
Simulation And Satisfiability Guided Counter-example
Triage For RTL Design Debugging

Zissis Poulos1, Yu-Shen Yang2 Andreas Veneris1 Bao Le1

1Dept. of ECE, University of Toronto, Toronto, Canada. {zpoulos, veneris, lebao}@eecg.toronto.edu
2Advanced Micro Devices Inc., Toronto, Canada ,Yu-shen.Yang@amd.com

Abstract—Regression verification flows in modern integrated
circuit development environments expose a plethora of counter-
examples during simulation. Sorting these counter-examples today
is a tedious and time-consuming process. High level design debug-
ging aims to triage these counter-examples into groups that will be
assigned to the appropriate verification and/or design engineers for
detailed root cause analysis. In this work, we present an automated
triage process that leverages knowledge extracted from simulation
and SAT-based debugging. We introduce novel metrics that corre-
late counter-examples based on the likelihood of sharing the same
root cause. Triage is formulated as a pattern recognition problem
and solved by hierarchical clustering techniques to generate groups
of related counter-examples. Experimental results demonstrate an
overall accuracy of 94% for the proposed automated triage frame-
work, which corresponds to a 40% improvement over conventional
scripting methods.

I. INTRODUCTION

Recent market studies and technical road-maps confirm the

criticality and galloping resource demands of verification in

modern VLSI design flows. Today, up to 46% of the design

cycle is spent in efforts to verify system functionality [1]. With

debugging constituting a major component that consumes up to

32% of the verification process [1], the semiconductor industry

is at a constant lookout for Computer-Aided Design (CAD)

solutions to automate the aforementioned time-demanding tasks.

Debugging commences once a discrepancy between speci-

fication and simulation is discovered, expressed in the form

of a counter-example trace. Cutting-edge automated debuggers

instrument formal methodologies to ameliorate the debugging

process [2], [3]. This is accomplished as tools utilize counter-

examples to generate a set of design locations that can explain

the erroneous behavior. These locations provide vital suggestions

to the engineer as to where the actual error lies in the design.

However, regression verification flows complicate and prolong

the debugging task, since they can potentially generate hundreds

of counter-examples to be fixed. At the end of regression tests,

knowledge of the relation between counter-examples and their

culprit is limited. Normally, this causes confusion in the design

and/or verification engineering team, since the design’s erroneous

behavior can be comprehensive by some of the engineers but

totally opaque to others. Consequently, the problem is constantly

assigned and re-assigned to various engineers until the most

suitable one is found. Additionally, if the resulting set of counter-

examples is not appropriately categorized into smaller related

groups, then multiple engineers might be investing effort to

resolve the same design error; a waste of precious resources.

Along these lines, triage is the high-level debugging task

following regression verification that has a twofold purpose.

First, it tries to determine the relation between generated counter-

examples with respect to their root cause failures. The main

aim of this step is to group together those counter-examples

that are closely related. Second, it aims to identify the most

suitable engineer to perform detailed debugging for each one of

the formed groups. The benefit of triage lies into the fact that

only those engineers familiar with the erroneous behavior will

pursue detailed debugging for a given group. Moreover, any fix

for a counter-example can potentially eliminate most counter-

examples belonging to the same group, since they are probably

caused by the same design error.

Current studies indicate that triage can potentially occupy up

to 30% of the debugging effort [1]. Despite these projections,

triage in modern flows is predominantly performed in an ad

hoc, manual and time-consuming manner. In the majority of

cases, triage is based on scripts that parse error messages and/or

revision control information (i.e. ticketing systems) to group the

observed failures. Alternatively, a single engineer is assigned to

monitor and analyze error traces on a daily basis to determine

the best suited engineer for further debugging. The scripting

approach suffers from frequent inaccuracy in counter-example

classification, whereas the manual nature of binding an engineer

to the triage task incurs significant cost in terms of time and

relies on the engineer’s intuition and inherent understanding of

the design’s behavior.

In this work we present a novel automated counter-example

triage framework. More precisely, the contributions are as fol-

lows. First, we devise a ranking system for possible design

error locations to quantify their probability of being an actual

error. This is achieved by performing a probabilistic analysis

to show that errors i) are usually excited a small number

of cycles before the observed mismatch, and ii) are usually

covered by simulation only a small number of times before being

excited. Second, we introduce the concept of counter-example

proximity, a novel speculative metric that expresses similarity or

dissimilarity between counter-examples based on the likelihood

of originating from the same error source or from distinct ones.

The suggested metric is constructed by exploiting, simulation

coverage, satisfiability, and the proposed ranking system to

determine counter-example correlation. Triage is then formulated

as a pattern recognition problem and solved using hierarchical

clustering. Our approach allows us to employ machine learning

algorithms to build an automated debugging triage framework.

The developed framework is tested on four different designs

with multiple injected errors demonstrating significant gains over

existing triage methodologies.

The remainder of this paper is organized as follows. Section II

reviews background and presents basic concepts and notation on

SAT-based design debugging along with notation on simulation

coverage. Section III defines the problem of triage in debugging,

and Section IV introduces the proposed failure triage framework

along with suggested metrics and heuristics. Finally, Section

V provides experimental results and Section VI concludes the

paper.

II. PRELIMINARIES

A. Notation for SAT-based Design Debugging

This sub-section describes SAT-based design debugging and

introduces relevant notation, which is used throughout the paper.

Assume an erroneous design D that fails verification because of

a single or multiple errors in the RTL. When a mismatch between

the expected values and the simulated ones in D is identified at

Primary Outputs (POs) we say that a failure occurs. Let also C =
{c1, c2, . . . , c|C|} denote a set of counter-examples that expose

|C| failures and len(ci) denote the length of counter-example ci
in number of cycles. The output of an automated debugger for

each counter-example ci is a set of circuit elements (RTL blocks

or signals) that can be responsible for ci. This set is referred

to as a solution [3] for ci denoted as Si = {si1 , si2 , . . . , si|Si|
}

since each circuit element sij ∈ Si can be modified to rectify

the erroneous behavior exhibited in ci. Any sij is referred to as

a suspect for counter-example ci. The cycle where an error can

be excited at sij is also available at the output of the debugger,

and is denoted as tij . In this work, the notion of excitation cycle,

tij , refers only to the excitation that eventually propagates the

error to an observable output. Remark that it is possible for two

distinct counter-examples ci and cj to share one or more suspects

in their solutions. The set of mutual suspects between ci and cj
is denoted as:

(Mij ≡ Mji) =
{

{sik , sjw} : sik = sjw
}

(1)

For uniformity, Mii is also defined under Eq. 1, where

all tuples contain each suspect in Si twice. Moreover, SAT-

based mechanics allow debuggers to return error propagation

paths in the circuit that show how a value from a suspect sij
propagates to reach the PO where a mismatch was observed [4].

Error propagation paths start from the cycle where a suspect

is excited to propagate the erroneous value. All cycles before

the excitation cycle are referred to as the prefix of the suspect,

while all cycles following until the observation of a mismatch

are called the suffix of that suspect. For example, if sij is

excited at cycle k, then tij = k, prefix(sij) = [1 . . . k], and

suffix(sij) = [k + 1 . . . len(ci)].
An example of debugging a counter-example is depicted in

Fig. 1 by using the Iterative Logic Array representation of

the sequential design [3]. An error is excited in cycle m − 2
and propagates to cause a failure at the output in cycle m.

The generated counter-example ci of length len(ci) = m is

then passed to an automated debugger. The result is a solution

Si = {si1 , si2 , si3} of circuit elements that can potentially

explain the wrong output. Suspects si1 , si2 and si3 , excited

in cycles k, m − 2 and m − 1 respectively, along with their

propagation paths are illustrated in Fig. 1. As seen in the same

figure, the suffix and prefix parts of the counter-example differ

among the suspect locations. Also notice that the exhaustive

nature of the underlying SAT engine will definitely return the

actual error location as a suspect in the solution set [3].

B. Notation for Simulation Coverage

RTL simulation can provide us with the number of times each

line, block or branch in the RTL description of D is executed.

We refer to this number as the frequency of the respective

circuit element. Since all suspects sij in a counter-example

solution Si correspond to circuit elements, a mapping between

sij and its corresponding frequency is always feasible. We denote

this frequency as freq(sij). Note that for two mutual suspects

PI

PO

In
it

ia
l

S
ta

te

1 k m-2 m-1 m

c
i

s
i1

s
i2

s
i3

Fig. 1. Counter-example and debugging suspects

sik = sjl for counter-examples ci and cj it is possible that

freq(sik) 6= freq(sjl) when len(ci) 6= len(cj). In other words,

the same circuit element can be executed a different number of

times between two distinct counter-examples of different length,

even if it is a suspect location for both.

III. TRIAGE IN DEBUGGING

A. Problem Definition

As it becomes apparent from Section II, the task of debugging

a single counterexample is unequivocal; the automated debugger

will return a solution set that can justify the erroneous behavior,

and from that set, all suspects will be examined by the engineer

to track down the actual error. Moreover, a quick overview

of the suspect locations is usually adequate to identify the

rightful owner that should proceed with fixing the counter-

example. However, the existence of multiple counter-examples

at the end of regression simulation needs to be managed by

determining their relations and forming appropriate groups as

discussed in Section I. In practice though, identifying relations

between counter-examples is not trivial.
Conventional approaches, such as script-based grouping of

error logs or manual analysis frequently fall short when it comes

to identifying counter-example relationships [5]. Fig. 2 illustrates

two common cases were traditional methods tend to fail. In

Fig. 2(a) an error propagates due to different stimulus through

different circuit elements and is eventually causing two failures

at distinct POs and possibly at different cycles. The counter-

examples exposing those two failures will be wrongly grouped

into two separate groups, biased by the fact that the POs -and

hence the error messages- are different. The opposite scenario

can also happen. Fig. 2(b) illustrates two distinct errors causing a

discrepancy at the same POs, by following different propagation

paths. Traditionally, the failures will be put into the same group,

which is not the desired result.
Triage addresses the aforementioned issues, by automatically

grouping similar counter-examples together and passing them to

the suitable engineer(s) for further root cause analysis. Using the

notation and concepts presented in Section II we define failure

triage as follows.
Definition 1: Given an erroneous design D, and a set

of counterexamples C, counter-example triage is a complete

partitioning of C into a set of N subsets/groups denoted as

G = {g1, g2, . . . , gN} such that the following rules apply:

• jointly exhaustive property: There is no counter-example

ci ∈ C that does not belong to some gk.

• mutually exclusive property: Each counter-example ci
belongs exactly to one gk.

• relation property: Each group gk contains failures that

have a high probability of originating from the same design

error.

PI

PO

In
it

ia
l

S
ta

te
s

1 k n-2 n-1 n

c2

o2

PI

PO

In
it

ia
l

S
ta

te
s

1 k m-2 m-1 m

c1

o1

c1

c2

Conventional

Triage

o1韻 o2

(a) Different outputs failing because of same error

PI

PO

In
it

ia
l

S
ta

te
s

1 k n-2 n-1 n

c2

o2

PI

PO

In
it

ia
l

S
ta

te
s

1 k m-2 m-1 m

c1

o1

Conventional

Triage

c1 c2

o1吋 o2

(b) Same output failing because of different errors

Fig. 2. Incorrect grouping by conventional techniques

In order for the grouping to be acceptably accurate, three

critical aspects of the problem should be addressed. First, a

well-defined metric needs to be devised that will quantify the

relationship between two given counter-examples. Second, an

estimation has to be made on the number of errors causing

the whole set of counter-examples, because this determines the

number of groups to be formed. Finally, an efficient technique

has to be applied to form closely related groups by using

the similarity metric between all possible pairs of counter-

examples. The following sections describe our work to address

the aforementioned issues.

IV. COUNTER-EXAMPLE TRIAGE FRAMEWORK

A. Error Behavior Analysis

From Section II.A, it becomes obvious that SAT-based de-

bugging guarantees that an error will be returned as a suspect.

However, not all suspects are real errors. As such, before con-

structing any triage metrics, it is crucial to identify those suspects

that are likely to be real errors or relate to ones. We address the

above by speculating on the way an actual error is excited and

eventually propagates to the failing outputs. Suspects that follow

our assumptions on how an error behaves are promoted against

suspects that violate our expectations.

Generally, we expect errors to be excited in temporal prox-

imity to the failing outputs, an intuitive argument that is central

behind Bounded Model Debugging [6]. Moreover, we expect that

for a design error to be excited it would take a relatively small

number of times for the code it resides in to be executed (covered

by simulation). In support of the argument above, we outline a

probabilistic analysis.

Assuming that an error exists in the design and that simulation

starts at cycle 1, let exi be the probability that the error is excited

at cycle i. Also, let pri be the probability of the error propagating

from cycle i to cycle i+1, and obi be the probability of observing

a failure at the POs at cycle i given that the error has propagated

to that cycle. Also assume that the input vector sequences are

temporally independent and stationary random sequences.

Proposition 1: The probability of observing the first failure

at cycle m given the probability that the error is excited for the

first time at cycle n is:

pm =
n−1
∏

i=1

(1− exi)× exn ×
m−1
∏

i=n

pri ×
m−1
∏

i=n

(1− obi)× obm

Proof: Let events:

Ei = {an error is excited at cycle i},

Xi = {an error propagates from cycle i to cycle i + 1 given

that it has propagated to cycle i},

Oi = {a failure is observed in cycle i given that an error has

propagated to cycle i}.

Probability pm can be expressed in terms of the events Ei,

Xi, and Oi as follows:

pm = P

(

n−1
⋂

i=1

Ei ∩ En ∩

(

m−1
⋂

i=n

Xi ∩
m−1
⋂

i=n

Oi ∩Om

∣

∣

∣
En

))

.

But events
n−1
⋂

i=1

Ei are conditionally independent to
m−1
⋂

i=n

Xi,

m−1
⋂

i=n

Oi ∩Om. Thus,

pm = P

(

n−1
⋂

i=1

Ei∩En

)

×P

(

m−1
⋂

i=n

Xi∩
m−1
⋂

i=n

Oi∩Om

∣

∣

∣
En

)

.

By Bayes’ law and the chain rule we have

P(A ∩B|C) = P(A|C)× P(B|A ∩ C).

Hence, pm = P

(

n−1
⋂

i=1

Ei ∩ En

)

× P

(

m−1
⋂

i=n

Xi

∣

∣

∣
En

)

×

P

(

m−1
⋂

i=n

Oi

∣

∣

∣

m−1
⋂

i=n

Xi∩En

)

×P

(

Om

∣

∣

∣

m−1
⋂

i=n

Oi∩
m−1
⋂

i=n

Xi∩En

)

.

But events Om and
m−1
⋂

i=n

Oi are conditionally independent given

En, thus pm can be re-written as

pm = P

(

n−1
⋂

i=1

Ei ∩ En

)

× P

(

m−1
⋂

i=n

Xi

∣

∣

∣
En

)

×

P

(

m−1
⋂

i=n

Oi

∣

∣

∣

m−1
⋂

i=n

Xi ∩ En

)

× P

(

Om

∣

∣

∣

m−1
⋂

i=n

Xi ∩ En

)

.

By assumption, inputs of consecutive cycles are temporally

independent. As a result, Xi is independent of Xj , and Ei is

independent of Ej for all i 6= j, meaning that

P
(

Xi ∩Xj |En

)

= P
(

Xi|En

)

× P
(

Xj |En

)

, and

P
(

Ei ∩ Ej

)

= P
(

Ei

)

× P
(

Ej

)

. Consequently,

P

(

m−1
⋂

i=n

Xi

∣

∣

∣
En

)

=
m−1
∏

i=n

P
(

Xi|En

)

, and

P

(

n−1
⋂

i=1

Ei ∩ En

)

=
n−1
∏

i=1

P
(

Ei

)

× P
(

En

)

.

Similarly, conditional independence between Oi and Oj yields

P

(

m−1
⋂

i=n

Oi

∣

∣

∣

m−1
⋂

i=n

Xi ∩ En

)

=
m−1
∏

i=n

P

(

Oi

∣

∣

∣

m−1
⋂

i=n

Xi ∩ En

)

.

Hence, pm can be simplified to:

pm =
n−1
∏

i=1

P
(

Ei

)

× P
(

En

)

×
m−1
∏

i=n

P
(

Xi|En

)

×

m−1
∏

i=n

P

(

Oi

∣

∣

∣

m−1
⋂

i=n

Xi ∩ En

)

× P

(

Om

∣

∣

∣

m−1
⋂

i=n

Xi ∩ En

)

.

Based on the assumptions, 1− exi = P
(

Ei

)

, exn = P
(

En

)

,

pri = P
(

Xi|En

)

, obi = P

(

Oi

∣

∣

∣

m−1
⋂

i=n

Xi ∩ En

)

, therefore pm

can be defined as:

pm =
n−1
∏

i=1

(1− exi)× exn ×
m−1
∏

i=n

pri ×
m−1
∏

i=n

(1− obi)× obm

�.

1 2 3 4
0

0.05

0.1

0.15

0.2

m−n: suffix window length

P
m

pr=ob=0.8

pr=ob=0.5

pr=ob=0.2

(a) Effect of suffix lenght

0 0.5 1
0

0.5

1
x 10

−3

ex: excitation probability

P
m

n=2

n=3

n=4
n=5

n=6

(b) Effect of prefix length

Fig. 3. Probabilistic behavior of errors

Since we simply aim to construct a generalized view of error

bahavior, we can assume that pri = pr, obi = ob and exi = ex
remain the same for all cycles i. Then we get:

pm = (1− ex)n−1 × ex× prm−n × (1− ob)m−n × ob (2)

Fig. 3 illustrates the results of plotting Eq. 2. To show our

findings, pm is plotted under two different settings. In the first,

depicted in Fig. 3(a), the cycle where the error is first excited is

kept constant such that n = 1, whereas cycle m where the failure

is observed is selected from the set [2, 3, 4, 5, 6]. In other words,

the prefix is set to a constant size of 1 and the suffix length

varies. Additionally, the propagation, observation and excitation

probabilities are set constant, such that pr = ob = [0.2, 0.5, 0.8]
and ex = 0.5. Probability pm is plotted as a function of m.

In the second setting, depicted in Fig. 3(b), the number of

cycles between the first excitation cycle and the cycle where the

error is observed is kept constant so that m−n = 2, while n (the

cycle of first excitation) takes values from the set [2, 3, 4, 5, 6].
Essentially, the prefix length now varies whereas the suffix has a

fixed length of 2 cycles. Probabilities pr and ob are set constant

to 0.8. In the second setting, pm is plotted as a function of ex.

In Fig. 3(a), the negative exponential nature of the probability

curves confirms the expectations that an error usually causes a

failure only a small number of cycles after it has been excited.

Hence, the error’s suffix is expected to be relatively short.

Fig. 3(b) leads us to an additional observation. We observe that

as the prefix length increases, the highest failure observation

probability, pm, is achieved when the excitation probability

becomes smaller. The above behavior confirms our intuition that

even when an error is first excited close to the failure point,

the longer the prefix is, the harder to excite the error it should

be (its optimal excitation probability drops). Since the excitation

probability is proportional to the likelihood of the error location

being executed (covered by simulation), any conclusions related

to excitation can be applied to its coverage as well.

It has to be noted that the description above serves not as

a theoretical proof of the behavior of errors but only as an

experimental intuition of the most typical cases. This is because

it is based on certain assumptions. However, this probabilistic

analysis leads to the following general observations about the

behavior of errors in most cases. An error is expected (i) to have

a relatively long prefix (short suffix), and (ii) to be covered only

a small number of times during its prefix.

The above observations form the basis of the suspect ranking

scheme described in the next sub-section, which guides triage

metrics to more accurate outcomes, as demonstrated by our

experiments.

B. Suspect ranking

For a counter-example ci, the returned solution set Si contains

all possible suspects for the observed mismatch. However, there

are many cases where the solution set is large. To add more

pain, some of the returned suspects are incidental and atypical

of common error locations, such as reset signals and PI suspects.

Along these lines, the utter goal of suspect ranking is to generate

a ranked version of the solution that serves two purposes. First,

it segregates suspects that are atypical of common errors from

suspects that are actual errors or are closely related to ones. As

such, counter-example relation is defined based on the latter and

not by treating all suspects evenly. Second, it aids engineers to

prioritize detailed debugging by first examining those suspects

high in rank.
In order to generate such a ranking, we quantify the obser-

vations of Section IV.A. Recall that freq(sij) is the number

of times suspect sij is covered by simulation in its prefix,

prefix(sij). Let score(sij) be a scoring function quantifying

the likelihood of sij being an actual error, defined as follows:

score(sij) =
|prefix(sij)|

len(ci)
×

(

1−
freq(sij)− γ

max{freq(sik) : sik ∈ Si}

)

(3)
The higher score(sij) is, the more typical of an actual error

suspect sij is, always based on our probabilistic analysis. The

first factor
|prefix(sij)|

len(ci)
in Eq. 3 is in the range of [0 . . . 1] and

quantifies the expectation that a real error is excited in temporal

proximity to the observed mismatch. The longer prefix(sij) is,

the higher score(sij) becomes, as desired. The second factor in-

creases as coverage of sij prior to the excitation cycle decreases,

respectively resulting in an increase to the score function, again

as desired. Similar to the first factor, the second also falls

within the range of [0 . . . 1] for homogeneity. The denominator

is set to the maximum coverage observed for all suspects in the

corresponding solution, as a measure of comparison. A relatively

small offset γ is subtracted from the numerator to avoid zeroing

out the contribution of suspects that have maximum coverage for

the counter-example.
Based on the scoring function above we can construct a

ranking for all suspects. Let rank be a relation, such that for

two distinct suspects sij and sik , if rank(sij) < rank(sik),
then sij is more likely to be the actual error compared to sik ,

respectively score(sij) > score(sik). Given that score(sij) has

been computed for all sij ∈ Si, rank(sij) is defined as:

rank : {score(sij) : sij ∈ Si} → {1, 2 . . . , |Si|}

rank(sij) = {r : |{sik ∈ Si : score(sik) ≥ score(sij)}| = r − 1}
(4)

Based on the above equations, real errors and suspects related

to them are more likely to be placed high in rank, exactly as

desired.

C. Counter-example proximity

The cornerstone of triage is a well-defined metric to express

relation between any two given counter-examples. In order to

develop such a metric we exploit information from the suspect

ranking scheme along with the number of suspects that two

counter-examples share in common.
As defined in Section II.A, the set of mutual suspects between

two counter-examples ci and cj is denoted as Mij . Intuitively,

when Mij is large relative to the number of total suspects in both

solutions, then ci and cj are considered to be strongly related,

thus possibly originating from the same error source. However,

if mutual suspects are low in ranking in both or at least one of

the solutions, then this correlation becomes weaker. For example,

if a mutual suspect is high ranked in Si but low ranked in Sj ,

then it is more likely to be a real error for counter-example ci
and not for cj , even if it can fix both; counter-example cj is

expected to be caused by a suspect higher in rank. We combine

the above expectations into a speculative metric called counter-

example proximity between any pair ci and cj , which is denoted

as prox(ci, cj) and defined as:

prox(ci, cj) =1−
|Mij |

|Si|+ |Sj | − |Mij |
×

×
∏

{sik ,sjw}∈Mij

(

1−
|rank(sik)− rank(sjw)|

max{|Si|, |Sj |}

)

(5)

According to Eq. 5, when ci and cj are strongly related

then prox(ci, cj) tends to 0, whereas a weak correlation sets

prox(ci, cj) closer to 1. Remark, that the number of mutual sus-

pects over total suspects is encoded in the factor
|Mij |

|Si|+|Sj |−|Mij |
.

As desired, a large mutual suspect set Mij will force prox(ci, cj)
closer to 0. In the case where all suspects in solutions Si and Sj

are mutual then |Mij | = |Si| = |Sj |, thus
|Mij |

|Si|+|Sj |−|Mij |
= 1,

and the first factor maximizes its contribution. In this context,

the second factor quantifies the contribution of mutual suspects

based on their ranking. Ideally, counter-examples caused by

the same error will exhibit similar behavior. Therefore, their

mutual suspects are expected to have similar ranks in their

respective solution sets. Based on Eq. 5, proximity decreases

as the difference |rank(sik) − rank(sjw)| in the ranking of

mutual suspects increases, which models the above expectation.

Remark that, prox(ci, ci) = 0 as desired, since all suspects

are mutual (
Mij

|Si|+|Sj |−|Mij |
= 1) and have the same rank

(|rank(sik)− rank(sjw)| = 0 always). On the other hand, if ci
and cj share no mutual suspects then they are definitely unrelated

and caused by different errors, which is successfully captured by

Eq. 5, since in that case |Mij | = 0 and thus prox(ci, cj) = 1.

D. Error Count Estimation

For a grouping of the generated counter-examples to be

meaningful, it is necessary to define the number of groups

expected to be formed. Ideally, this number should equal the

number of design errors responsible for the whole set of counter-

examples C. However, in the vast majority of regression scenarios

the number of co-existing errors is not known a priori. Therefore

an initial guess on the number of groups has to be made that will

reflect an acceptable grouping scheme.

For that purpose, we construct a heuristic called error count

estimation that leverages information from the suspect ranking

scheme. Each mutual suspect set Mij is reduced to set MR
ij

which contains only those suspects that have at most a rank of

R ≤ min{|Si|, |Sj |} in suspect sets Si or Sj . Formally:

MR
ij = Mij\

{

{sik , sjw} ∈ Mij :

(rank(sik) > R) ∨ (rank(sjw) > R)
}

(6)

Intuitively, high-ranked suspects (small R) are closely related

to actual errors, thus a large number of such mutual suspects

indicates that counter-examples are caused by a small number

of errors, and vice versa. After computing all possible sets Mij

and the reduced sets MR
ij , for each suspect we generate a set

containing all its manifestations that appear to a reduced mutual

set, denoted as count sik :

count sik =
{

sjw : {sik , sjw} ∈ MR
ij

}

(7)

For example, assume some s13 has rank R or less in 3 different

counter-examples c1, c2 and c4, where it appears as s22 and s43
in c2 and c4. Recall that Mii contains {s13 , s13} by definition.

Then count s13 = {s13 , s22 , s43} and |count s13 | = 3. Remark

that count s13 = count s22 = count s43 . As such, let ĉount
be a set that contains only one copy of all computed count sij
sets. The average number of times such high-ranked suspects par-

ticipate in a solution set estimates how many counter-examples

we expect those suspects to be responsible for, on average:

countavg =

∑

count sij∈ĉount

|count sij |

|ĉount|
(8)

Then, our error count estimation, denoted as e, is given by:

e =
⌈ |C|

countavg

⌉

(9)

Eq. 9 essentially says that the expected number of co-existing

errors responsible for all counter-examples is calculated by

dividing the number of counter-examples |C| by the average

number of counter-examples we expect each high-ranked suspect

to be responsible for. Observe that, if no mutual suspects of

high rank (R) exist, then |count sij | = |{sij}| = 1 for all

high-ranked suspects, and countavg = 1 according to Eq. 8.

Then the error count estimation will be e = |C|, acceptably

predicting that each counter-example was most likely caused by

a unique error, and thus the number of error equals the number

of counter-examples. On the other hand, the existence of high-

ranked suspects among various solutions incurs a decrease in e,

since countavg increases. Eq. 9 offers a loose approximation on

the number of co-existing errors, but is sufficient to guide the

formation of groups as demonstrated by experimental results.

E. Overall Flow

The information embedded in the metrics described above is

applied for the last step of the proposed triage framework, which

is the formation of groups of similar counter-examples. For that

purpose, we formulate triage as a clustering problem and employ

a hierarchical clustering algorithm [7] to solve it.

Hierarchical clustering aims to group together elements based

on their relationship, which is quantified by a metric called

distance. A distance metric usually takes real values, and is

assigned per pair of elements. If the distance between a pair

is small then the elements are considered strongly related and

vice versa. In our framework, the elements to be grouped are

essentially counter-examples. Based on the definition of counter-

example proximity, its use as a distance metric is appropriate,

since it follows the desired properties described above.

In the context of our work, hierarchical clustering takes as

input the set of all counter-examples C, and the proximity

between all pairs of counter-examples in the form of a |C| × |C|
matrix. The output is not a single grouping. Rather, this algorithm

generates all possible groupings of C. However, the error count

estimation presented in this section, suggests the most reasonable

one based on our pre-processing and assumptions made. Groups

COUNTER-

EXAMPLE

PROXIMITY

ERROR COUNT

ESTIMATION (e)

AUTOMATED

DEBUGGER

SOLUTION SETS

{S1,S2,…,SN}

COUNTER-

EXAMPLE

CLUSTERING

GROUP g1 GROUP g2 GROUP ge

. . .

SATISFYING

CLUSTERING ?

DETAILED ROOT

CAUSE ANALYSIS

YES

{C1,C2,…,CN}

SUSPECT

RANKING

ACCEPT

ALTERNATIVE

CLUSTERINGNO

Fig. 4. Proposed triage framework

of failures are formed in a bottom-up fashion (agglomerative) by

merging clusters that are likely to contain counter-examples that

are related. The decision to merge two clusters is determined

by a linkage criterion. In this work, we use Ward’s Method [7],

where at each step we merge the pair of clusters that leads to

minimum increase in total within-cluster variance after merging.

Ward’s method tends to create compact clusters, which proved

to perform well, as shown by experiments in the next Section.

Fig. 4 illustrates the overall flow that contains the steps

described above in this section. The input to the flow is a set

of counter-examples generated by regression verification. The

debugger is evoked and provides a solution set for each counter-

example. Based on Eq. 3, a ranked version of the suspects is

constructed. The ranking scheme is subsequently utilized for

the computation of counter-example proximity and the error

count estimation based on Eq. 5 and Eq. 9 respectively. Those

metrics are then passed to the clustering algorithm that forms

all possible clusterings of related counter-examples. The main

output of the triage engine is the unique clustering that comprises

of e related groups, suggested by the error count estimation.

The grouping is then examined by engineers, along with the

suspect ranking scheme which is already computed. Remark

that the triage process is initially executed with the error count

estimation, but it depends on the engineer to accept the formation

of e groups or examine an alternative number of groups already

computed by the engine.

V. EXPERIMENTAL RESULTS

This section presents preliminary experimental results for the

proposed triage framework. All experiments were conducted on a

single core of an Intel Core i5 3.1 GHz workstation with 8GB of

RAM. Four OpenCores [8] designs were used for the evaluation.

The underlying automated debugging tool used for extracting

the suspect locations was implemented based on [3]. A platform

1 2 3 >=4
0

20

40

60

suffix window length (cycles)

%
 o

v
e
r

to
ta

l
n
u
m

b
e
r

actual errors

suspects

(a) Allocation based on suffix

1 2 3 4 >=5
0

20

40

60

80

times covered by simulation

%
 o

v
e
r

to
ta

l
n
u
m

b
e
r

actual errors

suspects

(b) Allocation based on coverage

Fig. 5. Features of real errors and suspects across all testcases

coded in Python was developed to parse the returned results

of the debugger, calculate the relevant metrics and perform

hierarchical clustering on the resulting counter-examples. For

each design, a set of different errors was injected each time

by modifying the RTL description. In total, sixteen regression

simulations were run, generating a different number of counter-

examples each time, caused by a different set of errors.
A first set of experiments was conducted to confirm the claims

made based on our probabilistic analysis in Section IV.A. After

regression simulation, 285 counter-examples were collected for

all designs, and since the actual error was known between the

returned suspects, we observed their first excitation cycle along

with the frequency of the corresponding RTL component. Results

are illustrated in Fig. 5, where we see that both real errors and

suspects generally follow our expectations that suffix length is

generally short and that such locations have a small frequency

in their prefix. However, real errors tend to follow the above

pattern more accurately compared to the rest of the suspects; a

feature that enables real errors to be generally high in the suspect

ranking scheme and comes in compliance with our expectations.
A second set of experimental results is depicted in Fig. 6,

where we explore the effect of the ranking scheme on the

framework’s accuracy across all testcases. The ratio
(

1 −
misclassified Ci’s

|C|

)

determines accuracy. A counter-example be-

longing to the wrong group is considered misclassified. In Fig. 6,

R = 0 denotes the absence of ranking scheme (MR
ij = Mij

always). More precisely, Fig. 6(a) demonstrates how bigger the

estimate e is, which is automatically computed by the engine,

when compared to the actual number of errors. Apparently,

computations devoid of any suspect ranking lead to the inclusion

of 2.8 extra clusters on average. This reflects to a 77% average

accuracy for the triage engine shown in Fig. 6(b). Remark, that

selecting only the top ranked suspect (R = 1) discards useful

knowledge by excluding the rest of the suspects and results

into 3.1 extra clusters on average, decreasing overall accuracy

to 74%. Also remark that, when R is set too high, low rank

suspects are included in the computations and introduce noise to

the error count estimation. This also incurs a decrease in overall

accuracy shown in Fig. 6(b). However, any reasonable selection

for R, between 2 − 10, results in better accuracy overall, with

the best outcome of 94% achieved when R = 4. Note that

in the latter case, e is off only by 0.7 on average. Generally,

even for extreme values of R (1 or 10) the triage engine always

outperforms conventional scripting-based triage, which achieves

a 67% average accuracy shown by the straight line in Fig. 6(b).
Table I demonstrates detailed results for all sixteen testcases

and four designs with R = 4 so that the top 4 in rank suspects are

selected for the error count estimation. Our selection is indicative

as we choose this value of R because it reflects a good behavior

for the algorithm. Again, though, any reasonable R ∈ [2 . . . 10]
generates similar results as shown in Fig. 6. The first and second

columns refer to the design name and its size respectively.

TABLE I
PROPOSED TRIAGE ENGINE PERFORMANCE

circuit # gates # errors |C| e

accuracy

suspects error rank time (sec)
triage(e) triage(# errors) script

(avg) (high - low)

4 15 4 100% 100% 80% 12.5 1-6 12.8

fpu 83303 5 20 6 83% 100% 65% 14.1 2-5 13.8

6 24 6 100% 100% 68% 12.7 1-4 16.7

7 31 7 95% 95% 65% 14.3 1-7 19.8

3 14 4 88% 100% 71% 14.0 2-6 14.3

vga 72292 4 15 6 78% 89% 67% 13.9 2-9 15.5

5 22 5 100% 100% 55% 15.1 1-4 17.9

6 29 7 89% 95% 69% 12.9 1-5 19.3

2 8 2 100% 100% 75% 10.8 1-3 12.4

spi 1724 3 13 3 100% 100% 62% 11.4 1-4 12.7

4 16 5 90% 100% 63% 12.2 1-5 13.4

5 16 6 94% 100% 69% 10.3 1-5 15.7

4 9 4 100% 100% 56% 15.8 1-6 12.2

mem ctrl 46767 5 15 5 100% 100% 67% 14.6 1-4 12.7

6 18 8 89% 94% 72% 15.0 2-4 13.8

7 20 9 90% 95% 70% 15.2 1-5 15.7

AVG: 94% 98% 67% 14.9

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

R

a
v
g
.
e
rr

o
r

o
n
 e

(a) Average error on e

0 1 2 3 4 5 6 7 8 9 10

40

60

80

100

R

a
v
g

.
a

c
c
u

ra
c
y
 (

%
)

script

proposed triage

(b) Effect of R on triage accuracy

Fig. 6. Effect of R on triage across all testcases

Columns 3 and 4 contain the actual number of errors that were

injected into the design and the number of total counter-examples

generated. Column 5 shows the error count estimation that the

proposed method generates for each testcase. Columns 6 to 8

include a comparison in accuracy between the proposed triage

flow and a typical binning strategy based on a script that exploits

error message information. Specifically, columns 6 and 7 refer

to the accuracy of the triage flow when performed with our error

count estimation or with the actual number of errors respectively,

assuming prior knowledge of that number. The ninth column

presents the average number of suspects across all counter-

examples in each regression session. The tenth column presents

the lowest and highest rank assigned to the actual error in the

ranking list. The last column indicates the total time consumed

by SAT-based debugging, the calculation of the two metrics, and

the clustering process.

The engine’s average accuracy reaches 94% when the algo-

rithm is executed with our initial guess (column 6) and reaches

98% for those groupings where the number of clusters equals the

number of design errors. Generally, a perfect initial guess that

reflects to the actual number of errors was observed in seven out

of sixteen testcases, achieving a 99% accuracy on average. On

the other hand, in cases where the error count estimation is off

by one or two clusters, accuracy drops to 88%. A conventional

approach similar to the one in Section III consisting of scripts to

perform the grouping achieves an overall accuracy of 67%. As

such, the proposed method improves accuracy up to 40% when

the initial guess is utilized; a solid improvement that indicates

the potential of the proposed framework. Moreover, the actual

error is assigned a high rank in the suspect ranking list, as

shown in column 10. Finally, computation of the two metrics and

clustering consume an average of 14.9 seconds in total, which

is acceptable for the purposes of triage.

It should be noted that one limitation of this work is that for

errors to be identified as significant suspects they need to be

relatively easy to excite and easy to propagate to observation

points. Human introduced errors that manifest as stuck-at faults,

bit flips, or wrong gates usually misguide the triage engine.

However, in reality, such cases are less frequent.

VI. CONCLUSION AND FUTURE WORK

In this work, a novel automated debugging triage frame-

work is proposed. The algorithm extracts information from

simulation and debugging results to define relationship between

various counter-examples. Strongly related counter-examples are

then grouped together to guide detailed debugging. In order

to quantify counter-example relation we introduce the concept

of counter-example proximity and propose a suspect ranking

scheme for its computation. Furthermore, we devise a speculative

metric to estimate the number of co-existing errors. The efficacy

of the triage engine is demonstrated by experiments within

typical regression verification flows, indicating a significant

increase in grouping accuracy compared to traditional triage

techniques. One interesting extension to this work would be to

utilize information from passing verification iterations where no

counter-examples are generated, in order to enhance knowledge

about suspect locations.

REFERENCES

[1] H.Foster, “From volume to velocity: The transforming landscape in function
verification.” in Design Verification Conference, 2011.

[2] S. Huang and K. Cheng, Formal Equivalence Checking and Design Debug-
ging. Kluwer Academic Publisher, 1998.

[3] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24, no. 10,
pp. 1606–1621, 2005.

[4] B. Keng and A. Veneris, “Path directed abstraction and refinement in
sat-based design debugging,” in Proceedings of the 49th Annual Design
Automation Conference, ser. DAC ’12, 2012.

[5] S.Safarpour, B.Keng, Y.S.Yang, and E.Qin, “Failure triage: The neglected
debugging problem,” in Design and Verification Conference (DVCON), 2012.

[6] S. Safarpour, A. Veneris, and F. Najm, “Managing verification error traces
with bounded model debugging,” in ASP Design Automation Conf., 2010.

[7] G. J. Szekely and M. L. Rizzo, “Hierarchical clustering via joint between-
within distances: Extending ward’s minimum variance method,” Journal of
Classification, vol. 22, no. 2, pp. 151–183, 2005.

[8] OpenCores.org, “http://www.opencores.org,” 2007.

