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Abstract—We present the architecture of and measured results
for ULSNAP: a fully-implemented ultra-low power event-driven
microcontroller targeted at the bursty workloads of the sensor
network application space. ULSNAP is event-driven at both
the microarchitectural and circuit levels in order to minimize
static power, energy per operation, and wake up energy while
maximizing performance. Our 90 nm test chip offers 93 MIPS at
1.2V and 47 MIPS at 0.95V, consuming 47 pJ and 29 pJ per
operation respectively. Compared to state-of-the-art processors in
its class, ULSNAP is on the Pareto-optimal front of the energy-
performance space.

Keywords—VLSI, Low power electronics, Microprocessors, Mi-
crocontrollers, Ubiquitous Computing

I. INTRODUCTION

Typical sensor networks are comprised of many small, low
cost nodes or “motes” that gather, process, and propagate
data about their surrounding environment. Mote deployment
lifetimes can exceed several months, making battery life a
crucial metric in this design space. Fortunately, most sensor
network applications are bursty, e.g. only engaging in active
execution when sensor data is available and then returning to a
quiescent state. This idle or “sleep” state is often significantly
longer than the execution period, so minimizing power during
this idle phase is of paramount importance. On the other hand,
increasing application complexity requires greater computa-
tional power, forcing more aggressive peak performance targets
for sensor nodes. The high cost of wireless communication also
contributes to increased demand for performance—computing
results locally at a sensor mote is often a better system-level
tradeoff than wirelessly transmitting raw data [13].

In order to achieve these goals and fit the bursty compu-
tation paradigm, ULSNAP was optimized to be event-driven
at both the architectural and circuit levels. We make use of
the quasi delay-insensitive (QDI) family of self-timed, i.e.
asynchronous, circuits [8], which are particularly well-suited
for event-based computation as they follow a data-driven
computational model.

QDI circuits offer automatic fine-grained activity gating
behavior in the absence of events, reducing power consumption
when the circuits are idle. Traditional synchronous systems
attempt to solve this problem using various clock-gating
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schemes, which introduce complexity and require timing mar-
gins to ensure clock stability—QDI circuits are naturally free
of these requirements.

Our processor, the Ultra-Low power Sensor Network Asyn-
chronous Processor (ULSNAP), is targeted at this sensor mote
application space. When idle, our chip consumes only 9 µW
with leakage power as the only contributor. It also has fast
wake up time, transitioning from idle to active in only 6.5 ns.
When active, our 90 nm chip delivers 93MIPS at 1.2V and
47MIPS at 0.95V using 47 pJ and 29 pJ per cycle, respectively.
In both the high performance and the low energy mode,
ULSNAP is Pareto-optimal in the energy-performance space
relative to other state-of-the-art microcontrollers in its class.
In fact, ULSNAP can seamlessly operate at different points on
the energy-performance curve by scaling its operating voltage.

As for the organization of this paper, we present a brief
overview of QDI circuits and their key properties that enable
our microarchitectural design and power savings in Sec. II.
Sec. III describes our architectural design choices and opti-
mizations, including an event-driven ISA and a hierarchical
bus design. Sec. III also discusses our use of a hybrid circuit
design, combining two different QDI logic families that fall
at opposite ends of the spectrum of pipeline stage complexity.
Our memory design for ULSNAP, covered in Sec. IV, lever-
ages optimizations to the SRAM architecture, banks, and bit
cells to reduce power consumption. Sec. V details ULSNAP’s
decoupled coprocessors. Finally, we present detailed measured
results of our fully-implemented chip are outlined in Sec. VI.

II. DATA-DRIVEN QDI DESIGN

ULSNAP was built using QDI circuits derived using Martin
synthesis [8]. The overall design specification was expressed
in the Communicating Hardware Processes (CHP) language. A
short summary of CHP can be found in the appendix, but as
an illustrative example we discuss how to express a pipeline
stage implementing some function f . The stage, S, reads a
data token from the input channel, IN , and saves it in local
variable x. The data token representing the computed value of
the function f(x) is then written to the output channel OUT .
In CHP, we represent stage S as follows:

S ≡
*[IN ?x ; OUT !(f (x ))]

The semantics of the CHP shown above indicate that data
must be read from the input channel before the function is
evaluated. Note that there is no timing bound on the arrival



of the input data. The channels over which these hardware
processes communicate and synchronize over are completely
delay insensitive, i.e. the correctness of the implementation
is independent of the delay on any channel. Furthermore, any
CMOS circuits derived from this CHP using Martin’s synthesis
procedure must also follow this data-driven execution model.

Martin’s synthesis procedure decomposes a CHP program
into many fine-grained hardware processes operating in par-
allel. These processes synchronize by communicating tokens
over delay-insensitive channels that are implemented using a
four-phase handshake protocol. A single-bit communication
channel is shown in Fig. 1. Here, the sending process asserts
the data 0 line to represent a false token (1), which the
receiving process acknowledges (2). The channel then resets
(3,4). As can be seen in Fig. 1, sending a true token is quite
similar.
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Fig. 1: Four-Phase Handshake

Such a handshake protocol enables local synchronization
and flow control on a channel-by-channel basis, which in
turn allows designers to optimize for average-case system
performance. In contrast to synchronous systems, which must
define their clock period by the slowest pipeline stage, the per-
formance of an asynchronous system is set by the critical path
of active pipeline stages or functional units. The performance
of an asynchronous circuit is thus largely governed by the
most frequently exercised execution paths, yielding average-
case system performance, rather than worst-case performance
as in synchronous systems.

This average-case performance property allowed us to
optimize rarely used ULSNAP functional units for energy
efficiency and frequently used units for performance without
the additional design constraints of meeting the strict tim-
ing bounds imposed by a global clock. While synchronous
designers can implement complex functions as multi-cycle
units, they must account for the resultant synchronization and
control overheads. Again, in an asynchronous pipeline all
synchronization is handled by the local handshakes—there is
no additional overhead aside from the momentary reduction in
performance when a slow functional unit is exercised.

In addition to being naturally data-driven, QDI circuits
operate correctly in the presence of arbitrary wire or gate
delays, with the exception that the relative delay on certain
wire forks must be bounded. This robustness to delay translates
to robustness to variations in the fabrication process, operating
voltage, and temperature. By construction, ULSNAP offers a
robust computing platform for applications in various environ-
mental conditions.

III. EVENT-DRIVEN ARCHITECTURE

While ULSNAP’s ISA is fairly standard, the execution
model of ULSNAP is event-driven. The initial state of the
ULSNAP core is a wait state. When an event is triggered, e.g.
sensor data arrives, ULSNAP’s Event Handler (EH) references
the Event Register Table (ERT), which maps each type of
event to a program. The EH then initiates the fetch of the
appropriate instruction stream for the program indicated by the
ERT and execution begins. Simultaneous events are handled
by arbitration within the EH. In some cases it is necessary to
trigger an event after some delay. We support this functionality
with a timer coprocessor, which contains three decrementing
counters—allowing us to delay up to three events. At a count of
zero, an event is injected into the event queue and is handled by
the EH/ERT. Specifying a delay time is as simple as initializing
a counter to the appropriate value.

Each program is terminated by a WAIT instruction, return-
ing the processor to the wait state. Thus, ULSNAP is in an
idle state when no events are available for processing. Note that
there is no explicit power- or clock-gating—idle QDI circuits
only consume leakage power in the absence of data.

ULSNAP naturally exploits the data-driven nature of QDI
circuits: during a quiescent phase, the underlying circuitry
simply waits for data to appear. In such an idle state, no switch-
ing activity is present and only leakage power is consumed,
achieving a low power envelope. No power management
controllers, or clock gating techniques are required to support
this behavior. In fact, the WAIT instruction is for architectural
bookkeeping only. Even a stalled program experiences the
benefits of QDI circuits. Only the functional units that can
make forward progress have switching activity—inactive or
stalled units only consume leakage power. It is important to
note that even if the core is in a quiescent state it is ready
to compute data—ULSNAP can “wake up” in only 6.5 ns, as
detailed in Sec. VI.

A. Microarchitecture

ULSNAP and its predecessor, SNAP [6], implement a 16-
bit load-store RISC ISA that supports arithmetic, logic, and
branching operations. We have a gcc-based toolchain that
allows us to compile and execute arbitrary C code on ULSNAP.
Instructions are variable length—one to two 16-bit words. A
system level diagram of the architecture is shown in Fig. 2.
ULSNAP has a more streamlined ISA than SNAP, new I/O and
timer coprocessors, and an improved memory architecture.

The processor state in ULSNAP is composed of 16 general
purpose registers, a PC register, 4 kB of data memory and 4 kB
of instruction memory. The FETCH unit addresses the instruc-
tion memory and forwards instructions to the PREDECODE

unit, which then resolves the opcode, source, and destination
operands from the incoming instruction stream. All fields
of the instruction are passed to the DECODE unit, which
controls operand flow between the register file (RFILE) and
all execution units. DECODE also controls PC update in the
FETCH, and any required absolute/relative PC offsets are
calculated in the BRANCH unit.

In designing the overall microprocessor architecture, we
leverage the average-case performance properties of QDI cir-
cuits (Sec. II) and divide the execution units in ULSNAP into
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Fig. 2: ULSNAP Architecture

fast and slow groups to improve the overall energy efficiency
and performance. Operands and results are transported between
execution units and the register file (RFILE) by four shared
buses: X and Y for register source operands, Z for immediate
values, and W for results. Frequently used execution units
(RFILE, JUMP, BRANCH, LOGIC, ARITH, SHIFT, DMEM)
are connected directly to these operand and result buses. Less-
critical units, i.e. the LFSR, ISTORE, TIMER, and ERT units,
are decoupled from the buses by a single, dedicated access
unit (SLOW) as shown in Fig. 2.

This effectively creates two sets of operand and result
buses, logically and electrically separating the execution units
into fast and slow groups. This has the benefit of significantly
shortening the bus wires and reducing per-bus capacitance. For
example, we estimate that a monolithic X bus would have in
excess of 0.4 pF/wire of total capacitance, accounting for both
coupling and intrinsic capacitance. Instead the capacitance is
split in two segments of 0.17 pF/wire and 0.2 pF/wire for the
slow and fast buses respectively. Access to the slow buses
incurs an extra overhead of 2 gate delays and an intermediary
0.1 pF/wire.

While the total system capacitance is greater than the esti-
mated monolithic bus capacitance, most of the time the slow
units are not accessed. Most operations use only the fast units
and therefore only see 0.2 pF. This increased performance for
common operations offsets the added latency of access to the
slow units and improves overall system performance as we are
improving the average case execution paths. The non-uniform
run times for the execution units poses no synchronization
problem since our self-timed methodology is robust to gate
and wire delays (Sec. II). We quantify the relative difference
between the slow and fast execution paths using a synthetic
benchmark, discussed in Sec. VI.

B. Circuit Implementation

We make use of a hybrid approach at the circuit level,
combining two different QDI logic families: precharge buffer
templates [10] and control-data decomposition. These two
families fall at opposite ends of the spectrum of pipeline stage
complexity. Precharge buffer pipeline templates, such as PCHB
and PCFB, were widely used in the MiniMIPS processor [12].

Each PCHB/PCFB stage typically implements a function of
small enough complexity that it can fit into a single nMOS
pulldown network, as illustrated in Fig. 3. This compilation
style yields high-performance stages with short cycle time.
However, a reasonably complex function must be decomposed
into a pipeline of several PCHB/PCFB stages, resulting in a
long latency for a single data token to travel through the entire
pipeline, though maintaining a high token throughput.
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Fig. 3: ULSNAP Execution Unit Template

Conversely, control-data decomposition, used in the Cal-
tech Asynchronous Microprocessor [11], typically aggregates
computation into a single pipeline stage. While the cycle time
of such a stage is higher than the equivalent PCHB/PCFB
pipeline, the overall latency and energy consumption are less.
Circuits compiled using either of these methods are com-
pletely inter-operable, which allows the designer to tailor the
latency/cycle time of all computational units individually.

We implemented high throughput execution units such
as the ARITH and BRANCH units using the PCHB/PCFB
templates. Fig. 3 depicts an example bit slice of such an
execution unit. Given the small amount of computation these
units perform, the PCHB/PCFB pipeline is at most 2 stages.
This represented a reasonable tradeoff between throughput and
energy/latency for these stages. The fetch loop and predecode
units are compiled using the control-data technique, which
allowed us to minimize the latency of key computations such
as updating the PC.

As described earlier, all the functional units are connected
by operand (X , Y , and Z) and result (W ) buses, each of which
is a shared channel. Channels only provide synchronization
between a single produce and consumer, i.e. they are not
multicast. Some additional hardware is necessary to preserve
the local synchronization handshakes described in Sec. II, so
we wrapped each unit with bus-to-channel (B2C) and channel-
to-bus (C2B) interfaces, which are controlled by the DECODE
unit. As an example, we show the B2C interface for the X bus



and the C2B interface for the W bus in CHP1:

B2C ≡
*[[Readk]; xk↑; Readk ; Lik !(X ?); xk↓]

C2B ≡
*[[Writek]; xk↑; Writek ; W !(Lok?); xk↓]

Fig. 3 shows a PCHB-style functional unit with B2C and
C2B interfaces. The internal PCHB pipeline stage accepts
input on channel Lik and produces outputs on channel Lok .
The Readk and Writek are dataless channels connecting the
DECODE unit to each of the B2C and C2B interfaces. We have
expanded the above CHP descriptions to include an internal
state variable xk , which we discuss later. By interfacing with
the appropriate Readk or Writek channel(s), the decode unit
can guarantee each functional unit mutually exclusive access
to the appropriate operand and result buses.

Unlike all other functional units, the DECODE unit is not
implemented with PCHB/PCFB or control-data style pipeline
templates, as it must provide resource allocation functionality.
To address this specific need we make use of Pipelined Mutual
Exclusion (PME) [9]. In short, by using PME the DECODE

unit synchronizes the fetch and execution units while allowing
the fetch loop to continue execution as the execution unit(s)
processes the previous instruction. This simple optimization
allows us to introduce concurrency with little overhead.

PME can be described as follows: given a set of mutually
exclusive actions (A1, A2, . . . , An) and a command channel
to execute each of those actions (C1, C2, . . . , Cn) we can
guarantee mutual exclusion by implementing the following
CHP program:

pi ≡
*[[Si]; xi↑; Si ; Ai ; xi↓] ‖
*[[Ci ∧ (∀j : j 6= i : ¬xj )]; Si ; Ci]

Note that the above CHP program consists of two separate
programs running in parallel, synchronized by synchronization
channels S1, S2, . . . , Sn. The first process of pi is structurally
identical to that of the B2C and C2B processes, which essen-
tially replace Ai with the appropriate channel actions on the
bus and local channels. In the PME context, the set of state
variables x0, x1, ..., xn behave as a distributed synchronization
lock that reserves resources when executing an action, e.g. the
shared bus channels.

The key feature of PME is how it allows a control process
communicating on the command channels Cj , in this case the
decode logic, to continue execution without waiting for the
commanded action Aj to complete. To illustrate this, let us
assume that the action Ak is desired, and that it is the first
action, i.e. there are no current actions being performed. The
controlling process initiates a channel action on Ck. The wait
condition [Ck ∧ (∀j : j 6= k : ¬xj )] is met, so a channel

action on Sk is initiated. The next wait condition [Sk] is now
met, reserving the shared resource by raising xk. At this time,
the channel actions on Sk and Ck are allowed to complete,
freeing the controlling process to continue work.

1A short summary of CHP can be found in the Appendix

Synchronization happens when the DECODE unit tries to
execute the next action by initiating the appropriate command
channel action on Ci. At this point, the controller must wait for
all locks xj to become false, which in our example will only
occur once Ak has finished. By decoupling the DECODE unit
from function unit action completions, we can begin decoding
an instruction while the previous instruction is being executed,
adding additional concurrency to our execution.

IV. MEMORY ARCHITECTURE

ULSNAP has 8 kB of memory, divided equally into in-
struction and data memory. Both memories are organized into
8 banks as shown in Fig 4. A memory operation is handled
by a SPLIT process that addresses the correct bank using the
least significant bits of the address. The SPLIT process was
compiled using a full buffer reshuffling (PCFB) that allows
multiple outstanding operations—up to one per bank. Read
operations make use of the MERGE process, which selects the
appropriate LocalDataOut bus and ships the result back to the
core. In the case of contiguous memory access or small strides,
we can leverage our ability to have multiple outstanding
memory operations to different banks. In this way the PCFB
reshuffling enables us to reduce performance requirements for
each bank without starving the processor core.
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Fig. 4: SRAM Organization

In order to further reduce static power, the SRAM bit cell
relies on long channel devices to reduce leakage. The total
SRAM leakage is 4 µW for all 8 kB of memory. For reference,
a direct port of the original 180 nm SNAP memory to our more
modern 90 nm process consumes more than 200 µW of leakage
power. Note that this reduction of static power between designs
does not come at the cost of a significant latency increase.
In fact, due to the multiple outstanding requests enabled by
our use of PCFB-reshuffled logic, the average SRAM access
latency of ULSNAP is similar to that of a single cycle of the
microcontroller core.

Each bank is divided into 64 rows and 4 columns, each
of which is 4B (2 words) wide. We chose this configuration
to allow for relatively short bit lines. Shortening the bit lines
reduces switching capacitance and improves noise margins.
Reads from the SRAM are fully QDI, since a read opera-
tion will eventually cause a bit line transition which can be



detected. However, we cannot observe the state of a write
operation by only inspecting the bit lines. In order to provide
a timing bound for a write operation, we build a delay-line-
like structure out of a dummy SRAM column, placed on the
side of the SRAM farthest from the word line drivers. During
a write operation on the SRAM, we perform a read on this
dummy column and wait for its transition to be detected.

The placement of the dummy column at the end of the
word line accounts for the maximum possible delay on the
word line. Furthermore, since this dummy column is identical
in every other respect to actual SRAM columns, the bit
line capacitance charge/discharge timing characteristics are
comparable. The key assumption is that reads take longer than
writes, padding our delay margins. This configuration allows
us to have a dummy delay-replica-loop that approximates the
delays associated with the physical design as well as global
and systemic process variations.

V. COPROCESSORS

A. Timer Coprocessor

Providing efficient hardware support to schedule events
in the future is crucial in order to maximize the amount of
time the ULSNAP core can remain idle, using only leakage
power. To this end, both SNAP and ULSNAP implement timer
coprocessors. The timer coprocessor in ULSNAP is composed
of three 24-bit decrementing counters or “timers.” Each counter
can be independently initialized to a positive integer through
the use of two custom instructions in the ULSNAP ISA:
SCHEDHI and SCHEDLO. These instructions set the most and
least significant bits of each counter, respectively. When a
timer expires, i.e. the counter has been decremented to 0 from
the initial value, the timer coprocessor injects an event into the
Event Handler (EH) event queue.

The original SNAP timer coprocessor was constructed from
a single always-running clock or “tick generator” and three
decrementing counters. Gating the clock signal connection
to each of the counters enabled or disabled each of the
counters, providing three controllable timers. While simple
to implement, this approach did not leverage a key benefit
of asynchronous circuits: intrinsic activity gating. The use of
a continuously running clock is power inefficient, especially
when considering the required distribution to three counters.

ULSNAP makes an improvement to this design by im-
plementing per-timer stoppable clocks for each of the three
counters. This enables per-timer activity gating and reduces
the amount of global wiring. Furthermore, the frequency of
each of the clocks is configurable, allowing for different wait
times and wait time precision. Each of the timers is completely
decoupled from the others providing significant savings in
power consumption.

A detailed picture of each timer can be seen in Fig. 5. Each
timer has a tick generator (Tic Gen) that generates tokens on a
dataless asynchronous channel (dec) at a user-configurable fre-
quency. The dec channel serves as the command to decrement
the counter. The ULSNAP core configures, sets, starts, stops,
and resets each timer via the ctrl channel. As timer commands
can arrive even if the timer is active, especially if the timer is
being reconfigured or reset, the ctrl and dec channels must be
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arbitrated. The resulting ctrla and deca channels are mutually
exclusive. The Ctrl process is responsible for initializing the
decrementing counter, enabling/disabling the Tic Gen process,
as well as detecting when the counter is zero and injecting an
event into the Event Handler.

The decrement counter Fig. 5 is implemented as a serial
pipeline of n-bit decrementer processes (Dec), each of of which
corresponds to a single bit of counter. The Ctrl process can
reset and initialize each unit via a reset channel, which is
connected to each decrementer process. Each Dec process
stores two variables: b, the actual value of the counter bit, and
z, a bookkeeping value which is true if all bits more significant
than the current position are zero. The z value enables two key
features. The first is to minimize the number of exercised Dec
units while decrementing—if all higher order bits are zero,
there is no need to interact with them thus saving power.
Secondly, because each Dec unit has information about itself
as well the higher bits relative to itself, the decrement action is
constant response time, similar to the empty pipeline detection
counter of [15]. If a decrement operation must borrow from a
more significant bit, a channel action takes place on the dec
channel. The next Dec process responds with the appropriate
z value on the is zero channel to keep all the state updated.
As there is no clock, a constant-time asynchronous cycle is of
great importance in a decrementing counter used as a timer.

B. I/O coprocessor

Off-chip communication is handled by an I/O coprocessor.
In comparison to SNAP, ULSNAP’s I/O coprocessor has been
made more modular, enabling easy support of different serial
protocols. Currently, we implement two off-chip serial proto-
cols in the I/O coprocessor: SPI, and a simple asynchronous
serial protocol similar to that shown in Fig. 1. Communication
between the I/O coprocessor and the core is done through an



I/O-mapped register (R15). Whenever an I/O event occurs, an
token is placed into the Event Handler queue and the associated
data is pushed into the input queue of R15.

The SPI unit can only be used in master mode. The
frequency of the SPI clock can be configured through an off-
chip delay line. We support all SPI clock polarity (CPOL) and
phase (CPHA) modes, each of which can be configured by
initializing the SPICFG register in the I/O coprocessor to the
appropriate values. In order to avoid a race condition between
writing to the SPICFG register and the transmit (SPITX)
or receive (SPIRX) registers, the I/O coprocessor inserts an
event into the Event Handler’s event queue whenever the
configuration is changed. The SPI unit can be configured in
transmit, receive or duplex mode. To preserve the event-driven
architectural model, the I/O coprocessor will inject an event
into the Event Handler queue whenever a word is received
through the SPI or serial unit. The throughput of the serial
asynchronous interface of the I/O coprocessor is a 16 bit
serial message every 2 cycles (130 ns). The throughput of the
serial I/O interface is limited by our padframe design and the
capacitance of the PCB traces.

VI. EVALUATION

ULSNAP was fabricated in a commercial 90 nm low-power
CMOS process using a full-custom layout flow. The processor
core alone contains 122k transistors in an area of 0.312mm2.
Including the memories, the transistor count is 592k in an area
of 0.844mm2. All reported power measurements include the
memory power consumption. A photo of the die and develop-
ment board is shown in Fig. 6. ULSNAP is the successor to
the SNAP processor and is fabricated in a more modern 90 nm
process. When appropriate, we make the relevant comparisons
between a simulated 90 nm ULSNAP and our ULSNAP design.

Fig. 6: Die photo and development board

To evaluate the static power consumption, we tested 10
separate ULSNAP chips with empty event queues, i.e. there
was no activity. Since QDI circuits provide automatic fine-
grained activity gating, and our design does not contain any
busy loops or waits in the absence of events or instructions,
leakage power is the only source of power consumption while
idle. Note that this is not an explicit power-gated state and that
there are no explicit hardware power management structures
in ULSNAP—although extending the design to include them
is possible [15]. Fig. 7 presents measured static power con-
sumption from all leakage paths, and also shows how static
power scales with VDD.

To evaluate the processing performance of ULSNAP when
active, we developed micro-benchmarks that stress the proces-
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sor with ALU and memory operations. We measured the per-
formance and energy for our micro-benchmarks while varying
the supply voltage from 1.2V to 0.95V. As ULSNAP has no
clock, we have no direct control over the operating frequency
save for changing VDD. Note that this voltage and “frequency”
scaling is a natural benefit to our use of QDI circuits and
requires no explicit hardware support or design effort.

We report power and performance characteristics in Fig. 8.
Our 90 nm test chip delivers an average of 93MIPS at 1.2V
using 47 pJ per cycle. These numbers are an average of mea-
surements across 17 different ULSNAP cores with standard
deviation 5 MIPS and 0.5 pJ. ULSNAP can be also run in low
energy mode with VDD at 0.95V. In this mode, it only uses
29 pJ per cycle while delivering 47MIPS of integer operations.

Fig. 8 also shows that ULSNAP automatically adjusts to
multiple voltages, allowing it to operate at different points on
the energy-performance curve. A smart application could con-
trol the supply voltage to ULSNAP using a digitally controlled
power source/regulator to optimize the energy-performance
trade off during the lifetime of the sensor mote. While this
approach is possible on synchronous circuits, it requires a
focused design effort to close timing.
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We also include an evaluation of six standard benchmarks
for embedded processors [14] implemented in C and compiled
to our custom ISA with our gcc flow. Performance and energy
measurements at 1.2V for each benchmark are shown in
Table I.

Finally, we developed a micro-benchmark to stress the
timer coprocessor with the main core idle—this is possible



as the three timers are decoupled from the main core. Our
measurements show that each timer can reach average frequen-
cies up to 270MHz while consuming only 0.85 pJ/cycle/timer.
While each timer’s individual frequency is configurable, in our
testing we ran them all at the same frequency. When idle,
ULSNAP’s timer coprocessor uses only 300 nW at nominal
VDD, as compared to 400 µW for the coprocessor in [6].
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Fig. 9: Energy-performance comparison of processors in high
perf. mode

We compared ULSNAP against various state-of-the-art
microcontrollers [1-5] and present the results in Table II.
Fig. 9 and Fig. 10 shows that ULSNAP is Pareto-optimal
in the energy-performance space in both low-energy and
high performance modes relative to all other state-of-the-
art microcontrollers. In other words, ULSNAP is superior in
either performance or energy, if not both metrics, as compared
to other deeply embedded microcontrollers. This is achieved
by a combination of factors: ULSNAP’s event-driven design,
microarchitectural optimizations such as bus partitioning, and
circuit implementation details such as the use of self-timed
circuits. As power and performance numbers are workload
dependent, the numbers reported in Table II and Fig 9 are
for the workload that performs best on each microcontroller.

To measure the effect of splitting the datapath buses into
two fast and slow buses, we performed an experiment that
performs 20×106 consecutive memory writes first to the Data
memory DMEM and then to the Instruction memory ISTORE.
The unit responsible to access DMEM is connected to the fast
buses while the unit responsible to write into the Instruction
memory is connected to the slow buses as shown in Fig 2.
While this is not an exhaustive test of every functional unit
on both buses, the DMEM and ISTORE interfaces are identical
save that they are connected to different buses. Thus this test
is representative of the overheads in accessing the slow bus.

Writes to the data memory completed in 270ms

TABLE I: Benchmarks

Task Perf [tasks/s] E [nJ/task] Input

CRC4 3.19× 10
5 12 16b

Tiny Encryption (TEA) 8.41× 10
3 490 64b(data)

Int Average 6.37× 10
3 652 2kB

MinMax 4.73× 10
3 821 2kB

Search 1.55× 10
3 27 2kB

Serial RX 1.63× 10
3 7 16b
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Fig. 10: Energy-performance comparison of processors in low
energy mode

TABLE II: Comparison of State of the Art Microcontrollers

[1] [2] [3] [4] [5] ULSNAP

Tech [nm] 90 180 65 180 250 90
Datapath [bits] 24 32 32 8 8 16
SRAM [kB] 2000 3 16 0.33 3.12 8

High Performance Mode

Supply [V] 1.2 0.5 1.2 0.9 1.0 1.2
Perf. [MHz] 100 1 82 2 0.5 93
Energy [pJ] 145 37 41 7.5 12 47

Low Energy Mode

Supply [V] 0.4 0.4 0.5 0.5 NA 0.95
Perf. [MHz] 1 0.07 0.5 0.1 NA 47
Energy [pJ] 47 29 10 2.8 NA 29

Reported numbers for High Performance Mode are for minimum cycle time workloads.

Low Energy mode numbers are for workloads which minimize energy.

(15 ns/access), while writes to the instruction memory were
completed in 526ms (29 ns/access). This is consistent with
our expectations since the ISTORE interface uses the slow
buses while the DMEM interface is connected to the fast buses
as shown in Fig. 2. The performance disparity between DMEM

and ISTORE is a good indicator that bus splitting improves the
performance of commonly executed instructions at the expense
of rarely used instructions.

The time between event arrival and ULSNAP reacting, i.e.
waking up from idle, is 6.5 ns. Upon receiving an external
message or a timer event, full control is transferred to the core
from the Event Handler within 14.8 ns. The first instruction
starts execution within 40 ns. Note that these latencies are from
SPICE simulation of extracted layout with full parasitics, since
they are not directly observable on our test setup.

Fig. 11 shows the power envelope of an encryption bench-
mark (TEA) that is representative of the benefits of ULSNAP’s
event-driven design. This benchmark receives (Rx) 16 kB data
from the serial interface, encrypts the data, and transmits (Tx)
the result over the serial interface. During the Tx and Rx phases
the power consumption is only 22 µW. When all the data is
available, encryption runs at full throughput (93MHz). After
transmission it naturally goes into a deep sleep mode and uses
only 9 µW. The average power consumption of ULSNAP on
this benchmark is only 98 µW.

Note that the TEA benchmark is not annotated with power
or sleep directives. In fact, the programmer need not explicitly
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Fig. 11: Power profile of an encryption benchmark (TEA) [14]

define a sleep mode at all. The trace in Fig. 11 illustrates that
ULSNAP will automatically scale power usage with activity.

VII. CONCLUSION

ULSNAP’s core achieves state-of-the-art energy and per-
formance thanks to optimizations at the architecture, mi-
croarchitecture, and circuit levels. Its event-driven architecture
matches the low power, bursty performance requirements of
sensor network applications.

Microarchitectural choices such as our hierarchical
slow/fast bus design further reduce power and improve average
case performance. We maximized the energy efficiency of our
memory by banking each memory module and decoupling the
buses, activating only accessed banks. Furthermore, we al-
lowed multiple outstanding memory operations by reshuffling
the memory access modules. We chose long-channel memory
bit cells to minimize power consumption of idle memory
locations. Additionally, ULSNAP’s timer and I/O coprocessors
were optimized to minimize the power in the quiescent state
by, among other things, decoupling their control from the core.

Finally, our self-timed circuits are event-driven without any
additional control overheads. QDI circuits minimize power
consumption during idle periods and automatically adjust to
variations in voltage and other environmental factors.

We have presented measured results for ULSNAP: a fully
implemented ultra-low power event-driven microcontroller of-
fering high performance within a low energy envelope. With
respect to state-of-the-art processors in its class, ULSNAP of-
fers Pareto-optimal operating points in the energy-performance
space. It achieves 93MIPS at 1.2V and 47MIPS at 0.95V
while using 47 pJ and 29 pJ per cycle, respectively.

ULSNAP is a good fit for sensor network motes with
bursty, computationally intensive workloads. It dynamically
scales its throughput to maintain the lowest possible power
envelope at all times without any programmer effort.

APPENDIX

The CHP notation we use is based on Hoare’s CSP [7]. A
full description of CHP and its semantics can be found in [8].

What follows is a short and informal description.

• Assignment: a := b. a↑ is shorthand for a := true ,
and a↓ for a := false .

• Selection: [G1 → S1 [] ... [] Gn → Sn]. Gi

are boolean expressions (guards) and Si are program
parts. Execution stalls until a Gi is true, at which point
Si is executed. [G] is short-hand for [G → skip],
which stalls until G = true.

• Repetition: *[G1 → S1 [] ... [] Gn → Sn]. Choose
Gi = true, execute Si. Repeat until no Gi is true.
*[S] is short-hand for *[true → S].

• Send: X !e . Evalute expression e and send result over
channel X .

• Receive: Y ?v . Receive value over channel Y and
store variable v .

• Probe: X is a boolean which is true if and only if a
communication over channel X can complete without
suspending.

• Sequential Composition: S ;T

• Parallel Composition: S ‖ T or S ,T .

• Simultaneous Composition: S • T both S and T are
communication actions and they complete simultane-
ously.
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