
 

Fast FPGA-Based Fault Injection Tool for Embedded Processors 
 

Mohammad Shokrolah Shirazi, Brendan Morris, Henry Selvaraj 
 Department of Electrical and Computer Engineering, University of Nevada, Las Vegas  
E-mail: shirazi@unlv.nevada.edu, brendan.morris@unlv.edu, henry.selvaraj@unlv.edu 

 
Abstract 

FPGA-based fault injection methods have recently 
become more popular since they provide high speed in fault 
injection experiments. During each fault injection 
experiment, FPGA should send data related with observation 
points back to host computer for fault tolerant analysis. 
Since there is high data volume, FPGA should spend most 
of its time in communication. In this paper, we solve this 
problem by bringing all parts of fault injection tool inside 
FPGA. The area overhead problem related with observation 
data is obviated by using simple observation circuit. As case 
study, we injected 6400 SEU faults into OpensRISC 1200 
processor over the Cyclone II FPGA. Results show that our 
fault injection experiments are done more than 400 times 
faster than one of the traditional FPGA based fault injection 
methods with only 5% area overhead. 
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1. Introduction 
In recent years, embedded systems are increasingly being 

used to protect large investments or human lives. Most 
embedded systems are the microprocessor-based systems 
which come with a large number of common characteristics 
including dependability and real time constraints [1][2]. 
Fault injection is one important way for evaluating 
microprocessors and finding dependability parameters. 
Within numerous fault injection methods that have been 
proposed, there is four major groups: 1) software 
implemented fault injection [3-5] 2) physical fault injection 
[6][7] 3) Simulation-based fault injection [8][9] 4) FPGA-
based fault injection [10-18]. 

Simulation-based fault injection methods are more 
preferable than physical and software implemented fault 
injection methods since they provide high controllability and 
observability. They inject faults into Verilog or VHDL 
model of the circuits and they can be used in design phase of 
the system [8-9]. Although Simulation Based fault injection 
methods have several advantages, they are so time-
consuming. As an alternative way, FPGA can accelerate 
fault injection experiments and it can provide good 
controllability and observability as well. There are two 
major groups for FPGA-based fault injection methods [11]: 
1) Reconfiguration-based Techniques 2) Instrumentation-
based techniques. 

In reconfiguration-based techniques [14][19], faults are 
injected by changing the bit stream needed for configuring 
FPGA. So, FPGA should get reconfigured for each fault 
injection experiment and it suffers from time-overhead. 

In instrumentation-based techniques [10-13][15-18], 
extra circuits are added to the original circuits and both are 

located inside FPGA after getting synthesized. Although 
these methods do not have time overhead, they suffer from 
area overhead. In instrumentation-based techniques, FPGA 
is mostly used as evaluation circuit for accelerating fault 
injection experiments. So, area overhead is not big deal 
since speed is more important. Hence, instrumentation based 
techniques are more preferable than reconfiguration based 
techniques if we need speed in our experiments.  

In [17], one FPGA-based fault injection tool is presented. 
This tool includes software and hardware parts. The 
hardware part, named fault injector, is written in VHDL and 
it is brought inside processor. Then, processor along with 
the fault injector is located inside FPGA. However, software 
part located on host computer controls and manages fault 
injection experiments by sending commands to FPGA by 
means of host interface.  Another instrumentation-based 
technique is presented in [15][20]. It adds extra circuits to 
original circuit described by VHDL. These extra circuits, 
which are named mask chains, are used for bit-flip fault 
injection and they can be read out sequentially after fault 
injection. Faulty vectors are sent from host computer to 
FPGA and observation data are come back to host computer 
for analyzing results. In [10], another FPGA-based fault 
injection tool is presented with the similar idea but it is 
based on Verilog language. This tool includes fault injection 
manager and result analyzer. Result analyzer is software part 
located on host computer. Fault injection manager has 
software and hardware parts which are located on host 
computer and FPGA respectively. The software part is 
connected to hardware part through the parallel port.  
Another tool which is capable of injecting faults into 
Memory, register file and processor core is presented in 
[16]. Like former methods,   fault injection is performed by 
sending commands from host computer to FPGA. For 
analyzing results, it stores observation data of several 
experiments into internal memory of the FPGA. So, it sends 
observation data to host computer once instead of sending it 
for each fault injection experiment. This idea accelerates 
fault injection experiments by reducing communication 
between FPGA and host computer. 

As we see, all of instrumentation-based techniques suffer 
from communication bottleneck. This communication 
between FPGA and host computer plays key role for 
determining speed for fault injection experiments. After 
each fault injection experiment, observation data must be 
sent back to host computer from FPGA for later analysis and 
unfortunately the data volume is usually so high. In this 
paper, we omit this communication overhead by bringing all 
fault injection parts along with processor inside FPGA. 
Since we bring all parts inside FPGA, we should find way to 
deal with the new problem. This problem is related with the 
high volume of observation data that should be gathered for 
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fault-tolerant analysis. We figure this out by using simple 
observation circuit for compressing data. In addition, we do 
not run faulty experiments for whole runtime of the 
workload. We hopefully assume that fault effects are 
manifested after several clocks for each fault injection 
experiment. However, we need one non-faulty experiment 
(golden run) after each faulty experiment for comparing and 
extracting fault propagation results. In the rest of our paper, 
we will talk about our method in more details. 

The rest of our paper is organized as follows. Our fault 
model is presented in section 2. Different part of our fault 
injection tool is presented in Section 3. Section 4 describes 
fault injection process and section 5 has experimental 
results. Finally, section 6 concludes the paper. 

2. Fault Model 
Trends in CMOS technology, related applications as well 

as operating conditions cause circuits to be more sensitive to 
transient faults. Unfortunately, deep sub-micron system on 
chip and low power design techniques aggravate the 
reliability problem [21][22]. One major reason for having 
transient faults is single event up-sets (SEU faults). SEU 
faults come from ionized particles in atmosphere and they 
might hit memory elements and flip their contents. 

 

 
Figure 1: Instrumented circuit for SEU fault injection
 
In our method, we add extra circuits to original circuit 

for injecting SEU faults. This modified circuit, that is 
capable of SEU fault injection, is named instrumented 
circuit. Our instrumented circuit, which was formerly 
introduced in [10][15], is shown in figure 1. As it is shown 
in figure 1, inverted value of input will go into flip-flop 
while fault injection set (FIS) is high. This instrumented 
circuit is desired since it doesn’t halt processor for each fault 
injection experiment. This helps us for having fast fault 
injection experiments that is important for real time 
applications. However, halting processor is mostly used in 
scan chain based SEU fault injection methods [11]. 

3. Fault Injection Architecture 
As it is shown in figure 2, our proposed fault injection 

architecture includes three different modules. 
1- Fault Injection Manager Module: This is 

responsible for driving FIS (setting FIS to 1) at 
fault injection time and triggering observation 
module. 

2- Observation Module: After getting triggered by 
fault injection module, it starts to record data from 
observation points. This work is done by its 
observation circuit. 

3- Result Analyzer Module: This module is triggered 
after each two experiments by observation module. 
One experiment is faulty free (golden run) and 
another is faulty experiment. Result analyzer 
compares the observed data of these two 
experiments and reports fault propagation results. 

 

 
Figure 2: Fault injection architecture

 

3.1. Fault Injection Manager 
Fault injection manager is responsible for managing and 

executing fault injection experiments. At first, this module 
sets up fault injection timers at beginning of experiments. It 
starts to count until it reaches to fault injection time. 
Secondly, it decides whether raises fault injection set (FIS) 
to one or not and then it triggers observation module. 

In our method, we perform faulty free experiment 
(golden run) after each faulty experiment. So, we actually 
perform two experiments for each fault injection 
experiment. One golden run is performed to have the 
reference for comparison. A method for running golden run 
and faulty experiment alternatively is also introduced in [11] 
but it is done for each clock until the unequal values are 
manifested. In our method, we perform golden run for 
several clocks and then we repeat it with same values for 
faulty experiment.  This exempts us from recording all 
observation data regarding to faulty and non-faulty 
experiments. It certainly helps us since we have 
implemented all parts of our fault injection tool in hardware 
and we always have limitation in hardware resources. 

3.2. Observation 
Observation module starts to record data from 

observation points after getting triggered by fault injection 
manager. The observation circuit which is used in 
observation module is shown in figure 3. 

Since one faulty free experiment is executed for each 
fault injection experiment, golden flip-flop is used to 
distinguish them. Our simple adder circuit adds new data 
from observation points with previous values. It is done 
from two different paths regarding to golden run and faulty 
experiment. The reason for using this logic is related with 
this fact that if observed data becomes different from golden 
run, it will affect addition result and we will more probably 
have two different values at the end. 

We hopefully assume that injected faults are manifested 
several clocks after each fault injection. This helps us to 



 

record the data for several clocks instead of the whole 
runtime of each experiment. It will significantly accelerate 
the speed of our fault injection experiments. 

 

 
Figure 3: Observation circuit 

 

3.3. Result Analyzer 
Result analyzer is triggered by observation module while 

each faulty experiment in addition to its golden run is 
executed. It just compares the values of two registers related 
with golden run and faulty experiment. Then it extracts fault 
propagation results by means of some counters. It just 
increments its related counter if it finds inequality between 
these two values. 

4. Fault Injection Process 
1. Fault injection manager sets up timers and golden 

flip-flop. Fault injection manager first checks golden 
flip-flop. If it is one, it sets new values for timers 
regarding to fault injection time as well as experiment 
run time. If golden is zero, timers are loaded with 
same previous values used in golden run.  

2. Fault injection timer starts to down count until it 
reaches to zero. It was formerly loaded with fault 
injection time by fault injection manager. 

3. After fault injection timer becomes zero, fault 
injection manager checks the golden flip-flop. If it is 
zero, fault injection manager makes FIS one. 
Otherwise FIS will remain zero.  

4. Fault Injection manager triggers observation module. 
Observation module sets observation timer and starts 
to record observed data by observation circuit which 
was described in section 3.2. Observation timer 
determines observation time for recording data from 
observation points by observation circuit. 

5. While observation timer becomes zero, it checks 
whether golden flip-flop is 1 or 0. If golden is one, 
observation module clears golden flip-flop. The 
microprocessor is restarted and it goes to step 1.  

6. If golden flip-flop is zero, observation module 
triggers result analyzer.  

7. Result Analyzer compares faulty and golden run 
results and it increments related counters as well if 
they are not equal. The microprocessor is restarted 
and it goes to step 1. 

5. Experimental Results 
In our experiments, we used OpenRISC 1200 processor 

[23] [24] as case study for evaluating our fault injection tool. 
We implemented our fault injection tool by Verilog 
language. After implementing our fault injection tool, we 
connected it to OpenRISC 1200 processor. This connection 
is generally done in two steps.  As first step, we make 
instrumented circuits for each fault injection location and we 
consider fault injection set (FIS) for each one. Then we 
make wiring between fault injection manager and 
instrumented circuits. We made instrumented circuits for 
different registers inside OpenRISC 1200 processor. These 
locations have been shown in table 1.  As it’s shown in table 
1, we have totally considered 64 fault injection points which 
needs 64 fault injection sets (FIS).  

 
Table 1: Fault injection locations & Experiments  

Module Description #FI 
Points 

#FI 
Exp 

GenPC Program counter & 
interface to IC 6 300 

IF Instruction fetch 13 650 

Control Control & instruction 
decoding unit 15 750 

Op-
Mux 

Mux for two register 
file read operands 20 1000 

Wb-
Mux 

CPU’s write-back 
stage of the pipeline 10 500 

 
As second step, we should determine observation points 

and wire them to observation circuit.  Since we classify fault 
propagation results as control flow error, data error and 
failure, we considered address bus and data bus as 
observation points. The address bus of instruction memory 
is one of our observation points used for control flow error. 
For data error, we considered data bus of data memory as 
well as output register of multiplexer for register file. For 
failure, we only considered data bus of data memory as 
observation point. After doing these two steps, we just 
defined one input for starting experiments. Our fault 
injection tool is triggered with this input and starts to 
automatically inject SEU faults into different modules of 
processor. After finishing experiments number of control 
flow errors, data errors and failures is shown. 

We developed our fault injection tool by using Altera 
DE2 board [25], equipped with cyclone II EP2C35F672C6 
FPGA. One major aspect to consider is increasing in logical 
elements that are introduced with our fault injection 
hardware. After doing synthesis for a FPGA cyclone II 
EP2C35F672C6, we estimated FPGA overhead based on 
logic elements. The synthesis result which was carried out 
with Quartus II 9.1 Web Edition is shown in table 2. Results 



 

show that our fault injection tool has 5% overhead based on 
logic elements. 

 
Table 2: Available & consumed FPGA resources 

(EP2C35F672C6) 

 Total Logic 
Elements Total Registers 

Cyclone II 
FPGA 33216 33216 

OpenRISC 
1200 5626/33216(17%) 2175/33216(7%) 

OpenRISC 
1200 + Built-in 

FI Tool 
7407/33216(22%) 2418/33216(7%) 

 
In our experiments, matrix multiplication and bubble sort 

are considered as workload programs [10][24]. These 
workloads are loaded in instruction memory after 
connecting instruction memory and data memory to 
microprocessor. 

SEU faults are injected in different parts of CPU 
modules as it is described in table 1. Table 1 also shows the 
number of fault injection experiments for each module. As it 
is shown in table 1, for each fault injection location (FIS), 
experiments were carried out 50 times with different fault 
injection time. Our fault injection times were distributed 
equally with distance of 20 clocks. For matrix 
multiplication, we considered 300 clocks for observation 
time.  Since runtime for workload execution of bubble sort 
is longer, we considered 1200 clocks for observation time. 
The fault duration was one clock and FIS signal is triggered 
with negative edge of clock. The OpenRISC 1200 
microprocessor was run under 50 MHZ clock over the 
FPGA. 

We compared the speed of our fast FPGA-based fault 
injection tool with one of the traditional FPGA-based fault 
injection tool described in [10]. 

As it is shown in table 3, we reached to speed-up more 
than 450 in our experiments. However, our speed is tightly 
related with observation time. If we decrease observation 
time, we will have more speed but we might not give 
enough time to faults for getting manifested. So, it proves 
that there is always trade-off between speed and 
obsevability. 

Table 4 shows fault propagation results. Results show 
that for matrix multiplication GenPC and Operand Mux are 
most sensitive parts against SEU faults since they have more 
percentage of failure. For bubble sort, GenPC and control 
units are most sensitive parts.  As we expected, injected 
faults into GenPC more contributed in control flow error 
since this module holds program counter. Because of the 
observation points that we considered, we see the similar 
results between data error and failure. AS we expected, 
control unit and operand mux are also sensitive against SEU 
faults. Control unit is responsible for making control signals 
for pipeline and operand mux is used so much during 
workload execution. At second stage of pipeline, operand 
mux chooses operands or immediate address based on 

instruction set address. So, fault injection into this module 
manifest errors at fourth or fifths stage of pipeline for store 
or load instructions. So, this module is important since it is 
used in each workload instruction. 

 
Table 3: Resulted speed-ups 

 

Workload Traditional 
FI Time 

Fast FI 
Time Speed-up 

Matrix 
Multiplication 81 0.18 450 

Bubble Sort 318 0.52 611 

 
6. Conclusion 

In this paper, we presented fast fault injection tool which 
is based on FPGA. It was done by completely cutting 
communication time and implementing all fault injection 
parts in hardware. As we compared our results with pervious 
related work [10], we find out that our tool is fast enough as 
it was expected but there are some issues that should be 
addressed. This tool like other FPGA-based fault injection 
tools has limitation for controllability and observability in 
comparison with simulation-based fault injection methods. 
Since fault injection time is based on clocks, we cannot 
inject faults between clock edges. Another problem is 
related with observation time. If we make it longer, we will 
more probably reach to more accurate results.  

Table 4: Fault Propagation Results 

Workload Module 

%Error 
Manifest % 

Failure% 
CFE 

% 
DE 

Matrix 
Multiplication 

WB Mux 0 11 11 
Operand 

Mux 2 46 46 

Ctrl Unit 8 28 27 
IF 1 15 13 

GenPC 83 83 83 

Bubble Sort 

WB Mux 10 14 8 
Operand 

Mux 11 23 19 

Ctrl Unit 21 28 25 
IF 2 5 1 

GenPC 28 27 24 
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