

Fast FPGA-Based Fault Injection Tool for Embedded Processors

Mohammad Shokrolah Shirazi, Brendan Morris, Henry Selvaraj
 Department of Electrical and Computer Engineering, University of Nevada, Las Vegas
E-mail: shirazi@unlv.nevada.edu, brendan.morris@unlv.edu, henry.selvaraj@unlv.edu

Abstract

FPGA-based fault injection methods have recently
become more popular since they provide high speed in fault
injection experiments. During each fault injection
experiment, FPGA should send data related with observation
points back to host computer for fault tolerant analysis.
Since there is high data volume, FPGA should spend most
of its time in communication. In this paper, we solve this
problem by bringing all parts of fault injection tool inside
FPGA. The area overhead problem related with observation
data is obviated by using simple observation circuit. As case
study, we injected 6400 SEU faults into OpensRISC 1200
processor over the Cyclone II FPGA. Results show that our
fault injection experiments are done more than 400 times
faster than one of the traditional FPGA based fault injection
methods with only 5% area overhead.

Keywords
FPGA, Fault injection methods, SEU faults

1. Introduction
In recent years, embedded systems are increasingly being

used to protect large investments or human lives. Most
embedded systems are the microprocessor-based systems
which come with a large number of common characteristics
including dependability and real time constraints [1][2].
Fault injection is one important way for evaluating
microprocessors and finding dependability parameters.
Within numerous fault injection methods that have been
proposed, there is four major groups: 1) software
implemented fault injection [3-5] 2) physical fault injection
[6][7] 3) Simulation-based fault injection [8][9] 4) FPGA-
based fault injection [10-18].

Simulation-based fault injection methods are more
preferable than physical and software implemented fault
injection methods since they provide high controllability and
observability. They inject faults into Verilog or VHDL
model of the circuits and they can be used in design phase of
the system [8-9]. Although Simulation Based fault injection
methods have several advantages, they are so time-
consuming. As an alternative way, FPGA can accelerate
fault injection experiments and it can provide good
controllability and observability as well. There are two
major groups for FPGA-based fault injection methods [11]:
1) Reconfiguration-based Techniques 2) Instrumentation-
based techniques.

In reconfiguration-based techniques [14][19], faults are
injected by changing the bit stream needed for configuring
FPGA. So, FPGA should get reconfigured for each fault
injection experiment and it suffers from time-overhead.

In instrumentation-based techniques [10-13][15-18],
extra circuits are added to the original circuits and both are

located inside FPGA after getting synthesized. Although
these methods do not have time overhead, they suffer from
area overhead. In instrumentation-based techniques, FPGA
is mostly used as evaluation circuit for accelerating fault
injection experiments. So, area overhead is not big deal
since speed is more important. Hence, instrumentation based
techniques are more preferable than reconfiguration based
techniques if we need speed in our experiments.

In [17], one FPGA-based fault injection tool is presented.
This tool includes software and hardware parts. The
hardware part, named fault injector, is written in VHDL and
it is brought inside processor. Then, processor along with
the fault injector is located inside FPGA. However, software
part located on host computer controls and manages fault
injection experiments by sending commands to FPGA by
means of host interface. Another instrumentation-based
technique is presented in [15][20]. It adds extra circuits to
original circuit described by VHDL. These extra circuits,
which are named mask chains, are used for bit-flip fault
injection and they can be read out sequentially after fault
injection. Faulty vectors are sent from host computer to
FPGA and observation data are come back to host computer
for analyzing results. In [10], another FPGA-based fault
injection tool is presented with the similar idea but it is
based on Verilog language. This tool includes fault injection
manager and result analyzer. Result analyzer is software part
located on host computer. Fault injection manager has
software and hardware parts which are located on host
computer and FPGA respectively. The software part is
connected to hardware part through the parallel port.
Another tool which is capable of injecting faults into
Memory, register file and processor core is presented in
[16]. Like former methods, fault injection is performed by
sending commands from host computer to FPGA. For
analyzing results, it stores observation data of several
experiments into internal memory of the FPGA. So, it sends
observation data to host computer once instead of sending it
for each fault injection experiment. This idea accelerates
fault injection experiments by reducing communication
between FPGA and host computer.

As we see, all of instrumentation-based techniques suffer
from communication bottleneck. This communication
between FPGA and host computer plays key role for
determining speed for fault injection experiments. After
each fault injection experiment, observation data must be
sent back to host computer from FPGA for later analysis and
unfortunately the data volume is usually so high. In this
paper, we omit this communication overhead by bringing all
fault injection parts along with processor inside FPGA.
Since we bring all parts inside FPGA, we should find way to
deal with the new problem. This problem is related with the
high volume of observation data that should be gathered for

978-1-4673-4953-6/13/$31.00 ©2013 IEEE 476 14th Int'l Symposium on Quality Electronic Design

fault-tolerant analysis. We figure this out by using simple
observation circuit for compressing data. In addition, we do
not run faulty experiments for whole runtime of the
workload. We hopefully assume that fault effects are
manifested after several clocks for each fault injection
experiment. However, we need one non-faulty experiment
(golden run) after each faulty experiment for comparing and
extracting fault propagation results. In the rest of our paper,
we will talk about our method in more details.

The rest of our paper is organized as follows. Our fault
model is presented in section 2. Different part of our fault
injection tool is presented in Section 3. Section 4 describes
fault injection process and section 5 has experimental
results. Finally, section 6 concludes the paper.

2. Fault Model
Trends in CMOS technology, related applications as well

as operating conditions cause circuits to be more sensitive to
transient faults. Unfortunately, deep sub-micron system on
chip and low power design techniques aggravate the
reliability problem [21][22]. One major reason for having
transient faults is single event up-sets (SEU faults). SEU
faults come from ionized particles in atmosphere and they
might hit memory elements and flip their contents.

Figure 1: Instrumented circuit for SEU fault injection

In our method, we add extra circuits to original circuit

for injecting SEU faults. This modified circuit, that is
capable of SEU fault injection, is named instrumented
circuit. Our instrumented circuit, which was formerly
introduced in [10][15], is shown in figure 1. As it is shown
in figure 1, inverted value of input will go into flip-flop
while fault injection set (FIS) is high. This instrumented
circuit is desired since it doesn’t halt processor for each fault
injection experiment. This helps us for having fast fault
injection experiments that is important for real time
applications. However, halting processor is mostly used in
scan chain based SEU fault injection methods [11].

3. Fault Injection Architecture
As it is shown in figure 2, our proposed fault injection

architecture includes three different modules.
1- Fault Injection Manager Module: This is

responsible for driving FIS (setting FIS to 1) at
fault injection time and triggering observation
module.

2- Observation Module: After getting triggered by
fault injection module, it starts to record data from
observation points. This work is done by its
observation circuit.

3- Result Analyzer Module: This module is triggered
after each two experiments by observation module.
One experiment is faulty free (golden run) and
another is faulty experiment. Result analyzer
compares the observed data of these two
experiments and reports fault propagation results.

Figure 2: Fault injection architecture

3.1. Fault Injection Manager
Fault injection manager is responsible for managing and

executing fault injection experiments. At first, this module
sets up fault injection timers at beginning of experiments. It
starts to count until it reaches to fault injection time.
Secondly, it decides whether raises fault injection set (FIS)
to one or not and then it triggers observation module.

In our method, we perform faulty free experiment
(golden run) after each faulty experiment. So, we actually
perform two experiments for each fault injection
experiment. One golden run is performed to have the
reference for comparison. A method for running golden run
and faulty experiment alternatively is also introduced in [11]
but it is done for each clock until the unequal values are
manifested. In our method, we perform golden run for
several clocks and then we repeat it with same values for
faulty experiment. This exempts us from recording all
observation data regarding to faulty and non-faulty
experiments. It certainly helps us since we have
implemented all parts of our fault injection tool in hardware
and we always have limitation in hardware resources.

3.2. Observation
Observation module starts to record data from

observation points after getting triggered by fault injection
manager. The observation circuit which is used in
observation module is shown in figure 3.

Since one faulty free experiment is executed for each
fault injection experiment, golden flip-flop is used to
distinguish them. Our simple adder circuit adds new data
from observation points with previous values. It is done
from two different paths regarding to golden run and faulty
experiment. The reason for using this logic is related with
this fact that if observed data becomes different from golden
run, it will affect addition result and we will more probably
have two different values at the end.

We hopefully assume that injected faults are manifested
several clocks after each fault injection. This helps us to

record the data for several clocks instead of the whole
runtime of each experiment. It will significantly accelerate
the speed of our fault injection experiments.

Figure 3: Observation circuit

3.3. Result Analyzer
Result analyzer is triggered by observation module while

each faulty experiment in addition to its golden run is
executed. It just compares the values of two registers related
with golden run and faulty experiment. Then it extracts fault
propagation results by means of some counters. It just
increments its related counter if it finds inequality between
these two values.

4. Fault Injection Process
1. Fault injection manager sets up timers and golden

flip-flop. Fault injection manager first checks golden
flip-flop. If it is one, it sets new values for timers
regarding to fault injection time as well as experiment
run time. If golden is zero, timers are loaded with
same previous values used in golden run.

2. Fault injection timer starts to down count until it
reaches to zero. It was formerly loaded with fault
injection time by fault injection manager.

3. After fault injection timer becomes zero, fault
injection manager checks the golden flip-flop. If it is
zero, fault injection manager makes FIS one.
Otherwise FIS will remain zero.

4. Fault Injection manager triggers observation module.
Observation module sets observation timer and starts
to record observed data by observation circuit which
was described in section 3.2. Observation timer
determines observation time for recording data from
observation points by observation circuit.

5. While observation timer becomes zero, it checks
whether golden flip-flop is 1 or 0. If golden is one,
observation module clears golden flip-flop. The
microprocessor is restarted and it goes to step 1.

6. If golden flip-flop is zero, observation module
triggers result analyzer.

7. Result Analyzer compares faulty and golden run
results and it increments related counters as well if
they are not equal. The microprocessor is restarted
and it goes to step 1.

5. Experimental Results
In our experiments, we used OpenRISC 1200 processor

[23] [24] as case study for evaluating our fault injection tool.
We implemented our fault injection tool by Verilog
language. After implementing our fault injection tool, we
connected it to OpenRISC 1200 processor. This connection
is generally done in two steps. As first step, we make
instrumented circuits for each fault injection location and we
consider fault injection set (FIS) for each one. Then we
make wiring between fault injection manager and
instrumented circuits. We made instrumented circuits for
different registers inside OpenRISC 1200 processor. These
locations have been shown in table 1. As it’s shown in table
1, we have totally considered 64 fault injection points which
needs 64 fault injection sets (FIS).

Table 1: Fault injection locations & Experiments

Module Description #FI
Points

#FI
Exp

GenPC Program counter &
interface to IC 6 300

IF Instruction fetch 13 650

Control Control & instruction
decoding unit 15 750

Op-
Mux

Mux for two register
file read operands 20 1000

Wb-
Mux

CPU’s write-back
stage of the pipeline 10 500

As second step, we should determine observation points

and wire them to observation circuit. Since we classify fault
propagation results as control flow error, data error and
failure, we considered address bus and data bus as
observation points. The address bus of instruction memory
is one of our observation points used for control flow error.
For data error, we considered data bus of data memory as
well as output register of multiplexer for register file. For
failure, we only considered data bus of data memory as
observation point. After doing these two steps, we just
defined one input for starting experiments. Our fault
injection tool is triggered with this input and starts to
automatically inject SEU faults into different modules of
processor. After finishing experiments number of control
flow errors, data errors and failures is shown.

We developed our fault injection tool by using Altera
DE2 board [25], equipped with cyclone II EP2C35F672C6
FPGA. One major aspect to consider is increasing in logical
elements that are introduced with our fault injection
hardware. After doing synthesis for a FPGA cyclone II
EP2C35F672C6, we estimated FPGA overhead based on
logic elements. The synthesis result which was carried out
with Quartus II 9.1 Web Edition is shown in table 2. Results

show that our fault injection tool has 5% overhead based on
logic elements.

Table 2: Available & consumed FPGA resources

(EP2C35F672C6)

 Total Logic
Elements Total Registers

Cyclone II
FPGA 33216 33216

OpenRISC
1200 5626/33216(17%) 2175/33216(7%)

OpenRISC
1200 + Built-in

FI Tool
7407/33216(22%) 2418/33216(7%)

In our experiments, matrix multiplication and bubble sort

are considered as workload programs [10][24]. These
workloads are loaded in instruction memory after
connecting instruction memory and data memory to
microprocessor.

SEU faults are injected in different parts of CPU
modules as it is described in table 1. Table 1 also shows the
number of fault injection experiments for each module. As it
is shown in table 1, for each fault injection location (FIS),
experiments were carried out 50 times with different fault
injection time. Our fault injection times were distributed
equally with distance of 20 clocks. For matrix
multiplication, we considered 300 clocks for observation
time. Since runtime for workload execution of bubble sort
is longer, we considered 1200 clocks for observation time.
The fault duration was one clock and FIS signal is triggered
with negative edge of clock. The OpenRISC 1200
microprocessor was run under 50 MHZ clock over the
FPGA.

We compared the speed of our fast FPGA-based fault
injection tool with one of the traditional FPGA-based fault
injection tool described in [10].

As it is shown in table 3, we reached to speed-up more
than 450 in our experiments. However, our speed is tightly
related with observation time. If we decrease observation
time, we will have more speed but we might not give
enough time to faults for getting manifested. So, it proves
that there is always trade-off between speed and
obsevability.

Table 4 shows fault propagation results. Results show
that for matrix multiplication GenPC and Operand Mux are
most sensitive parts against SEU faults since they have more
percentage of failure. For bubble sort, GenPC and control
units are most sensitive parts. As we expected, injected
faults into GenPC more contributed in control flow error
since this module holds program counter. Because of the
observation points that we considered, we see the similar
results between data error and failure. AS we expected,
control unit and operand mux are also sensitive against SEU
faults. Control unit is responsible for making control signals
for pipeline and operand mux is used so much during
workload execution. At second stage of pipeline, operand
mux chooses operands or immediate address based on

instruction set address. So, fault injection into this module
manifest errors at fourth or fifths stage of pipeline for store
or load instructions. So, this module is important since it is
used in each workload instruction.

Table 3: Resulted speed-ups

Workload Traditional
FI Time

Fast FI
Time Speed-up

Matrix
Multiplication 81 0.18 450

Bubble Sort 318 0.52 611

6. Conclusion

In this paper, we presented fast fault injection tool which
is based on FPGA. It was done by completely cutting
communication time and implementing all fault injection
parts in hardware. As we compared our results with pervious
related work [10], we find out that our tool is fast enough as
it was expected but there are some issues that should be
addressed. This tool like other FPGA-based fault injection
tools has limitation for controllability and observability in
comparison with simulation-based fault injection methods.
Since fault injection time is based on clocks, we cannot
inject faults between clock edges. Another problem is
related with observation time. If we make it longer, we will
more probably reach to more accurate results.

Table 4: Fault Propagation Results

Workload Module

%Error
Manifest %

Failure%
CFE

%
DE

Matrix
Multiplication

WB Mux 0 11 11
Operand

Mux 2 46 46

Ctrl Unit 8 28 27
IF 1 15 13

GenPC 83 83 83

Bubble Sort

WB Mux 10 14 8
Operand

Mux 11 23 19

Ctrl Unit 21 28 25
IF 2 5 1

GenPC 28 27 24

7. References
[1] P. Marwedel, Embedded Systems Design, Springer,

2006.
[2] A. S. Berger, Embedded Systems Design - An

Introduction to Processes, Tools, & Techniques, CMP
Books Publisher, 2002.

[3] Z. Segall, and T. Lin, “FIAT: Fault Injection Based
Automated Testing Environment,” Proceeding of the
18th International Symposium on Fault-Tolerant
Computing, Jun. 1988, pp. 102-107.

[4] G. A. Kanawati, N. A. Kanawati, and J. Abraham,
“FERRARI: A Tool for the Validation of System
Dependability Properties,” Proceeding of the 22th
International Symposium on Fault-Tolerant
Computing, Jul. 1992, pp. 336-344.

[5] Carreira J. H. Madeira, and J. G. Silva, “Xception: A
Technique for the Experimental Evaluation of
Dependability in Modern Computers,” IEEE
Transaction on Software Engineering, Feb. 1998, pp.
125-136.

[6] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. C. Fabre,
J. C. Laprie, E. Martines, and D. Powell, “Fault
Injection for Dependability Validation - A
Methodology and Some Applications,” IEEE
Transaction on Software Engineering, Feb. 1990, pp.
166-182.

[7] H. Madeira, M. Z. Rela, F. Moreira, and J. G. Silva,
“RIFLE: A General Purpose Pin-level Fault Injector,”
Proceeding of the First European Dependable
Computing Conference, 1994, pp. 199-216.

[8] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J.
Karlsson, “Fault Injection into VHDL Models: The
MEFISTO Tool,” Proceeding of the 24th International
Symposium on Fault-Tolerant Computing, Jun. 1994,
pp. 66-75.

[9] H. R. Zarandi, S. G. Miremadi, and A. R. Ejlali, “Fault
Injection into Verilog Models for Dependability
Evaluation of Digital Systems,” Proceeding of the
Second International Symposium on Parallel and
Distributed Computing, Oct. 2003, pp. 281-287.

[10] M. Shokrolah-Shirazi and S. G. Miremadi, “FPGA-
based Fault Injection into Synthesizable Verilog HDL
Models,” Proceeding of the Second International
Conference on Secure System Integration and
Reliability Improvement, Jul. 2008, pp. 143-149.

[11] A. R. Ejlali and S. G. Miremadi, “Error propagation
analysis using FPGA-based SEU fault injection,”
Proceeding of the Microelectronic Reliability, Feb.
2008, 319-328

[12] K.-T. Cheng, S.-Y. Huang and W.-J. Dai, “Fault
Emulation: A New Methodology for Fault Grading,”
IEEE Transaction on Computer-Aided Design of
Integrated Circuits and Systems, Oct. 1999, pp. 1487-
1495.

[13] S.-A. Hwang, J.-H. Hong, C.-W. Wu, “Sequential
Circuit Fault Simulation Using Logic Emulation,”
IEEE Transaction on the Computer-Aided Design of
Integrated Circuits and Systems, Aug. 1998, pp. 724-
736.

[14] L. Antoni, R. Leveugle and B. Feher, “Using Run-
Time Reconfiguration for Fault Injection in Hardware
Prototypes,” Proceeding of the 17th IEEE International
Symposium on Defect and Fault Tolerance in VLSI
Systems, 2002, pp. 245-253.

[15] P. Civera, L. Macchiarulo, M. Rebadengo, M. S.
Reorda, M. and A. Violante, “Exploiting FPGA for
accelerating fault injection experiments,” Proceeding
of the 7th International On-Line Testing Workshop,
2001, pp. 9-13.

[16] P. Civera, L. Macchiarulo, M. Rebadengo, M. S.
Reorda, M. and A. Violante, “FPGA-based Fault
Injection for Microprocessor Systems,” Proceeding of
the 10th Asian Test Symposium, Nov. 2001, pp. 304-
309.

[17] A. Steininger B. Rahbaran, and T. Handl, “Built-in
fault injectors the logical continuation of bist?,”
Proceeding of the intelligent Solutions in Embedded
Systems workshop, 2003.

[18] B. Rahbaran, A. Steininger, and T. Handl, “Built-in
Fault Injection Hardware – The FIDYCO Example,”
Proceeding of the second IEEE International
Workshop on Electronic Design, Test and applications,
Jan. 2004, pp. 327-332.

[19] M. Aguirre, J. N. Tombs, F. Muñoz, V. Baena, A.
Torralba, A. Fernández-León, F. Tortosa-López, “FT-
UNSHADES: A new system for SEU Injection,
analysis and diagnostics over post synthesis netlists,”
NASA Military and Aerospace Programmable Logic
Devices (MAPLD 2005), Washington DC (USA),
2005.

[20] P. Civera, L. Macchiarulo, M. Rebadengo, M. S.
Reorda, M. and A. Violante, “Exploiting Circuit
Emulation for Fast Hardness Evaluation,” IEEE
Transaction on Nuclear Science, Dec 2001, pp. 2210-
2216

[21] A. Maheshwari, W. Burleson, R. Tessier, “Trading off
transient faults tolerance and power consumption in
deep sub-micron (DSM) VLSI circuits,” IEEE
Transaction on Very Large Scale Integration (VLSI)
Systems, Mar. 2004, pp. 299-311.

[22] N. R. Shanbhag, “Reliable and efficient system on chip
design,” Proceeding of the Computer & Processing,
Mar. 2004, pp. 42-50.

[23] “OR1200 OpenRISC processor,” available at:
http://opencores.org/or1k/Main_Page, [accessed: Jul.
2012].

[24] N. Mehdizadeh, M. Shokrolah-Shirazi and S. G.
Miremadi, “Analyzing fault effects in the 32-bit
OpenRISC 1200 microprocessor,” Proceeding of the
Third International Conference on Availability,
Reliability and Security, Mar 2008, pp. 648-652.

[25] “DE2 Development and Education Board ,” available
at:http://www.altera.com/education/univ/materials/boa
rds/de2/unv-de2-board.html, [accessed: Jul. 2012].

