
IEEE Copyright Notice
c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted to be Published in: Proceedings of the 21st International Symposium on Quality Electronic
Design (ISQED 2020), Mar. 25-26, 2020, Santa Clara, CA.

ar
X

iv
:2

00
3.

13
16

4v
1 

 [
cs

.C
R

] 
 2

9 
M

ar
 2

02
0



Analytical Estimation and Localization of Hardware
Trojan Vulnerability in RTL Designs

Sheikh Ariful Islam, Love Kumar Sah, and Srinivas Katkoori
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

Email: {sheikhariful, lsah, katkoori}@mail.usf.edu

Abstract—Offshoring the proprietary Intellectual property (IP)
has recently increased the threat of malicious logic insertion in
the form of Hardware Trojan (HT). A potential and stealthy
HT is triggered with nets that switch rarely during regular
circuit operation. Detection of HT in the host design requires
exhaustive simulation to activate the HT during pre- and post-
silicon. Although the nets with variable switching probability less
than a threshold are primarily chosen as a good candidate for
Trojan triggering, there is no systematic fine-grained approach
for earlier detection of rare nets from word-level measures of
input signals. In this paper, we propose a high-level technique
to estimate the nets with the rare activity of arithmetic modules
from word-level information. Specifically, for a given module, we
use the knowledge of internal construction of the architecture
to detect “low activity” and “local regions” without resorting to
expensive RTL and other low-level simulations. The presented
heuristic method abstracts away from the low-level details of
design and describes the rare activity of bits (modules) in a word
(architecture) as a function of signal statistics. The resulting quick
estimates of nets in rare regions allows a designer to develop a
compact test generation algorithm without the knowledge of the
bit-level activity. We determine the effect of different positions
of the breakpoint in the input signal to calculate the accuracy
of the approach. We conduct a set of experiments on six adder
architectures and four multiplier architectures. The average error
to calculate the rare nets between RTL simulation and estimated
values are below 2% in all architectures.

I. INTRODUCTION

The use of fabrication equipment in offshore for manufactur-
ing and testing Integrated Circuits (IC) has become common in
the semiconductor design eco-system. In the long electronics
supply chain with untrusted entities, IC has become prone
to malicious modifications. Various malicious manipulations
(insertions or deletions) exist that modify part of the design
so that an attacker objective is achieved. Such covert ma-
nipulations, known as Hardware Trojan (HT), may affect the
system by leaking the secret information, disabling parts of
the system, weakening performance with early failures. HT is
normally activated during a small time window and infrequent
time of a circuit operation with low efforts. Since HT is
typically connected to the rare switching nets of design, the
time required to activate the triggering mechanism of HT can
be significant. Various detection approaches exist that attempt
to finding the minimal variations in power and timing due to
the presence of HT. However, variants of HT concerning their
physical properties, activation, and action characteristics make
the current HT detection approaches non-unified [1].

To be stealthy as possible, an attacker utilizes rare nets in
design to insert HT without any functional modification(s).

Further, the size of the HT is adjusted (3-4x smaller than
original design) accordingly so that any possible change in
design parameter (timing, power, area) is insignificant during
post-silicon detection technique (e.g. side-channel analysis,
SCA) [2]. However, measurements during SCA are susceptible
to pessimistic manufacturing variations. Several works studied
how to improve the resolution of path-based timing analysis
with additional test structure [3], [4], on-chip time-to-digital
converter [5]. On the contrary, logic-based detection requires
switching activity analysis of the internal nets that facilitate
a non-invasive technique to investigate the possible HT in a
design. This analysis acts as the de-facto for improved test
vector generation to detect HT during pre-silicon [6], [7] and
post-silicon [8], [9] using functional testing and verification.

Moreover, the switching activity of the design (both HT-
free and HT-affected) is input vector dependent which can
be generated randomly or following spatial correlation [10].
Further, functional testing is independent of process parameters
that make it suitable for the attacker to simulate and find out
the rare switching nets during pre-silicon. As the switching
activity of the nets can vary within a wide range of values,
an intelligent attacker can find a way of combining the rare
nets with variable toggle rate to trigger HT. In both cases,
the analysis of switching activity file regarding input vector
occurs before HT insertion or detection. Such activity analysis
also avoids the expensive and destructive de-packaging and de-
layering of the encapsulated IC.

In this paper, we propose a new approach for estimating
nets that switch rarely from input signal word-level statistics in
a given Register Transfer Level (RTL) description. High-level
estimation of rare nets provides fast and efficient localization
of internal signals within an arithmetic module that can be re-
sponsible for hard-to-detect HT activation. Given a technology-
independent RTL description of the arithmetic module, the
proposed technique will guide the designer (defender) to locate
rare transition activity nets analytically which is dependent
on word-length and its’ statistics. This information can be
used for efficient segmentation of a module into smaller sub-
module(s) before logic synthesis. We develop this characteriza-
tion technique based on Dual-Bit-Type (DBT) model [11] of the
datapath components (adder and multiplier). The model breaks
the component word-length into three regions of continuous
bits: LSB, linear, and MSB regions. Highly correlated bits are
found in MSB regions that exhibit non-random behavior and
low transition activity. Thus, transition activity at MSB node(s)



of the primitives (adder, multiplier, register, etc.), has been used
to provide rare activity estimates of the architecture.

An attacker normally chooses nets with very rare internal
logic conditions (low controllability and observability) to trig-
ger HT. For efficient activation of HT, attacker considers the
region(s) with low bit-level activity to avoid accidental trigger-
ing. Analytically, with known delay and statistical distribution
of the architecture, an IP integrator can distinguish between
competing architectures in terms of the lower rarity nets from
word-level characteristics. To the best of our knowledge, the
proposed approach is first to identify modules whose models
of rare activity are characterized by statistics of input word-
lengths. In summary, the novelty and contributions of the paper
are as follows:
• high level modeling of rare activity nets and location of

these nets in the arithmetic module.
• application of word-level statistics (mean, variance, and

correlation coefficient) to estimate rare nets and hence
complementing expensive simulation.

• technology independent, closed-form analytical techniques
to estimate rare nets in MSB region(s).

The rest of the paper is organized as follows. Section II
provides background on HT detection techniques based on
switching activity analysis. Section III describes the attack
model, theoretical background and framework to estimate rare
nets. Section IV reports the experimental results. Finally, sec-
tion V draws the conclusion and future work.

II. BACKGROUND AND RELATED WORK

We briefly summarize the methods to detect (and possibly
remove) malicious functionality at behavioral, RT-, and gate-
level design. In particular, we review only the compact test
vector generation technique to identify rare nodes during func-
tional testing under specific assumptions and search space. A
comprehensive overview of HT diversity is available in [12].

Although the HT triggering mechanisms are non-trivial, we
classify the test pattern generation methods into two broad
categories, namely, statistical- and probabilistic-modeling. With
statistical modeling, one can simulate the circuit under ran-
domly generated test patterns and differentiate rare nets from
the rest based on an arbitrary triggering threshold. Statistical
technique such as MERO [13] prunes the test vector space
functional simulation to improve ‘Trojan Coverage’ and ‘Trig-
ger Coverage’. Genetic algorithm and Boolean Satisfiability
based ‘Trojan sensitization’ have been proposed in [14] to
improve the detection sensitivity. An automatic and compact
test vector generation algorithm to aid in the side-channel
analysis is proposed in [15], [16]. An improved methodology
to increase bit-level transition activity is proposed in [17].
These approaches did not take data correlation (both spatial
and temporal) into account and utilized random vector-based
simulation. However, the probabilistic model of dependencies
exists for input data sequence that may appear at the re-
convergent input(s) in a design [18], [19].

Probabilistic modeling approaches propagate the switching
probability of primary inputs to estimate the internal switching
activities in design. Characteristic polynomial based signature
of the Circuit Under Test (CUT) is proposed in [20]. With the

HT-free Possible-HT

Trusted HT-free Stages Untrusted HT-embedded Stages

Program Specification 
(C, C++, SystemC)

RTL Description
(Verilog, VHDL)

Gate-level Netlist
Physical Layout

(GDSII)
Fabrication, Assembling, 

Packaging and Testing
Sign-off

HLS GLS PS

W
o

rd
-l

ev
el

 
St

a
ti

st
ic

s HLS = High-level synthesis
GLS = Gate-level synthesis

PS = Physical synthesis

Fig. 1: Attack model for HT vulnerability analysis in RTL
designs. Trojan symbol is reproduced from [24].
help of 2-to-1 MUXs, the switching activity of rare nets has
been improved considering only one form of transition (1→ 0
or 0→ 1) [21].

Statistical signal correlation-based HT detection techniques
avoid the triggering state and payload sensitization at the
output. In [22], the authors presented an information-theoretic
approach to simulation data to detect HT. Cross-correlation
based test vector generation technique for the hard-to-reach
region in design is proposed in [23].

Unlike previous studies, our work (a) focuses on word-level
statistical behavior to estimate rare nets, (b) provides an early-
on estimation framework without RTL and low-level simula-
tion, and (c) requires no knowledge of internal implementation
of the architecture.

III. PROPOSED APPROACH AND IMPLEMENTATION

A. Threat Model

Traditional HT attacks deal with an agent who maliciously
inserts some of her chosen logic to ensure that the additional
circuitry will be activated during rare conditions. In our threat
model, we assume two parties, a benign designer, who develops
the RTL model using trustworthy High-Level Synthesis (HLS)
tool and an attacker to whom the designer ports the RTL design
for system integration during pre-silicon or from whom the
end-user accepts the design as a packaged product during post-
silicon (Fig. 1). We also assume the attacker has access to a
subset of IP models drawn from the same distributor to make
it harder to discriminate between malicious and benign IP. As
part of the attacker objective, they control exactly the triggering
logic and location of HT that have minimal impact on global
parameters (power, performance, and area). Another goal of the
attacker is to ensure the higher misclassification rate against the
measures to detect HT. We can broadly classify attacker goal in
two categories (targeted and non-targeted). In a targeted attack
setting, h/she may disable the device on-field or degrade the
reliability earlier than Mean Time to failure (MTF). During a
non-targeted attack, the adversary may aim to leak sensitive
information as a backdoor instead of ‘visible’ consequences.

We aim to explore the possibility and location of HT attack in
an RTL IP using its model parameters. Given a high-level IP/IC
description, our approach checks two critical properties. First,
the designer can locate whether a module in IP, in isolation,
generates more rare activity nets than others given a triggering
threshold. Second, a compact test pattern generation algorithm
can be developed to identify any malicious updates. We also
find that the proposed analytical approach can be complemented
with an expensive RTL simulation to provide a qualitative
notion of stealthy HT behavior.

B. Theoretical modeling for transition activity estimation

Let XN
t be an N -bit signal in the time interval (−T2 ,

T
2 ] for

a single-input module. Given normal distribution of input data



Fig. 2: Transition activity of a signal bits for white Gaussian
process with 16-bit two’s complement form and varying tem-
poral correlation (reproduced from [11]).

environment, the signal probability for the i-th bit, Ni of XN
t

to be evaluated to logic-1 can be calculated as follows [25]:

pi = Pr(Ni = 1) =
∑
∀x∈χi

1

σ
√

2π
e−(x−µ)

2/2σ2

(1)

where χi is the set of all elements in χ that the signal XN
t

can assume. The value pi at any net can be derived, given
word-level statistical parameters such as mean (µX ), variance
(σ2
X ), and spatio-temporal autocorrelation (ρX ). Therefore,

temporally uncorrelated input data leads to an error in the signal
activity estimation of internal nets. Mean, variance, and spatio-
temporal autocorrelation of XN

t can be expressed as

µX = E[XN
t ]. (2)

σX =
√
E[X2

t ]− E2[Xt] =
√
E[X2

t ]− µ2 = pi − p2i (3)

ρ =
E(XN

t , X
N
t−1)− µ2

X

σ2
X

=
cov(XN

t−1, X
N
t )

var(XN )
(4)

The normalized transition activity (toggle), α of the XN
t over

all bit positions is given by

α =

N−1∑
i=0

P ({XN (t− T )X̄N (t)} ∪ {X̄N (t− T )XN (t)})

= 2

N−1∑
i=0

pi(1− pi) =

N−1∑
i=0

Ni (5)

where XN (t−T )X̄N (t) denotes a logic-1 to logic-0 transi-
tion, X̄N (t− T )XN (t) denotes a logic-0 to logic-1 transition,
and T is the clock period. We can also define α from [26] to
input data for exact synthesis of single-bit signal in terms of ρ
as follows:

α = 2

N−1∑
i=0

pi(1− pi)(1− ρi) (6)

For uncorrelated data (ρi = 0), Eqn. 6 reduces to Eqn. 5. For
a given zero-mean Gaussian signal, the signal probability (pi)

at the ith bit position is 0.5 in 2’s complement representation.
Hence, bit-level switching activity in Eqn. 6 can be rewritten
as follows:

αi = 0.5(1− ρi) (7)

An accurate estimation of switching activity (independent of
encoding of the signal) in the sign-bit, αmsb has been proposed
in [26] in terms of Eqn. 4:

αmsb =
1

π
cos−1(ρ) (8)

From Eqns. 7 and 8, we can determine the correlation of
sign-bit ρmsb in terms of word-level correlation (ρ) from the
following expression:

ρmsb =
2

π
sin−1(ρ) (9)

Calculation of BP0 and BP1: Using a computationally
inexpensive method, we can divide a signal in 2’s complement
representation into three different regions (LSB, linear, and
MSB) based on transition activity. We can see from Fig. 2
that the temporal correlation (ρ) from the LSB up to a first
breakpoint BP0 is almost zero and hence we observe the
maximum switching activity in LSB region (0 ≤ i ≤ BP0). The
uncorrelated bits in LSB region exhibit random switching where
both pi and αi are equal to 1

2 . We can see a linear increase in
ρ from BP0 to sign bit (MSB) and lower switching activity in
the sign region. In the linear region (BP0 ≤ i ≤ BP1), we see
an increasing spatial correlation and correspondingly, decrease
in the switching activity. We can compute the first breakpoint,
BP0 as follows from [27]:

BP0 = blog2[2σ(1− ρmsb)]e (10)

where bxe is the rounding operation. We multiply by two to
include both positive and negative region (-2N−1 ≤ XN

t ≤
2N−1 - 1). Similarly, we can define BP1 as follows from [27]:

BP1 = blog2[(Xt
N
max −Xt

N
min)

√
(1− ρmsb)]e

= blog2[(µx + 3σx − µx + 3σx)
√

(1− ρmsb)]e
= blog2[6σx

√
(1− ρmsb)]e

(11)

Hence, with the knowledge of BP0 and BP1, we can express
the correlation coefficient values as follows [25]:

ρi =


0, (i < BP0)
ρBP1

(i−BP0+1)

BP1−BP0
, (BP0 ≤ i ≤ BP1 − 1)

ρmsb, (i ≥ BP1 − 1)

(12)

We can also approximate the switching activity model of ith

bit using Eqn. 12 as follows [28]:

αi =


2p1i (1− p1i ), (i ≤ BP0)
0.5 + (αmsb − 0.5) i−BP0

BP1−BP0
, (BP0 < i < BP1)

αmsb, (i ≥ BP1)
(13)



MATLAB Script
Architecture

(Type, # Input, 
Bit-width, 

Distribution)Correlated Input 
Stimuli

Functional 
Simulation

Estimate word-level 
statistics

Calculate BP1 
region

Calculate Bit-level 
statistics

Triggering 
Threshold, Q 

Rare net (Rsim) Rare net (Rest)

Calculate Error (%)

Simulation-based 
Approach

Analytical Approach

Fig. 3: Framework for rare nets estimation and error calculation
between simulation and analytical approach.

C. Framework for rare activity nets estimation

As we can see from Fig. 2, the highly correlated bit(s) in
the MSB region of a word lead to minimal switching. As
such, the MSB region(s) manifest themselves as a possible
location of HT. Alternatively, if higher toggle activity of some
internal nets happens in rare condition, one can focus on LSB
region of a signal word. The length of both regions can be
demonstrated from word-level models of macro-blocks. The
high-level estimation flow to identifying and localizing Trojan
vulnerable blocks using model parameters is shown in Fig.
3. It contains three steps, namely, modeling, estimation, and
simulation phase.

Modeling phase: We assume the signal shows Gaussian
distribution with non-zero mean and is in two’s complement
representation. The modeling parameters selected are indepen-
dent of the distribution type and signal representation. On
a higher level of abstraction, we can model the word-level
characteristics as follows:

(µ, σ, ρ)A = f(XN
t−1, X

N
t , BW ) (14)

where XN
t−1 and XN

t refer to the signal into consecutive
timestamp and BW being the input bit-width of the signal. We
can determine µA and σA from BW of the signal using Eqns.
2 and 3. Using these characteristics data, we can determine the
bit-level statistics of any RTL design. The bit-level character-
istics can be used to derive an exact estimation of rare nets
that are captured during input dependent functional simulation
of the design. In this paper, we restrict our analyses to word-
level information and it provides us architecture- and pattern-
independent tight upper bound estimation of the nets that
fall under particular triggering probability. In some cases, the
accuracy loss can be significant which is architecture-dependent
but it can be significantly improved by considering bit-level
statistics at the cost of characterization time. Nevertheless, our
word-level modeling approach can be used for architecture’s
characterization of HT vulnerability in less than a minute. We
present a heuristic to intelligently select sub-module(s) that
have shown good accuracy in practice.

Estimation phase: Enumerating all possible input patterns
(4n patterns for n primary inputs) for a large circuit are not
helpful to guide us the Trojan location and triggering logic.
During the simulation-based approach, an attacker considers

the sign transition(s) at the internal nodes of a module which
are input pattern dependent and drawn from a particular dis-
tribution. It also turns out that the inexact delay model during
simulation can lead to inaccurate transition probability at circuit
nodes.

On the contrary, the statistical properties of the possible
input stream in a design can lead to better search technique
of Trojan location. Moreover, the statistical estimation can
ignore the delay influences. Although the assumption made
by the attacker on the signal distribution cannot be assured
during pre-silicon, word-level statistical information required
for breakpoint estimation is independent of the distribution
type. To reduce the complexity and higher flexibility in the
estimation, we focus on calculating breakpoints (BP0 and BP1)
from statistical properties. Similar to Eqn. 14, we can determine
a functional relationship between breakpoints, signal statistics,
and architecture bit-width as follows:

(BP0, BP1)arc = f(XN
t−1, X

N
t , BW ) (15)

where (XN
t−1, X

N
t ) and BW will provide the required ρmsb

to determine breakpoints from Eqns. 10 and 11. Given an
RTL datapath design, we divide the circuit into a set of sub-
components where each sub-component is a bit-slice design.
Considering each sub-component separately, we can find total
nets from the structural description of the architecture. Using
Eqn. 15 for breakpoints estimation, first, we find the sub-
module(s) that lie from BP1 position to the largest bit position
required to represent the signal and then the nets within these
sub-modules to calculate total rare triggering nets. Let us
assume there are m modules in the architecture of type i,
1 ≤ i ≤ m and each type has n nets. If the set of modules that
can be responsible for providing rare nets to Trojan triggering
are j (1 ≤ j ≤ i), the following equation accounts all these
rare nets:

Trare = R(m, i, j) =
∑
j=1

j ∗mj (16)

Clearly, the module having least rare nets can be found as:

T leastrare = min
i∈m

R(m, i, j) (17)

Simulation phase: To investigate the model accuracy, we
perform gate-level simulation and measure the difference of
nets between estimated and simulated value. For the simulation,
we generate the correlated input stream according to statistics
of the above modeling and estimation phase. For each n-
bit arithmetic architecture, we generate different word-level
statistics (µ, σ, ρ) and calculate the breakpoints (BP0, BP1).
Depending on the statistics, the signal value can range from
(µx − 3σx) to (µx + 3σx). For each choice of the breakpoint
(BP1), we perform the simulation to count the nets whose
signal transitions fall under particular triggering probability. For
architecture with two operands and (un)equal bit-width, we can
determine the upper and lower bound in the LSB and MSB
region as follows [29]:

BPmin0 = min(ABP0
, BBP0

)

BPmax1 = max(ABP1
, BBP1

)
(18)



4, 1-bit FA4, 1-bit FA4, 1-bit FA4, 1-bit FA

FAFAFAFA

a0a1a2a3 b0b1b2b3

c1c2c3c4

s3 s2 s1 s0

cin

cin
c4c8c12c16

s3-s0s7-s4s11-s8s15-s12

BP0BP1 LinearS*

S*= Sign bit
LSBMSB

Fig. 4: Decomposition of 16-bit Ripple-Carry Adder into three
regions according to DBT [11].

To assess the model, we use the following equations to
estimate absolute error, e and mean square error, ē :

e = |Psim − Pest
Psim

|

ē =
1

n

n∑
i=1

ei

(19)

where n denotes the number of triggering threshold bound
in a particular BP1 position, Psim and Pest refer the simulated
and estimated rare triggering nets.

Motivational example to estimate rare activity nets: A
16-bit Ripple-Carry Adder (RCA) is presented in Fig. 4 where
we decompose the adder into four blocks. Each block contains
four, 1-bit Full Adder (FA). Let us assume, given the statistics in
terms of input operands, we calculate the breakpoints position
as BP0 (0th to 3rd), linear (4th to 7th), and BP1 (8th to 15th).
As mentioned earlier, the rarest activity will be generated in the
BP1 region. Hence, HT vulnerable region can be modeled as
the location of FA from 15th- to 8th-bit position and the sum
of nets in these FA’s in 3rd and 4th block constitute the upper
bound of rare activity nets for ripple-carry adder. However, in
the case, where the operands have different bit-width, we see
two distinct scenarios. In one case, BBP1 is contained in ABP0

when (ABP0 > BBP0) and vice-versa when (ABP0 < BBP0).
In both cases, we use Eqn. 18 to calculate the breakpoints. For
triggering threshold < 10−5, we found 5 nets that belong to
FA13, FA14 and FA15. After the module placement shown in
Fig. 5, we also found the geometric positions of these cells are
significantly close enough to localize HT triggering signal that
would increase HT impact. Hence, the word-level estimation
clearly indicates that the majority of rare transitions happen in
BP1 position.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our word-level
statistics based on rare activity net modeling approach. We have
evaluated the accuracy of the approach on six adder and four
multiplier architectures each having width of 8- and 16-bit. For
each architecture, we assume two operands are available with
equal bit-width. All architectures are taken from OpenCores
(cite).

First, we generate correlated input vectors for different BP1

positions using an in-house MATLAB script. Then we perform
RTL simulation using Synopsys VCS-MX on each architecture
for 10000 input vectors and find out the nets having variable
toggle probability in between 0 to 10−6. The total number of
rare nets within a toggle threshold by the analytical approach of
a given architecture are compared to those from the simulations
and accordingly, the average errors are computed.

Fig. 5: Floor-planning and placement of 16-bit RCA with leaf
cells highlighted as the location of rare triggering nets.

Analytical estimation error of adder architectures: We
have considered Ripple Carry (RCA), Carry Lookahead (CLA),
Carry Skip (CKA), Carry Select (CSA), Kogge-Stone (KSA),
and Hybrid Adder (HA). Fig. 6 (a,b) shows error (%) vs. BP1

positions for adders of 8- and 16-bit for correlation (ρ = 0.99).
Reference values of rare nets are obtained from Switching Ac-
tivity Interchange Format (SAIF) file after the RTL simulation.
It is evident from the figure that as BP1 moves towards sign bit
region, analytical estimation is close to functional simulation.
One important source of error is when BP1 is close to LSB
region. This is because we see a limited range of random
activity and simulation also considers the glitch activities (e.g.
0→ X → 1 or 1→ X → 0) as a transition. An attacker may
want to localize the triggering signals within a sub-module to
evade SCA. Otherwise, incorporating rare nets from different
sub-modules that are placed far away in architecture would
increase detection sensitivity.

From Table I, we see CLA shows average error less than
0.4% while that due to CKA, the average error is around 1.35%.
This is because, in CLA, we have unrolled carry equations
to build carry network of given bit-width. Although the delay
increases due to each additional level of lookahead, however,
we can closely approximate the rare nets as we decompose the
carry equations to basic gates. In CKA, we have skip paths for
each 4-bit adder blocks. Although we have the shortest carry
propagation time through the skip blocks, we even include the
nets of the skip logic when the bit-width from BP1 position to
sign-bit is not multiple of 4. Though it simplifies the estimation,
it implies an effect on error calculation.

Analytical estimation error on multiplier architectures:
Similar to adder architecture, we consider four multiplier archi-
tectures (array, vedic, dadda, booth) of two different bit-widths
(8- and 16-bit). We consider the correlation value (ρ) of the
signal to be 0.99 and correspondingly we estimate the BP1

position. For both bit-widths, we see booth multiplier shows
least error (0.27% for 8bit and 0.22% for 16bit) whereas vedic



Analytical estimation error of rare activity nets for 8-bit Adder Architectures (corr = 0.99)

4th 5th 6th 7th

Input bit index (BP
1
 position)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

o
r 

(%
)

RCA CLA CKA CSA KSA HA

Analytical estimation error of rare activity nets for 16-bit Adder Architectures (corr = 0.99)

3rd 5th 7th 9th 11th 13th 15th

Input bit index (BP
1
 position)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
rr

o
r 

(%
)

RCA CLA CKA CSA KSA HA

Analytical estimation error of rare activity nets for 8-bit Multiplier Architectures (corr = 0.99)

3
rd

4
th

5
th

6
th

7
th

Input bit index (BP
1
 position)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

o
r 

(%
)

Array Vedic Dadda Booth

Analytical estimation error of rare activity nets for 16-bit Multiplier Architectures (corr = 0.99)

3
rd

5
th

7
th

9
th

11
th

13
th

15
th

Input bit index (BP
1
 position)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

o
r 

(%
)

Array Vedic Dadda Booth

(a) (b) (c) (d)

Fig. 6: Comparison of accuracy estimation in terms of rare nets for adder and multiplier architectures.
TABLE I: Average estimation error (%) for different BP1

positions in a given architecture and bit-width.

Arch. 8-bit 16-bit

Adder

RCA 0.95 0.55
CLA 0.56 0.35
CKA 1.35 0.63
CSA 0.77 0.60
KSA 0.69 0.51
HA 0.64 0.29

Multiplier

Array 0.81 0.78
Vedic 0.83 0.80
Dadda 0.57 0.55
Booth 0.27 0.22

multiplier shows the highest error (0.83% for 8bit and 0.80%
for 16bit). For booth multiplier, the implementation is fully
parallel and carry-free, hence the estimation closely matches
with the simulation. For vedic multiplier, we can determine
the partial products in parallel but it requires more than two
additional levels of adders (e.g. CLA). These additional levels
would sufficiently relate to the error (< 1%) in vedic multiplier.

V. CONCLUSION

In this paper, we present macro-models to estimate rare
nets in adder and multiplier architectures using word-level
input statistics. We have shown that input statistics can closely
approximate the rare triggering probabilities of internal nets
in design and locate them as well. Such modeling techniques
of high-level rare activity nets can reduce the Trojan detection
time and complement the expensive low-level simulations. We
analyzed both architectures of different bit-widths and found
the error within 1-2%. In the future, we plan to find both
combinational and sequential Trojan triggering logic from the
modeling-based approach with low false positive/negative rates.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar. A Survey of Hardware Trojan
Taxonomy and Detection. IEEE Design Test of Computers, 27(1):10–
25, Jan 2010.

[2] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan
Detection using IC Fingerprinting. In 2007 IEEE Symposium on Security
and Privacy (SP ’07), pages 296–310, May 2007.

[3] B. Cha and S. K. Gupta. Efficient Trojan Detection via Calibration of
Process Variations. In 2012 IEEE 21st Asian Test Symposium, pages
355–361, Nov 2012.

[4] C. Lamech and J. Plusquellic. Trojan detection based on delay variations
measured using a high-precision, low-overhead embedded test structure.
In 2012 IEEE HOST, pages 75–82, June 2012.

[5] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib. On
detecting delay anomalies introduced by hardware Trojans. In 2016
IEEE/ACM ICCAD, pages 1–7, Nov 2016.

[6] M. Banga, M. Chandrasekar, L. Fang, and M. S. Hsiao. Guided Test
Generation for Isolation and Detection of Embedded Trojans in Ics. In
Proceedings of the 18th ACM GLSVLSI, pages 363–366, New York, NY,
USA, 2008. ACM.

[7] S. Dupuis, G. D. Natale, Marie-Lise Flottes, and B. Rouzeyre. Identi-
fication of Hardware Trojans triggering signals. In First Workshop on
Trustworthy Manufacturing and Utilization of Secure Devices, 2013.

[8] N. Lesperance, S. Kulkarni, and K.T. Cheng. Hardware Trojan detection
using exhaustive testing of k-bit subspaces. In The 20th ASPDAC, pages
755–760, Jan 2015.

[9] H. Salmani and M. Tehranipoor. Layout-aware switching activity local-
ization to enhance hardware Trojan detection. IEEE TIFS, 7(1):76–87,
2012.

[10] S. A. Islam, L. K. Sah, and S. Katkoori. Empirical Word-Level Analysis
of Arithmetic Module Architectures for Hardware Trojan Susceptibility.
In 2018 AsianHOST, pages 109–114, Dec 2018.

[11] P. E. Landman and J. M. Rabaey. Architectural power analysis: The dual
bit type method. IEEE TVLSI, 3(2):173–187, June 1995.

[12] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor.
Hardware Trojans: Lessons Learned After One Decade of Research. ACM
TODAES, 22(1):6:1–6:23, May 2016.

[13] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia.
MERO: A Statistical Approach for Hardware Trojan Detection. In
CHES 2009, pages 396–410, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[14] S. Saha, R. S. Chakraborty, S. S. Nuthakki, Anshul, and D. Mukhopad-
hyay. Improved Test Pattern Generation for Hardware Trojan Detection
using Genetic Algorithm and Boolean Satisfiability. Cryptology ePrint
Archive, Report 2015/1252, 2015.

[15] J. Cruz, Y. Huang, P. Mishra, and S. Bhunia. An automated configurable
Trojan insertion framework for dynamic trust benchmarks. In 2018 DATE,
pages 1598–1603, March 2018.

[16] Y. Huang, S. Bhunia, and P. Mishra. MERS: Statistical Test Generation
for Side-Channel Analysis Based Trojan Detection. In Proceedings of the
2016 ACM CCS, CCS ’16, pages 130–141, New York, NY, USA, 2016.
ACM.

[17] H. Li and Q. Liu. Hardware Trojan detection acceleration based on word-
level statistical properties management. In 2014 FPT, pages 153–160, Dec
2014.

[18] M. G. Xakellis and F. N. Najm. Statistical Estimation of the Switching
Activity in Digital Circuitry. In 31st DAC, pages 728–733, June 1994.

[19] R. Marculescu, D. Marculescu, and M. Pedram. Probabilistic modeling of
dependencies during switching activity analysis. IEEE TCAD, 17(2):73–
83, Feb 1998.

[20] S. Jha and S. K. Jha. Randomization Based Probabilistic Approach to
Detect Trojan Circuits. In 2008 11th IEEE High Assurance Systems
Engineering Symposium, pages 117–124, Dec 2008.

[21] B. Zhou, W. Zhang, S. Thambipillai, and J. K. J. Teo. A low cost
acceleration method for hardware trojan detection based on fan-out cone
analysis. In 2014 CODES+ISSS, pages 1–10, Oct 2014.

[22] B. Çakir and S. Malik. Hardware Trojan Detection for Gate-level ICs
Using Signal Correlation Based Clustering. In Proceedings of the 2015
DATE, DATE ’15, pages 471–476, San Jose, CA, USA, 2015. EDA
Consortium.

[23] W. Zhao, H. Shen, H. Li, and X. Li. Hardware Trojan Detection Based
on Signal Correlation. In 2018 IEEE ATS, pages 80–85, Oct 2018.

[24] Subhasish Mitra, H-S Philip Wong, and Simon Wong. Stopping hardware
trojans in their tracks. IEEE Spectrum, 20:2015, 2015.

[25] S. Ramprasad, N. R. Shanbha, and I. N. Hajj. Analytical estimation
of signal transition activity from word-level statistics. IEEE TCAD,
16(7):718–733, July 1997.

[26] S. Bobba, I. N. Hajj, and N. R. Shanbhag. Analytical expressions for
average bit statistics of signal lines in DSP architectures. In ISCAS ’98,
volume 6, pages 33–36 vol.6, May 1998.

[27] J. H. Satyanarayana and K. K. Parhi. Theoretical analysis of word-
level switching activity in the presence of glitching and correlation. In
Proceedings Ninth GLSVLSI, pages 46–49, March 1999.

[28] S. Nikolaidis, E. Karaolis, and E. D. Kyriakis-Bitzaros. Estimation of
signal transition activity in fir filters implemented by a mac architecture.
IEEE TCAD, 19(1):164–169, Jan 2000.

[29] J. A. Clarke, G. A. Constantinides, P. Y. K. Cheung, and A. M. Smith.
Glitch-aware output switching activity from word-level statistics. In 2008
IEEE International Symposium on Circuits and Systems, pages 1792–
1795, May 2008.


	I Introduction
	II Background and Related Work
	III Proposed Approach and Implementation
	III-A Threat Model
	III-B Theoretical modeling for transition activity estimation
	III-C Framework for rare activity nets estimation

	IV Experimental Results
	V Conclusion
	References

