computational performance such as scientific computing,
financial applications, medical data processing, and so on.
However, GPGPU is facing severe power challenge due to
the increasing number of cores placed on a single chip with
decreasing feature size [1].

In order to hide the latency induced by the function unit
computation and off-chip memory accesses, GPU employs
the fine-grained multi-threading that quickly switches
among a large number of simultaneously active threads. As
a result, substantial register files are required to keep the
register context of each thread. For example, Nvidia Fermi
GPU supports more than 20,000 parallel threads and
contains 2MB register files [7]. Accessing such sizeable
register files leads to massive power consumption [2-6]. It
has been reported that the register files consume 15%-20%

of the GPU stream multiprocessor’s power [8]. Effectively
optimizing the register files power consumption is critical
and the first step towards the energy-efficient GPUs.

Supply voltage scaling is the fundamental technique to
reduce the dynamic power consumption, but it is limited by
the leakage constraints in CMOS digital circuits. Recently,
Inter-bank Tunneling Field Effect Transistors (TFETs) have
shown to be the attractive candidates to operate at low
supply voltages (e.g. 0.3V) with ultra low leakage and
higher frequency than CMOS [9, 10]. However, at higher
supply voltage, CMOS devices are able to achieve much
better performance than TFETs. The unique characteristics
of CMOS and TFETs at different voltage levels provide
great opportunity in GPU power savings without hurting the
performance.

In the GPGPU applications, all threads in a kernel
execute the same code [11], and exhibit similar execution
progress in the fine-grained multi-threading environment.
When one thread encounters an off-chip memory access,
other threads are likely to issue the requests at
approximately the same time, leading to severe memory
contentions which extend the memory access time. And the
pipeline in the GPU stream multiprocessor stalls when all
threads stall due to the long-latency memory accesses. It has
been found that the performance of numerous GPGPU
workloads are still bounded by the memory resources even
modern GPUs provide very high memory bandwidth [30]. In
order to alleviate the memory contentions and efficiently
utilize the memory bandwidth, threads can run at different
paces which effectively avoid the interferences among
memory requests. It enables the implementation of the
TFET-based registers in GPGPUs for a number of threads so
that they can run at a lower frequency without any
performance degradation, and meanwhile, both the dynamic
and leakage power of the registers reduces substantially. On
the other hand, applying TFETs for all registers in the
GPGPU will cause significant performance penalty since
many threads still need to execute at high frequency to
achieve the high computational throughput.

In this paper, we propose the hybrid CMOS-TFET based
registers in GPUs to obtain optimal energy reduction with
negligible performance penalty. The contributions of this
study are as follows:

(1) We observe that threads in GPGPU workloads can be
seriously delayed while executing in the GPU streaming
multiprocessors due to the memory access interference with
others. Instead of stalling in the pipeline on the occurrence
of serious memory contentions, threads can execute at a low
speed by using TFET-based registers to postpone their
memory requests. It helps to achieve the win-win scenario:
preventing the interferences and achieving the attractive
power savings.

(2) We propose to build the hybrid TFET-based and
CMOS-based registers, and perform the memory contention-

aware register allocation. Based on the access latency of
previous memory transaction, we predict the thread stall
time during its following memory access, and allocate
TFET-based registers to that thread to postpone its execution
progress to the maximum degree without performance loss.
By doing this, we maximize the utilization of the TFET-
based registers, thus, optimize the energy consumption
while maintaining the performance.

(3) Our evaluation results show that the proposed register
allocation technique in the hybrid register design exhibits
the strong capability of reducing the register energy
consumption (including both dynamic and static energy) by
30% compared to the case with naive power optimization
technique (i.e. power gating the unused registers [2]).
Especially, it achieves 42% energy reduction (16% dynamic
saving and 26% leakage saving) in memory-intensive
benchmarks with only 2.5% performance degradation.

The rest of the paper is organized as follows: Section 2
provides the background of GPGPU and TFETs. Section 3
proposes the hybrid CMOS-TFET based registers and the
memory contention-aware TFET-based register allocation.
Section 4 describes our experimental methodologies and
evaluates the proposed mechanism. We discuss the related
work in Section 5, and conclude with Section 6.

2. Background

2.1. General-Purpose Computing on Graphics

Processing Units (GPGPUs) Architecture
A typical GPU consists of a scalable number of in-order

streaming multiprocessors (SM) that can access to multiple
on-chip memory controllers via an on-chip interconnection
network [11]. In GPU programming models, highly-parallel
kernel functions are launched to the GPU for execution. The
kernel is composed of a grid of light-weighted threads; a
grid is divided into a set of blocks; each block is composed
of hundreds of threads. Threads in the kernel are assigned to
the SMs at the granularity of blocks.

Figure 1. Streaming Multiprocessor microarchitecture

Figure 1 illustrates the SM microarchitecture. Threads in
the SM execute on the single-program multiple-data
(SPMD) model. A number of individual threads (e.g. 32
threads) from the same block are grouped together, called
warp. In the pipeline, threads within a warp execute the
same instruction but with different data values. As Figure 1
shows, each warp has a dedicated slot in the warp scheduler.
At every cycle, a ready warp is selected by the scheduler to
feed the pipeline. The instruction is then fetched from the
instruction cache based on the PC of the issued warp, and
further decoded. In the SM, a number of registers are
statically allocated to each warp when the block is
distributed. All threads in the warp access a number of
registers (i.e. the register vector) simultaneously based on
the warp ID and the register number, the register values are
processed in parallel across the streaming processors (SP).

GPU is usually equipped with its own off-chip external
memory (e.g. global memory) connected to the on-chip
memory controllers. The off-chip memory access can last
hundreds of cycles, and a long latency memory transaction
from one thread would stall all threads within a warp. In
other words, the warp cannot proceed until all the memory
accesses from its threads complete.

2.2.Tunneling Field Effect Transistors (TFETs)
The sub-threshold slope of the transistor is the key factor

in leakage power consumption, and a steep sub-threshold
device achieves low leakage current. Traditional CMOS
devices are limited to 60mV/decade sub-threshold slope
which induces high leakage current during the voltage
scaling [12]. While TFETs [9] exhibit sub-60mV/decade
sub-threshold slope and achieve very low leakage power
consumption at low supply voltage. Figure 2(a) compares
the OFF-state leakage current (IOFF) and ON current (ION) of
the two kinds of devices when VCC is 0.3V. As it shows,
TFETs are able to obtain much lower leakage current and
stronger driven current, therefore, ultra low leakage with
high frequency. They are promising for energy-efficient
computing. On the other hand, as Figure 2(b) exhibits,
although TFETs are still able to achieve low IOFF at high
supply voltage (e.g. 0.7V), CMOS devices have larger
driven current and better performance than TFETs.

(a) (b)

Figure 2. OFF-state leakage current and ON current of TFET
and CMOS when VCC is (a) 0.3V and (b) 0.7V (adapted
from [13])

TFETs have the characteristic of uni-direction
conduction which causes a challenge on designing the
SRAM storage cell. Recently, many different TFET SRAMs
have been explored to overcome this limitation [14-17]. By
comparing those designs on several aspects (e.g. frequency,
noise margins, power, and area), in this study, we apply the
6T TFET SRAM proposed by Singh et al. [14] to implement
the TFET-based register files.

3. Hybrid CMOS-TFET based Register Files

3.1. The Observation on Memory Contentions
In GPUs, the off-chip memory requests from SMs need

to go through the on-chip network routing to certain
memory controller and wait there to be served. When
numerous requests are issued at similar time by multiple
SMs, both on-chip network and memory controllers will be
severely congested which significantly increases the
memory access time. Unfortunately, such congestion issue
occurs frequently in GPUs due to the unique characteristic
of the GPGPU applications: all threads in the kernel across
SMs execute the same instructions and proceed at similar
rate in the fine-grained multithreading environment.
Although there are up to thousands of active threads running
in each SM, they are unlikely to fully hide the extremely
long-latency memory transaction caused by the memory
contentions. As a result, the SM suffers long-time pipeline
stall. The GPU memory bandwidth is already considered as
one of the resource constraints for many GPGPU workloads
even modern GPUs provide pretty high memory bandwidth
[30].

Normal
exec

SM 0

Idle

Normal

exec

SM 1

Idle

Normal

exec

SM 2

Idle

Normal

exec

SM n-1

Idle

Network-on-Chip (NoC)

Normal

exec

Normal

exec

Normal
exec

Normal

exec

req0

Memory
Controller

req1
req2

...
reqn

DRAM

...

...

req0

Memory
Controller

req1
req2

...
reqn

DRAM

Normal
exec

SM 0

Idle

Normal

exec

SM 1

Normal

exec

SM 2

Normal

exec

SM n-1

Network-on-Chip (NoC)

Normal
exec

Normal
exec

Normal
exec

Normal

exec

req0

Memory
Controller

req1

DRAM

...

...

req0

Memory

Controller

DRAM

Idle
Idle

Idle

mem

request

mem

request

Resource

contentions
in both NoC
and memory

controller

Low

freq.
exec.

Low
freq.
exec.

Low

freq.
exec.

Time

...

...

(a) (b)
Figure 3. (a) SMs suffer long pipeline stall due to the severe
memory contentions. (b) Leveraging TFETs to absorb the
long pipeline stall and alleviate memory contentions.

Figure 3(a) shows an example of the memory resource
contentions among SMs. Several SMs encounter the global
memory access instructions and send out memory requests
simultaneously. The buffers in network-on-chip (NoC) and
memory controllers are quickly filled up by those requests
and they have to be served sequentially to access the DRAM
buffers (Figure 3(a) takes a snapshot on the NoC and
memory controllers). Therefore, the memory transactions
spend longer time to finish, and the pipeline in SMs quickly
turns to be idle (highlighted as red circles in Figure 3(a))
since other active threads in the SM will stall at the memory
instructions in the near future as well.

The thread throttling mechanism has been proposed
recently to alleviate the memory contentions and shrink the
pipeline idle time [18]. It dynamically stalls certain threads
to restrict the number of concurrent memory tasks and avoid
the interferences among memory requests. As can be seen,
appropriately slowing down the threads before their memory
accesses can even introduce positive effect on performance.

Allocating the TFET-based registers to those threads and
managing them to execute at low frequency during the
register read/write operations provides the perfect approach
to control the thread progress. Figure 3(b) demonstrates the
example of intelligently leveraging the low frequency
operations on TFETs to absorb the pipeline stall time
(shown in green rectangles) and meanwhile, separate the
memory requests from SMs. As it shows, both NoC and
memory controllers have few queued requests, and the off-
chip memory access time reduces significantly. More
importantly, the benefit of TFETs on reducing both dynamic
and leakage energy is effectively explored. Obviously,
CMOS-based registers are essential during the normal
execution. In this work, we propose the hybrid CMOS-
TFET based registers, and use TFET-based registers to
delay threads execution speed to the maximal degree so that
achieve the goal of maximizing the energy savings without
hurting the performance.

3.2. Memory Contention-Aware TFET Register

Allocation
As described in Section 2.1., when launching threads to

the SM, a number of registers are statically designated to
them according to their resource requirements. The register
ID encoded in the instruction is used as the index to the
physical register being read/written. In other words, the
mapping between the register ID and the physical register is
fixed all the time. However, when applying the same
mapping mechanism in the hybrid register, the use of the
TFET-based registers cannot be managed at the run time.

In this work, a register renaming table is applied to
record the physical register number corresponding to the
register ID encoded in the instruction. A register renaming
stage is inserted into the SM pipeline following the decode
stage. Note that this additional stage does not affect back-to-
back instruction latencies. It only induces 1.5% performance
overhead based on our evaluation across a large set of
GPGPU benchmarks (detailed experimental methodologies
are described in Section 4.1.), which also matches the
observation made in [4]. During the register renaming stage,
the destination register ID is renamed to a free physical
register. The renaming table also provides the information of
physical registers to be read according to the source register
IDs. Therefore, the thread has the flexibility to map a
register to either CMOS or TFET based physical register. A
register in the renaming table is released after its last read,
and the register lifetime information can be simply obtained
by the compiler which indicates the last instruction reading
the register. Since threads in a single warp execute the same
instruction, they share the same renaming information. The
execution of a branch instruction may cause warp
divergence, threads in a diverged warp execute in serial
fashion. A physical register will not be released until the last
read finishes across all threads in the warp.

The critical challenge in the hybrid register design
becomes the runtime CMOS/TFET physical register
allocation to the destination register ID in the warp.
Aggressively utilizing the TFET registers degrades the
performance significantly; on the other hand, too
conservatively using the TFET registers fails to achieve the
goal of maximizing the registers power savings. Moreover,
the TFET utilization among warps needs to be different to
well control the warp execution progress and avoid the

interferences. As can be seen, it is crucial that the TFET-
based register allocation adapts to the memory access
pattern of the workloads. For example, randomly or
periodically renaming the destination registers to TFET
registers can easily hurt the performance as they are blind to
the memory accesses. It is highly possible that the TFET
registers are improperly used when there are few memory
transactions and the high throughput is expected during that
period of the workload execution. We propose the MEMory
contention-aware TFET Register Allocation (named as
MEM_RA as abbreviation) to achieve the optimal power
savings with little performance penalty.

Recall that SM supports the SPMD execution model,
threads from a warp exhibit the same progress and stall for
the same amount of time, therefore, the stall time at warp
level is the finest granularity can be considered. The warp
stall time due to the off-chip memory access implies the
severity of the memory contentions. A long waiting time
means the occurrence of serious contentions, and if the
memory request from the warp had been postponed by using
the TFET registers, such contentions may be removed
successfully. Unfortunately, the waiting time is not available
until the request has already been serviced and the
contentions already take place. We use the last value
prediction mechanism to predict the warp stall time in its
next global memory transaction based on the previous
memory access latency, and utilize TFET registers to absorb
that predicted stall time before the warp sends out its
memory request.

Note that the warp has already been slowed down to
some degree in previous memory transaction, its following
memory request might not interfere with others and it is
unnecessary to further delay its progress. This happens in
kernels with heavy computation tasks which help to separate
the memory transactions and relief the memory contentions.
However, the case is different in memory-intensive
workloads. Even the warp has been delayed before, its
following memory access can get involved with memory
transactions from other warps due to the frequently issued
memory requests, and further postponing its execution
progress is desired.

In order to delay the warp appropriately across various
types of workloads, we sample the memory access latency
periodically at run time and introduce it into the warp stall
time prediction. Eq.1 describes the analytical model to
predict the stall cycles (represented as SC) of a warp based
on its previous memory access latency (represented by
prev_acc) and the latest sampled memory access latency
(represented by sample_acc),

0, _ _

_
(_ _) ,

_

_ _ , _ _

_ _ , _ _ , _ _

if prev acc thr acc

sample acc
prev acc thr acc

SC ref acc

if sample acc ref acc prev acc thr acc

prev acc thr acc if sample acc ref acc prev acc thr acc

≤

 

× − 
=  


< >
 − ≥ >

Eq.1

where thr_acc is the threshold latency to determine whether
the warp should be delayed in the near future. It is set as the
memory access cycles under perfect memory system (e.g. 10
core cycles in our GPU machine configuration). When the
prev_acc is no longer than the thr_acc, it implies that the
previous memory transaction does not run into any
congestion and the warp proceeds at good speed rate, so no

delay is required. ref_acc is the referred memory access
latency describing the memory access time with moderate
resource contentions. When sample_acc is longer than
ref_acc, it implies that the kernel currently exhibits the
memory-intensive characteristic, the aggressive delay on the
warp execution is preferred. The stall cycle is directly set as
the extra waiting time in the previous memory access (i.e.
prev_acc minus thr_acc). To the contrary, a short
sample_acc compared to ref_acc means that the kernel
involves heavier computation tasks, the predicted stall time
is scaled down according to the ratio of sample_acc to
ref_acc.

Once the stall time is calculated by using the analytical
model above, the warp starts to allocate TFET-based
registers to the destination register IDs in its following
execution. Generally, the read/write time to TFET-based
SRAM operating at low supply voltage is as twice as that of
the CMOS-based SRAM at normal voltage [19]. The access
time to TFET registers is modeled as 2 cycles in our study.
In other words, one extra cycle is required to finish the
TFET register read/write operation. The TFET register
allocation is disabled when the predicted stall time is
expected to be fully absorbed. Note that the register read
time lasts 2 cycles as long as there is one TFET-based
source register. When a warp diverges at a branch
instruction, the extra delay is also modeled for all the
sequentially executed threads if they use TFET registers. A
warp issues multiple memory transactions when a load
instruction is executed and the load requests from threads
belonging to that warp fail to get coalesced. Those
transactions may complete at different time, as a result, the
register write back cannot be performed concurrently.
Writing values to TFET registers in a load instruction is
likely to induce quite long delay which easily makes the
warp over-postponed. The TFET register allocation for load
instructions are skipped in MEM_RA.

3.3. Implementation
(1) The Number of the TFET-Based Registers

Since CMOS- and TFET-based SRAMs have similar size
[29], we set the total amount of hybrid registers in each SM
as the same as that (i.e. 16K) in the baseline case with
default GPU configuration for the fair comparison. The
partition of CMOS- and TFET-based registers is important
to the effectiveness of our proposed MEM_RA mechanism.
Fabricating the sizeable TFET registers forces the use of
TFET registers when there are insufficient CMOS registers,
it reduces power by sacrificing the high computational
throughput; while the small TFET registers cannot provide
enough TFETs for the energy saving purpose. In the ideal
case, the number of CMOS-based registers should perfectly
matches their utilization under the impact of MEM_RA,
which is largely determined by the warp waiting time during
the off-chip memory accesses. The quantity of TFET
registers may be more than required in the ideal case, it is
better to have idled TFET-based instead of CMOS-based
registers considering the extremely low leakage power
consumed by TFET circuits.

Figure 4 shows the percentage of the warp stall time to
its total execution time in various types of GPGPU
benchmarks, the detailed experimental setup is described in
Section 4. In the computation-intensive benchmarks (e.g.
CP, LPS, MM, and RAY), there are few memory accesses,

and the warp stall time is very close to zero. While the
numerous memory transactions in the memory-intensive
benchmarks (e.g. BFS, BP, MT, NE, and NW) causes much
longer warp stall time. On average across all the
benchmarks, the stall time is around 22%. In other words,
CMOS registers should be applied in the remaining 78% of
the execution time. Therefore, the CMOS registers are
designed to account for 78% of the total registers, and the
remains are TFET-based registers. Our 16K hybrid registers
are composed of 12.5K CMOS-based and 3.5K TFET-based
registers. We also performed detailed sensitivity analysis on
varying the size of CMOS registers (e.g. 6K, 10K, and 14K)
in the total 16K hybrid design, and found that 12.5K CMOS
register is the optimal design regarding to the total energy
saving and performance overhead.

0

10

20

30

40

50

60

70

80

B
F

S

B
N

B
P

C
P

L
P

S

M
M

M
T

N
E

N
Q

U

N
W

R
A

Y

S
L

A

S
R

A
D

S
T

O

A
V

GP
er

ce
n

ta
g

e
o

f t
h

e
w

ar
p

st

al
l t

im
e

 (
%

)

Figure 4. The percentage of the warp stall time caused by
the off-chip memory accesses. It is near zero in CP, LPS,
MM, and RAY.

 In GPU SM, the per-block resources (e.g. registers,
shared memory) are not released until all the threads in the
block finish execution, they limit the number of blocks that
can simultaneously run in the SM. Different per-block
resources become the bottleneck for kernels that have
different resource requirements. The bottleneck structure is
prone to be fully utilized while other structures are usually
underutilized. Therefore, a portion of CMOS registers may
be free through the entire kernel execution, leading to the
considerable leakage power consumption. In [2], the power
gating technique has been introduced into GPU SM to
remove leakage. We apply it to power off the unused CMOS
registers in SMs. Information such as the maximum number
of threads allocated to each SM, and the quantity of physical
registers required per thread can be easily obtained during
the kernel launch process. Hence, the total register
utilization would not exceed the product of those two
factors. The requirement on CMOS registers can be
estimated by scaling down the total register utilization to
78%, and the power gating is enabled on the remaining idled
CMOS registers for a long time until the kernel completes.
The energy and time overhead caused by the power gating is
negligible with regard to the large power reduction by
keeping those registers in the power-gated mode during the
entire kernel execution period.

(2) The Implementation of MEM_RA

Figure 5 demonstrates the implementation of our
proposed memory contention-aware TFET-based register
allocation in the hybrid register design. A counter is
attached to each warp slot in the warp scheduler. When a
warp encounters an off-chip memory access, its counter is
re-set as zero and starts the auto increase every cycle to
record the memory access latency. Upon the completeness
of the memory transaction, the cycle number stored in the
counter is sent to an ALU for the warp stall time prediction,

meanwhile, the sampled memory access cycles with the
static information (i.e. threshold latency, referred access
latency) also input to the ALU. The output is written back to
the counter, it will be read when the warp enters into the
pipeline, and a larger-than-one value in the counter implies
the necessity of writing to the TFET-based register. In [4],
Gebhart et al. found that 70% of the register values are read
only once in GPGPU workloads. It implies that most TFET
register values are read once, therefore, renaming the
destination register to the TFET register usually causes 2-
cycle extra delay: one additional cycle during the value
write back, and another one when it is read by a subsequent
instruction. As can be seen, one TFET register allocation
takes two cycles of the warp stall time in most cases. And
the counter value will decrease by two upon a successful
TFET register allocation. Note that the counter decrease is
just used to estimate the possible delay to the warp when
renaming to the TFET registers. For TFET registers being
read multiple times, the warp stall time will be taken more
than two cycles. Moreover, the counter auto-increases
occurs at warp waiting time while its value decrease is
performed at the normal execution time, there is no overlap
between the counter auto-increase and decrease processes.

Figure 5. Memory contention-aware TFET-based register
allocation

Considering that the ALU is used once a warp completes
a memory instruction, and the major computation in it is
division (as shown in Eq.1.) lasting for tens of cycles, we set
the referred access latency as 2 to power of n and translate
the division into logical shift. It will operate based on the
product of the sampled memory access latency and the
previous stall time. We performed the detailed sensitivity
analysis on the referred access latency, and found that
MEM_RA achieves optimal trade-off between power and
performance when setting it as 2^7=128 cycles. Note that
the warp stall time estimation occurs in parallel with the
write back stage, it does not introduce any extra delay to the
critical path in the pipeline.

As Figure 5 shows, register files are partitioned into
CMOS-based and TFET-based registers, and each physical
register vector has a unique identification number. Two
power supply lines are used to support the high (low)
voltage operations on CMOS (TFETs) registers. The register
renaming stage is added into the SM pipeline (shown as the
dotted rectangle), during which the register renaming table
is accessed. It is indexed by the warp ID and register number
encoded in the instruction, and each entry holds the
corresponding physical register vector number which will be
used for register access in the following stage. Two FIFO
buffers are attached to the renaming table to keep the
released CMOS and TFET register vectors, respectively.
The top register in each buffer is consumed for the
renaming, while the bottom is filled by the newly released
register. In the case that a CMOS register is requested while
the buffer for CMOS registers is empty, the buffer for TFET
registers will provide a free TFET register instead, and vice
versa. Note that there is always at least one free
CMOS/TFET register available for renaming since the
required resources have already been well estimated when
the block is assigned to the SM.

(3) Hardware and Power Overhead

The major hardware added into the SM is the register
renaming pipeline stage including the register renaming
table, two buffers for the released CMOS and TFET register
vectors, and some simple combinational logics. In order to
keep the renaming information for all physical registers, the
number of entries in the renaming table is equal to the
amount of register vectors which is 512 in our default GPU
configuration. Similarly, the total size of the two buffers is
512 as well. Each entry in those three structures contains 9
bits. The hardware in the renaming stage causes around 2%
area overhead to the register files in the SM. In addition, to
predict the warp stall time, thirty-two 11-bit counters (we set
the maximum memory access time as 2048 cycles), and the
unit performing simple integer arithmetic and logic
operations are added in the SM. The overall hardware
overhead to the SM register files is 3%. We develop the
power model (including both dynamic and leakage power)
for the added hardware, and find that it induces around 2.9%
power overhead to the register files by running a large set of
GPGPU benchmarks.

4. Evaluations

4.1. Experimental Methodology
We implement our MEM_RA technique on the cycle-

accurate, open-source, and publicly available simulator
GPGPU-Sim [20] to obtain the GPGPU performance
statistics. We build our power model based on the energy
analysis tool CACTI [21]. We set the high supply voltage as
0.7V and low supply voltage as 0.3V. The read/write times
to CMOS- and TFET-based registers and the total execution
time are collected from the modified GPGPU-Sim to
evaluate both RF dynamic and leakage energy consumption.
Our energy estimation is consistent with previous studies [3,
4, 8].

Our baseline GPGPU configuration is set as follows:
there are 28 SMs in the GPU, SM pipeline width is 32, warp
size is 32, each SM supports 1024 threads and 8 blocks at
most, each SM contains 16K 32-bit registers, 16KB shared
memory, 8KB constant cache, and 64KB texture cache, the

warp scheduler applies the round robin scheduling policy,
the immediate post-dominator reconvergence [22] is used to
handle the branch divergences; the GPU includes 8 DRAM
controllers, each controller has a 32-entry input buffer, and
applies out-of-order first-ready first-come first-serve
scheduling policy [20]; the interconnect topologies is Mesh,
and the dimension order routing algorithm is used in the
interconnect, the interconnect router contains two virtual
channels, and flit size is 16B. We collect a large set of
available GPGPU workloads from Nvidia CUDA SDK [23],
Rodinia Benchmark [24], Parboil Benchmark [25] and some
third party applications. The workloads show significant
diversity according to their kernel characteristics, branch
divergence characteristics, memory access patterns, and so
on.

4.2. Results
In order to justify the effectiveness of MEM_RA, we

compare it with several power reduction techniques. The
baseline case studied in this paper is employing only
CMOS-based registers and power gating the unused
registers during the kernel execution. Another naïve
mechanism for power saving is simply applying TFETs to
all SM registers, it is named as all_TFET. In previous work,
the drowsy cache has been proposed to reduce the cache
leakage power [26]. Similarly, registers belonging to a warp
can be put into the sleep mode when the warp stalls in the
pipeline, but it takes couple of cycles to wake them up for
further accesses. We also investigate the effect of drowsy
register from the performance and power perspectives. In
the hybrid register design, the long access time to TFET
registers may largely degrade the performance when they
are randomly used. A straightforward technique to maintain
performance is to avoid the allocation of TFET registers if
possible. In other words, the CMOS register is selected for
renaming as long as there is any one free. We name this
technique as CMOS_RA, it is applied on the hybrid 12.5K
CMOS registers and 3.5K TFET registers. Note that the
power gating technique is integrated into drowsy register
and CMOS_RA, respectively, for the fair comparison. Since
TFET has extremely low leakage power, the power gating is
not triggered in all_TFET mechanism.

As discussed in Section 3.3., ideally, the size of CMOS
registers would exactly match their usage. We further
investigate the effectiveness of MEM_RA when the CMOS
registers size is set ideally, called idealMEM_RA. (We
name the MEM_RA using 12.5K CMOS and 3.5K TFET
registers as MEM_RA for short.) Since benchmarks exhibit
different memory access patterns, their requirements on
CMOS registers vary greatly. Although designers rarely
fabricate a GPU with certain number of CMOS(TFET)
registers to specifically satisfy a single benchmark’s
requirement, the results of idealMEM_RA provide a more
accurate evaluation on the capability of MEM_RA on power
optimizations while maintaining the performance.

Figures 6 describes (a) the execution time and (b) the
overall energy when running the investigated benchmarks
under the impact of several power reduction techniques
described above. The results are normalized to the baseline
case. Note that the performance and energy overhead caused
by each technique is also included in the results. As Figure
6(a) shows, all_TFET hurts the GPU performance
significantly, the execution time is almost doubled in several

benchmarks (e.g. BN, CP, MM, and RAY). On average,
all_TFET degrades the performance by 56%. Although it
reduces the energy consumption significantly (total energy
decreases to 16% as shown in Figure 6(b)), it is not worth to
scarify such large portion of throughput to achieve the low
energy consumption. Interestingly, the kernel execution time
under drowsy register mechanism remains the same
although there is time overhead to wake up registers staying
in the sleep mode, because the wake up time is trivial with
regard to the hundred-cycle long memory access. Moreover,
the energy reduction achieved by drowsy register is small,
only around 7%.

(a)

(b)
Figure 6. The (a) normalized execution time (b) normalized
energy consumption when running benchmarks under several
power optimization techniques

 CMOS_RA is performance friendly which causes 5%
performance penalty on average. Because it uses the CMOS
registers in majority of the time, and there is no performance
loss when the benchmark needs less than 12.5K registers.
However, the performance penalty is high for benchmarks
requesting a large amount of registers, as TFET registers are
consumed in that case. For example, the execution time for
MM increases 65% under CMOS_RA because the RF
utilization in that benchmark is 100%.

 As Figure 6 shows, the energy reduction under
CMOS_RA is 13%, while MEM_RA is able to achieve 30%
energy savings with similar performance loss (i.e. 8%). Such
30% energy reduction contributes to around 5% energy
savings to the entire SM, which is already considered as the
noticeable energy optimization as discussed in [4]. Different
from CMOS_RA, MEM_RA intelligently migrates the
resource usage from CMOS to TFET registers which
reduces the total dynamic energy. Meanwhile, the extra
access delay in TFETs absorbs the warp waiting time and
prevents the interferences among memory requests which
minimizes the impact on performance. Especially for the
memory-intensive benchmarks, such as the BFS, BP, MT,
NE, and NW, MEM_RA generally reduces the energy by
42% with only 2.5% performance loss.

One may notice that MEM_RA introduces the long
execution time in MM as well. Because MM fully utilizes
the RF resources and contains quite few memory accesses to
trigger the memory-contention aware TFET register
allocation. As Figure 6(a) demonstrates, the performance of
MM maintains the same under idealMEM_RA since the
GPU will be equipped with all CMOS registers if running
such type of benchmarks, and it cannot reduce the energy.
On average, idealMEM_RA slightly outperforms MEM_RA
on performance but meanwhile, obtains less energy savings.
In summary, MEM_RA successfully explores the energy-
efficient GPGPUs and its effectiveness is quite close to that
of idealMEM_RA.

The performance degradation in SLA is noticeable under
MEM_RA and idealMEM_RA. Because they use the last
memory access latency to predict the warp waiting time and
enable the TFET register allocation correspondingly, the
prediction accuracy is affected when the next memory
access pattern differs greatly from the last one. As a result,
the TFET registers are excessive utilized which hurts the
performance. Generally, the last value prediction mechanism
achieves pretty high accuracy for most benchmarks and
helps MEM_RA to minimize the performance penalty.

Figure 7. Dynamic and leakage energy consumptions under
baseline case, CMOS_RA, and MEM_RA.

We further split the normalized overall energy obtained
by MEM_RA into the dynamic and leakage portions and
present them in Figure 7. The energy partition under the
baseline case and CMOS_RA is also included in the figure.
As it shows, CMOS_RA can barely optimize the dynamic
power since the CMOS register are frequently accessed.
MEM_RA exhibits strong capability in reducing not only
leakage but also dynamic energy. On average, the dynamic
energy reduction compared to the baseline case is 10%,
while the leakage decreases 20%. In addition, the dynamic
(leakage) energy savings in memory-intensive benchmarks
is 16% (26%).

5. Related Work
There have been several studies on building hybrid

storage-cell based structure and furthermore, heterogeneous
multi-core processors based on CMOS and TFETs to achieve
the good trade-off between performance and power [13, 19,
27, 28]. For instance, Narayanan et al. [19] developed the
hybrid cache architecture that uses a mix of TFET and the
non-volatile memory. Swaminathan et al. [13] proposed to
replace some of the CMOS cores with TFET alternatives, and
dynamically migrate threads between CMOS and TFET
cores to achieve significant energy savings with negligible
performance loss. We build the hybrid registers in GPGPU

Baseline

CMOS_RA

MEM_RA

and leverage its unique characteristics to fully explore the
benefit of TFETs for the energy-efficient GPGPU design.

Many methodologies have been proposed recently to
reduce the GPGPU registers dynamic power. Gebhart et al. [4]
proposed register file caching and two-level thread scheduler
to reduce the number of reads and writes to the large main
register file and save its dynamic energy. The authors further
extended their work to the compiler level and explored
register allocation algorithms to improve register energy
efficiency [5]. Yu et al. integrated embedded DRAM and
SRAM cells to reduce area and energy [3]. In addition,
several works have been done on GPGPU register leakage
power optimization. Chu et al. [6] explored the fine
granularity clock gating scheme for registers. Wang et al. [2]
adopted the power gating technique at architecture level for
leakage reduction on GPGPUs. Our technique targets on both
dynamic and leakage savings and it is orthogonal to the
techniques discussed above.

6. Conclusions
Modern GPGPU employs the fine-grained multi-

threading among numerous active threads which leads to the
large register files consuming massive dynamic and leakage
power. Exploring the optimal power savings in register files
become the critical and first step towards the energy-efficient
GPGPU. The conventional method to reduce dynamic power
is to scale down the supply voltage which causes substantial
leakage in CMOS circuits. The TFETs are the promising
candidates for low voltage operations regarding to both
leakage and performance. However, always executing at the
low voltage (so that low frequency) will result in significant
performance degradation. In this study, we propose the
hybrid CMOS-TFET based register files. We leverage the
unique characteristics of GPUs during the off-chip memory
accesses, and explore the memory contention-aware TFET
register allocation (MEM_RA) to make use of TFET
registers in alleviating the memory contentions, and
meanwhile gaining the attractive energy optimization. Our
experiment results show that MEM_RA obtains 30% energy
(including both dynamic and leakage) reduction in register
files compared to the baseline case with power gating
technique. Especially, it achieves 42% energy savings in
memory-intensive benchmarks with only 2.5% performance
loss.

Acknowledgement
This work is supported by the National Science

Foundation under Award No. EPS‐0903806 and matching

support from the State of Kansas through the Kansas Board
of Regents.

References
[1] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco.

GPUs and the Future of Parallel Computing. IEEE Micro, 31:7–17,
September 2011.

[2] P. Wang, C. Yang, Y. Chen, and Y. Cheng. Power Gating Strageties
on GPUs, ACM Transaction on Architecture and Code Optimization
(TACO), Volume 8 Issue 3, October 2011.

[3] W. Yu, R. Huang, S. Xu, S.-E. Wang, E. Kan, and G. E. Suh. SRAM-
DRAM Hybrid Memory with Applications to Efficient Register Files
in Fine-Grained Multi-Threading. In Proceedings of ISCA, 2011.

[4] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E.
Lindholm, and K. Skadron. Energy-Efficient Mechanisms for
Managing Thread Context in Throughput Processors, In Proceedings
of ISCA, 2011.

[5] M. Gebhart, S. W. Keckler, and W. J. Dally. A Compile-Time
Managed Multi-Level register File hierarchy. In Proceedings of
MICRO, 2011.

[6] S. Chu, C. Hsiao, and C. Hsieh. An Energy-Efficient Unified Register
File for Mobile GPUs. In Proceedings of IFIP 9th International
Conference on Embedded and Ubiquitous Computing, October 2011.

[7] D. Kanter. Inside Fermi: Nvidia’s HPC Push, 2009.
http://www.realworldtech.com/page.cfm?ArticleID=RWT093009110
932.

[8] S. Hong and H. Kim. An Integrated GPU Power and Performance
Model. In Proceedings of ISCA, 2010.

[9] S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T.
Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta. Experimental
Demonstration of 100nm Channel Length In0.53ga0.47as-based
Vertical Inter-Band Tunnel Field Effect Transistors (TFETs) for Ultra
Low-Power Logic and Sram Applications. In Proc. IEEE Int. Electron
Devices Meeting (IEDM), 2009, pp. 1–3.

[10] N. N. Mojumder and K. Roy. Band-to-Band Tunneling Ballistic
Nanowire FET: Circuit-Compatible Device Modeling and Design of
Ultra-Low-Power Digital Circuits and Memories. IEEE Transactions
On Electron Devices, vol. 56, pp. 2193–2201, 2009.

[11] NVIDIA. CUDA Programming Guide Version 3.0., Nvidia
Corporation, 2010.

[12] Y. Taur and T. H. Ning. Fundamentals of Modern VLSI Devices.
Cambridge University Press, 2009.

[13] K. Swaminathan, E. Kultursay, V. Saripalli, V. Narayanan, M.
Kandemir, and S. Datta. Improving Energy Efficienty of Multi-
Threaded Applications Using Heterogeneous CMOS-TFET
Multicores. In Proceedings of ISLPED, 2011.

[14] J. Singh, K. Ramakrishnan, S. Mookerjea, S. Datta, N. Vijaykrishman
and D. Pradhan. A Novel Si Tunnel FET based SRAM Design for
Ultra Low-Power 0.3V Vdd Applications. In Proceedings of
ASPDAC, 2010.

[15] V. Saripalli, S. Datta, V. Narayanan and J. P. Kulkarni. Variation-
Tolerant Ultra Low-Power Heterojunction Tunnel FET SRAM
Design. In Proceedings of International Symposium on Nanoscal
Architectures, 2011.

[16] D. Kim, Y. Lee, J. Cai, I. Lauer and L. Chang, S. J. Koester, D.
Sylvester and D. Blaauw. Low Power Circuit Design Based on
Heterojunction Tunneling Transistors (HETTs). In Proceedings of
ISLPED, 2009.

[17] X. Yang and K. Mohanram. Robust 6T Si tunneling transistor SRAM
design. In proceedings of DATE, 2011.

[18] H. Cheng, C. Lin, J. Li, and C. Yang. Memory Latency Reduction via
Thread Throttling. In Proceedings of MICRO, 2010.

[19] V. Narayanan, V. Saripalli, K. Swaminathan, R. Mukundrajan, G. Sun,
Y. Xie, and S. Datta. Enabling Architectual Innovations Using Non-
Volatile Memory. In Proceedings of GLSVLSI, 2011.

[20] A. Bakhoda, G.L. Yuan, W. W. L. Fung, H. Wong, Tor M. Aamodt,
Analyzing CUDA Workloads Using a Detailed GPU Simulator, In
Proceedings of ISPASS, 2009.

[21] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti
5.1. HP Labs, Tech. Rep. 2008.

[22] S. S.Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmanns, 1997.

[23] http://www.nvidia.com/object/cuda_sdks.html
[24] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and K.

Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing,
In Proceedings of IISWC, 2009.

[25] Parboil Benchmark suite. URL: http://impact.crhc.illinois.edu/
parboil.php

[26] K. Flautner, N.S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy
Caches: Simple Techniques for Reducing Leakage Power. In
Proceedings of ISCA, 2002.

[27] V. Saripalli, A. Mishra, S. Datta and V. Narayanan. An Energy-
Efficient Heterogeneous CMP based on Hybrid TFET-CMOS Cores.
In Proceedings of DAC, 2011.

[28] V. Saripalli, G. Sun, A. Misha, Y. Xie, S. Datta and V. Narayanan.
Exploiting Heterogeneity for Energy Efficiency in Chip
Multiprocessors. IEEE Trans on Emerging and Selected Topics in
Circuits and Systems, vol. 1, pp. 109-119, June 2011.

[29] A. Pal, A. B. Sachid, H. Gossner, and V. R. Rao. Insights Into the
Design and Optimization of Tunnel-FET Devices and Circuits. IEEE
Trans on Electron Devices, vol. 58, NO. 4, April 2011.

[30] V. Sathish, M. J. Schulte, and N. S. Kim. Lossless and Lossy Memory
I/O Link Compression for Improving Performance of GPGPU
Workloads, In Proceedings of PACT, 2012.

