
Energy-aware Scheduling of Jobs in Heterogeneous Cluster Systems Using Deep
Reinforcement Learning

Amirhossein Esmaili, Massoud Pedram
Department of Electrical and Computer Engineering, University of Southern California

Los Angeles, California
Email: esmailid@usc.edu, pedram@usc.edu

Abstract— Energy consumption is one of the most critical
concerns in designing computing devices, ranging from portable
embedded systems to computer cluster systems. Furthermore, in
the past decade, cluster systems have increasingly risen as pop-
ular platforms to run computing-intensive real-time applications
in which the performance is of great importance. However, due
to different characteristics of real-time workloads, developing
general job scheduling solutions that efficiently address both
energy consumption and performance in real-time cluster systems
is a challenging problem. In this paper, inspired by recent
advances in applying deep reinforcement learning for resource
management problems, we present the Deep-EAS scheduler that
learns efficient energy-aware scheduling strategies for workloads
with different characteristics without initially knowing anything
about the scheduling task at hand. Results show that Deep-EAS
converges quickly, and performs better compared to standard
manually-tuned heuristics, especially in heavy load conditions.

I. INTRODUCTION

Energy efficiency in cluster systems is an important design
factor, as it not only can reduce the operational electricity cost,
but also can increase system reliability. Furthermore, these
platforms are becoming more popular for many computing-
intensive real-time applications such as image or signal pro-
cessing, weather forecasting, and so forth [1]–[3]. A major
portion of this trend is due to rapid progress in computing
power of commodity hardware components and their relatively
low cost [3]. Therefore, developing scheduling strategies that
achieve promising performance metrics for real-time work-
loads while yielding low energy costs are of great necessity.

Traditionally, majority of these scheduling problems are
solved today using carefully designed heuristics, as they are
usually combinatorial NP-hard problems [4]. There are several
works in the literature addressing energy-aware scheduling
problem for heterogeneous clusters [2], [3], [5], [6]. Authors in
[6] propose energy-aware task scheduling solutions on DVS-
enabled heterogeneous clusters based on an iterated local
search method (DVS: dynamic voltage scaling). In [3], authors
present an adaptive energy-aware scheduling of jobs on het-
erogeneous clusters with the goal of making the best trade-offs
between energy conservation and admissions of subsequently
arriving tasks. Generally, the main approach in these studies is
developing clever heuristics that have performance guarantee
under certain conditions, which in some cases is followed by
further testing and tuning for obtaining a better performance
in practice.

Inspired by recent advances in employing reinforcement
learning (RL) for addressing resource management problems,
in this paper, we examine building intelligent systems which
learn by their own to achieve energy-aware scheduling strate-
gies, as an alternative to using manually-tuned heuristics.
While major portion of successful machine learning techniques
fall into the category of supervised learning, in which a
mapping from training inputs to outputs is learned, supervised

learning cannot be applicable to most combinatorial optimiza-
tion problems, such as nontrivial scheduling problems, as
optimal labels are not available due to inherent NP-hardness
of most of these problems in nontrivial settings. However, one
can evaluate the performance of a set of solutions using a
verifier, and provide some feedbacks to a learning algorithm.
Consequently, approaching a combinatorial optimization prob-
lem using an RL paradigm, could be promising [7].

In general, RL agent start from not knowing anything from
the task at hand, and improves itself based on how well it is
doing in the system. Particularly, we approach the problem
with the help of deep RL. A high-level view of how deep RL
works is shown in Fig. 1. In each step i, the deep RL agent
observes a state si, and performs an action ai. This action
is sampled from a probability distribution over the action
space, where this distribution is obtained by the underlying
neural network with parameters θ given the state si as its
input, and is referred to as the policy of the deep RL agent
shown by πθ(s, a), where πθ(s, a) is the probability that
action a is taken in state s. Therefore, πθ(s, a) → [0, 1]. θ
is referred to as the policy parameters of the agent. Following
the action ai, the system state would change to si+1 and a
reward ri+1 is given to agent. The agent has only control
on what action it can do, and not on the obtained reward
or state transition. During training, by performing a series
of interactions with the environment, the parameters of the
underlying neural network will be adjusted for the goal of
improving the policy and maximizing the expected cumulative
discounted reward: E[

∑∞
i=0 γ

iri], in which γ ∈ (0, 1] is the
discount factor representing how much the agent cares about
the future rewards. RL has been recently combined with deep
neural networks to be effective in applications with large space
of state and action pairs. In those applications, storing the
policy in tabular form would not be feasible anymore and
function approximators with tunable parameters, such as deep
neural networks, are commonly used [8]–[10].

The main motivation for the proposed method compared to
prior work in energy-aware scheduling for heterogeneous clus-
ters is that the proposed Deep-EAS agent starts from knowing
nothing about the scheduling task at hand, and learns nontrivial
scheduling policies by modeling the different aspects of the
system such as the arrival rate, duration and resource-demand
profile of incoming jobs, current occupation state of servers
and energy profile of using each one for scheduling any of the
waiting jobs, and so forth. The obtained scheduling strategy
can be employed in an online scheduling environment and
be efficient under varying workload conditions as we see in
Section III.

The proposed method in this paper uses the notions similar
to ones used in [4], which is the first successful attempt to our
knowledge that solely using deep RL, addresses the conven-
tional problem of scheduling for multi-resource constrained
jobs in clusters. However, [4] does not consider heterogeneity
of computing machines in terms of their energy profile in the
cluster and thus does not examine energy awareness in its

ar
X

iv
:1

91
2.

05
16

0v
1

 [
cs

.D
C

]
 1

1
D

ec
 2

01
9

Environment

Deep RL Agent
action a

i

(sampled from the policy)

reward
r

i

state
s

i

policy
(probability distribution over the action
space outputted by the neural network)

r
i+1

s
i+1

policy parameters

Fig. 1. A high-level view of the reinforcement learning with the policy
represented by a deep neural network.

proposed scheduling solution. There are some challenges as-
sociated with crafting the rewards function in RL formulation
so that the scheduling solution would be energy-aware, which
are explained in detail in Section II-B. Furthermore, in [4],
it is assumed that the duration of incoming jobs is known
upon arrival. However, in a realistic scenario, uncertainties can
occur due to miss-predictions on the workloads [5]. Therefore,
the proposed method also takes into account the uncertainties
associated with the workloads of arriving jobs.

Consequently, in this paper, using the deep RL paradigm,
we present Deep-EAS, an online energy-aware scheduler for
cluster systems that have multiple machines with heteroge-
neous energy profiles. The detailed model of the underlying
cluster system and associated RL formulation will be presented
in Section II-A and Section II-B, respectively. In Section
II-C, a detailed explanation on how Deep-EAS is trained will
be presented. In Section III, we compare Deep-EAS with
comparable heuristics under varying workload conditions and
examine the situations where using Deep-EAS is advantageous
compared to manual heuristics. Finally, Section IV concludes
the paper.

II. METHOD

A. Cluster Model and the Objective Function
We consider a cluster with K heterogeneous machines in

terms of different energy profiles. Each machine is comprised
of N processors that can serve the jobs requiring multiple
processors for their execution. Jobs arrive to the system in an
online fashion in discrete timesteps. Energy profile of machine
k for job j is shown by ej,k, which represents the normalized
energy consumption of one processor in machine k for job j in
one timestep, if that processor is invoked for execution of the
job in that timestep. The number of processors required for the
execution of job j is represented by nj . For determining the
actual duration of job j on machine k, represented with dj,k,
similar to [5], we assume that the duration profile is known
only in advance as probability distribution such as normal
distribution, i.e., dj,k ∼ N (µj,k, σ

2
j,k) , where µj,k and σ2

j,k
represent the expected value and variance of dj,k, respectively.
We assume σ2

j,k to be a ratio of µj,k, i.e., σ2
j,k =

µj,k
c , where

coefficient c reflects the accuracy of workload estimator of
incoming jobs.

For each job j, µj,k on machines with higher performance
(operating frequency), and correspondingly higher energy pro-
file, is lower than the machines with lower energy profiles. For
instance, if for a job j and two machines in the cluster such

as machine 0 and machine 1, we have ej,0 > ej,1, then we
will have µj,0 < µj,1.

The scheduler, in each discrete timestep, selects and assigns
a number of jobs to machines from a queue of waiting jobs.
Πj represents the machine that job j is assigned to by the
Deep-EAS agent (0 ≤ Πj < K). A job j assigned to
machine k is executed until the end of dj,k. Furthermore, nj
processors are allocated continuously for the entire execution
span of job j. As we will see in Section III-F, even with these
assumptions, the Deep-EAS agent provides nontrivial solutions
that are advantageous compared to manually-tuned heuristics,
especially in heavy load conditions.

As both energy and performance should be addressed, we
aim for optimizing the average normalized energy-delay prod-
uct for arriving jobs. The normalized delay for job j is repre-
sented by Dnorm

j , and is calculated as follows: Dnorm
j =

Dj
µj,∗

,
in which Dj represents the time it takes from the arrival of job
j until its execution completion and departure from the system
(including the waiting time of the job in the waiting queue),
and µj,∗ represents the minimum µj,k among all machines.
Normalizing Dj prevents biasing the solution towards longer
jobs. The normalized energy consumption associated with the
complete execution of job j is represented by

Ej,Πj = nj × ej,Πj ×
dj,Πj
µj,∗

. (1)

Therefore, our scheduling goal is minimizing E[Ej×Dnorm
j],

where the expectation is calculated over all jobs in the job
arrival sequence.

B. Deep RL Formulation for Deep-EAS Agent
1) State Space: For state representation of the system

in each timestep, we represent the current occupation state
of machines and the resource-demand and average duration
profile of the jobs in the waiting queue as binary matrices.
Fig. 2 illustrates a sample state of a system with two machines
and a waiting queue of size five. The matrices corresponding
to the machines, shown on the left side of Fig. 2, represent the
occupation state of these machines from the current timestep
until H timesteps ahead in the future. For instance in Fig.
2, two jobs are scheduled on machine 1. For the sake of
argument, we refer to these jobs as job 0 and job 1. Job
0 uses two processors for the next d0,1 timesteps where
d0,1 ∼ N (4, 4/c) , and job 1 uses two processors for the next
d1,1 timesteps where d1,1 ∼ N (2, 2/c) .

Furthermore, the matrices corresponding to the jobs in the
waiting queue, shown in the middle of Fig. 2, represents the
resource-demand and average duration profile of the jobs in
the waiting queue on each of machines. The average duration
profile of each job on different machines are different. For
instance, in Fig. 2 that we have two heterogeneous machines,
we see two different duration profiles for each job in the
waiting queue. In this case, the duration profile of each job
on the machine 1 is higher compared to the duration profile
of that job on the machine 0, which conveys the fact that in
this sample system, machine 1 is the machine with the lower
performance (operating frequency) and lower energy profile
compared to machine 0. The size of the queue is represented
by Q.

In order to have a finite state representation, we maintain
the binary matrices corresponding to the resource-demand and
average duration profile of waiting jobs only for the first Q
jobs arrived at the system that have not yet been scheduled
on any of the machines. For the further jobs, we incorporate

Waiting QueueMultiple-processor
Machines

b l

Jobslot 0 Jobslot 1 Jobslot 2 Jobslot 3 Jobslot 4

Resource

T
im

e
st

e
p

M
ac

hi
ne

 0
M

ac
hi

ne
 1

counter tracking the
number of waiting jobs

beyond the first Q jobs in
the waiting queue

counter tracking the number
of timesteps since the arrival

of the last new job

Parameters of this sample cluster system:

N = 10 (number of processors per machine)
K = 2 (number of machines)
H = 6 (time horizon)
Q = 5 (size of waiting queue)
B = 6 (size of b vector)
L = 6 (size of l vector)

Fig. 2. An illustrative example of the state representation of the cluster system in the middle of the job arrival process.

only their count in the state of the system. We use a binary
vector b for representing these backlog jobs, in which the
number of 1s in this vector represents the count of backlog
jobs. Furthermore, for making the scheduler aware of the
arrival rate of incoming jobs, we track the number of discrete
timesteps since the last job has arrived to the system. We
use a binary vector l in which the number of 1s represents
the count of timesteps since the arrival of last new job. The
length of vectors b and l, shown on the right side of Fig. 2,
are represented by B and L, respectively, and should be large
enough so that these vectors do not get exhausted. B and L
are also chosen to be integer multiples of time horizon H ,
as we want to tile the vectors b and l in chunks of size H
so that we have a rectangular state matrix. Consequently, the
height and width of the state binary matrix, that incorporates
all the mentioned information, would be obtained as H and
N × (1 +Q)×K + B

H + L
H , respectively.

2) Action Space: In each timestep, the scheduler can poten-
tially select one or more jobs from the waiting queue with the
size of Q and assigns it to one of K machines. Therefore, the
size of the action space would become exponentially large with
respect to Q and K. In order to reduce the action space size,
similar to [4], we decouple the decision steps of the Deep-
EAS agent from real timesteps, and allow the agent to do
multiple actions in a single timestep. The new action space is
associated with selecting one of the waiting jobs and assigning
it to one of K machines. Therefore, the size of the action space
is reduced to Q×K. Specifically, we define the action k×Q+q
as “assign the job in q-th slot in the waiting queue to machine
k”, where 0 ≤ q < Q and 0 ≤ k < K. We define the action
K×Q as the “hold” action. Upon taking this action, the agent
does not schedule any further jobs in the current timestep (by
considering hold action, the actual action space size would be
Q×K+ 1 instead of Q×K). In each timestep, the scheduler
can take multiple actions until choosing the hold action, or an
invalid action. The selected action is invalid if there is no job
in q-th slot of the waiting queue, or if the selected job does not
fit in the selected machine from the current timestep looking
ahead into the next H timesteps based on the average estimates
available for jobs occupying the underlying machines.

By choosing each valid action, the corresponding job in the
queue is assigned to the selected machine starting from the
earliest possible timestep on that machine, and a job from
the backlog queue (if any) is dequeued and replaces the job

that has just been scheduled. However, by choosing an invalid
action or the hold action, the time actually goes on and the
state matrix shifts up by one row and jobs which have finished
their execution, according to their actual duration sampled
from the corresponding normal distribution, depart from the
system. Therefore, jobs may depart from the system sooner
or later than their average estimates. This will either advance
or postpone the actual start time of other jobs waiting for
resources to get freed up. Furthermore, when the actual time
proceeds, any new jobs may arrive to the system, depending
on the job arrival process. If any new job arrives, vector l
resets to an all-zero vector.

3) Rewards Function: One challenge for defining the re-
wards function for our problem is the fact that for the jobs in
the waiting queue and backlog, in the timesteps before they
actually get assigned to one of the underlying machines, we
know their contribution to the average delay of jobs (one for
every timestep they are still in the system). However, we do not
know their corresponding Ej before they get assigned to one of
the machines. In order for the cumulative rewards function to
correlate with our objective, normalized energy-delay product,
we need to weight each timestep that each job j is still in the
system with Ej

µj,∗
(see Section II-A). For solving this issue, we

define the rewards function in each timestep as the following
(no reward is given for intermediate actions of the scheduler
agent during a timestep. Reward is only granted after the actual
time proceeds):

−

∑
j∈Jp

Ej
µj,∗

+
∑
j /∈Jp

E∗j
µj,∗

+
∑

j∈Jnew

δcorrectj

µj,∗

 . (2)

The breakdown of three terms of the (2) are as follows:
First term: Jp represents the set of jobs currently scheduled

on any of machines. For each job j in this set, we know the
energy consumption associated with execution of job j, Ej .

Second term: For each job j which is not currently sched-
uled on any of machines, we do not know yet their energy
consumption. For such job j, we temporarily assume we will
eventually assign it to the machine that yield the minimum
energy consumption for its execution, and represent this value
by E∗j . We will correct our assumption using the to-be-
explained third component of the rewards function, when we
eventually assign the job to one of the underlying machines.

Third term: Jnew represents the set of jobs that have been

“just” scheduled on a machine in the current timestep. For
each job j in Jnew, we have used the second term of (2)
during previous timesteps from the time the job arrived to
the system. In case the current assigned machine of job j is
not the machine that yields the lowest energy consumption
for job j, which was our temporary assumption in the second
component of (2), we correct and add the amount of difference
for previous timesteps to the rewards function. This amount for
such job j is represented by δcorrectj = (Ej−E∗j)×|∆t|, where
|∆t| represents the number of timesteps from the time job
arrived to the system until the current timestep (|∆t| represents
just the number of timesteps and is unit-less itself).

Consequently, using the discount factor γ = 1, the cu-
mulative rewards function (2) over all timesteps would result
the (negative) total of normalized energy-delay product over
all the jobs, and maximizing this cumulative reward results
in minimizing the total and thus the average of normalized
energy-delay product over all the jobs.

C. Training Deep-EAS
For training the Deep-EAS agent, we need to adjust the

policy parameters of its underlying deep neural network (see
Fig. 1). Similar to [8], we use policy gradients in which we
learn by employing gradient descent on the policy parameters.
For using gradient descent, we need to have the gradient of the
expected cumulative discounted reward, E[

∑∞
i=0 γ

iri], which
is our objective function. This gradient is obtained using the
REINFORCE equation [11]:

∇θEπθ [
∞∑
i=0

γiri] = Eπθ [Rπθ (s, a).∇θ log πθ(s, a)], (3)

where Rπθ (s, a) represents the expected cumulative dis-
counted reward if we choose action a in state s and follow
the policy πθ afterwards. In policy gradients, in each training
iteration, the main idea is that we approximate the gradient
equation in (3) by evaluating the trajectories of executions
obtained by following the policy we have in that iteration.
Specifically, for training Deep-EAS using policy gradients, in
each training iteration, we draw a number of trajectories of the
executions sampled from πθ for a sample job arrival sequence.
Each execution trajectory (episode) terminates when all the
jobs in the sequence finish their execution (or a predefined
maximum length of the trajectory is reached). To train a gen-
eralized policy, we use multiple sample job arrival sequences
in each training iteration (S sequences), and we perform M
trajectories of execution for each sequence until the trajectory
termination. Using these trajectories, we approximate (3) as
follows:

∇θEπθ [
∞∑
i=0

γiri] ≈

1

S.M

S∑
s=1

M∑
m=1

∑
t

∇θ log πθ(s
s,m
t , as,mt)vs,mt ,

(4)

in which vs,mt is the empirically computed cumulative dis-
counted reward and serves as an unbiased estimate of
Rπθ (s

s,m
t , as,mt) (superscript s and m are used to refer to m-

th trajectory of s-th sample job arrival sequence). Using this
approximation, we update policy parameters in each iteration
via the following equation:

θ ← θ +
α

S.M

S∑
s=1

M∑
m=1

∑
t

∇θ log πθ(s
s,m
t , as,mt)(vs,mt − bst).

(5)

α in (5) indicates the learning rate of the training algorithm.
In (5), we reduce a baseline value bst from vs,mt which help
reduce the variance of policy gradients. Without reducing the
baseline, gradient estimates obtained using (4) can have high
variances [12]. For calculating bst , the average of vs,mt at the
same timestep t over all trajectories (m = 1, 2, ...,M) of the
job sequence s is used.

III. EVALUATION

A. Cluster Setup
We use an instance of the cluster system described in

Section II and shown in Fig. 2 with the following parameters:
K = 2, N = 10, H = 30t (t represents the duration of
one timestep), Q = 10, B = 90, and L = 30. Jobs arrive
to the system in an online fashion according to a Bernoulli
process with the arrival rate of λ. The length of each job arrival
sequence is set to 60t (new jobs can arrive until timestep
60, however experiment goes on until all jobs remained in
the system beyond 60t finish their execution). The resource
requirement of each arriving job is chosen uniformly between
1 and 10 processors. In our sample cluster model, we consider
machine 0 as the higher-performance machine and machine 1
as the lower-performance machine. Particularly, we consider
the operation frequency of machine 0 to be twice the operating
frequency of machine 1. Therefore, for each job j, we have
µj,1 = 2µj,0. Furthermore, we consider each job arrival
sequence to be a combination of short-duration and long-
duration jobs. The probability that an arriving job is a short
job is indicated with β. µj,0 for each short job j is chosen
uniformly between 1t and 3t, while µj,0 for each long job j
is chosen uniformly between 10t and 15t. Coefficient c which
was introduced in Section II-A, and reflects the accuracy of
workload estimator of incoming jobs, is set as 4. We will
examine the efficiency of Deep-EAS for different values of λ,
β, and c in Sections III-D and III-G.

B. Energy Model
We consider both machines to be always “on” during the

experiment. This means that the energy consumption due to
static power consumption of the system serves as an additive
factor to the total energy consumption of the system during the
experiment. Therefore, the ratio between ej,0 and ej,1 for each
job j needs to reflect the ratio between the dynamic energy
consumption of the processor on machine 0 and machine 1
in one timestep. By employing the power model presented in
[13] and [14], dynamic power consumption of a processor can
be modeled by xjf

y , in which xj is a coefficient depending
on the average switched capacitance and the activity factor of
job j, f is the processor operating frequency, and y is the
technology-dependent dynamic power exponent. Therefore,
for each job j we have: ej,0

ej,1
= (f0f1)y. Using a classical

energy model of a 70nm technology processor that supports
5 discrete frequencies ranging from 1 GHz to 2 GHz,
whose accuracy has been verified by SPICE simulation, [13]
proposes the value for y as 3.2941. Therefore, by setting
f0 = 1 GHz and f1 = 2 GHz (the operating frequencies
of our machines) and using this value for y, for each job j
we have: ej,0

ej,1
= 23.2941 = 9.809. While the actual ej,k for

the jobs are different with each other due to the different xj
each job j has, the ratio between ej,0 and ej,1 for each job j
remains the same. Therefore, we use the normalized values of
ej,0 = 9.809 and ej,1 = 1 for each job j. It should be noted
that while the energy model based on a 70nm technology is

employed here, the proposed method is capable of dealing with
a general, parameterized power model. Therefore, in a smaller
technology node, one can find the corresponding coefficients
and exponents, and use them for finding scheduling solutions.

C. Deep-EAS Training Setup and Overhead Analysis
For the underlying neural network of the Deep-EAS agent,

the size of the input is obtained as a 30 × 224 binary matrix
with the values used for the parameters of the cluster model
in Section III-A. We apply a convolutional layer to extract
features from this matrix. We use eight 3 × 3 filters with the
stride of size 2 (in both height and width directions), followed
by the Relu activation function. After this layer, we use a fully
connected layer with the size of 21 followed by the softmax
activation function (the action space size for our cluster mode
is 10 × 2 + 1). We train Deep-EAS as described in Section
II-C using 150 different job arrival sequences for 1000 training
iterations. In each training iteration, we evaluate 20 different
trajectories of execution for each job sequence. For updating
the policy parameters, we use Adam optimizer [15] with the
learning rate of 0.001.

The deployment of Deep-EAS agent is done after the
training is finished. Using our experiment setup, the average
latency overhead associated with each inference (scheduling
decision) is about 237 µS. This overhead can be considered
negligible as the duration of timestep t, reflecting the time
interval between scheduling decisions, usually takes in the
order of a few milliseconds.

D. Results
As a standard manually-tuned heuristic to compare the

proposed Deep-EAS agent with, we choose an energy-aware
shortest job first (ESJF) agent. ESJF, in each timestep, sched-
ules the job that yields the lowest normalized energy-delay
product to its corresponding machine (according to the avail-
able average estimates of duration of jobs in the waiting
queue). ESJF keeps doing this process until no job is left
in the waiting queue or no further jobs can be scheduled on
any of machines in that timestep (due to the occupancy state
of machines). In that case, time proceeds and ESJF repeats
this procedure. This process continues until all jobs in the job
sequence finish their execution.

Fig. 3 presents a comparision between Deep-EAS on 150
new jobsets (not seen during training) and ESJF, for different
job arrival rates when β = 0.5 (the probability that a new
job is a short job is equal to the probability that it is a long
job). As presented in Fig. 3, the average normalized energy-
delay product values obtained by either of Deep-EAS and
ESJF generally increase with the job arrival rate. Deep-EAS is
comparable with ESFJ for low arrival rates (e.g., for λ = 0.1
and λ = 0.3). However, Deep-EAS shows to be considerably
advantageous in higher arrival rates. For instance, for λ = 0.9,
the average normalized energy-delay product obtained from
Deep-EAS is 42.88% lower in comparison with ESJF.

E. Deep-EAS Training Curve
The training curve of Deep-EAS over 1000 iterations and

achieved average normalized energy-delay product after each
iteration are presented in Fig. 4, for the case where the
job arrival rate is 0.7 and β = 0.5. The obtained average
normalized energy-delay product using ESJF is also shown in
Fig. 4 as a reference. As indicated in Fig. 4, Deep-EAS starts
from acting poorly in the environment, but quickly improves
itself over the training iterations, surpassing the ESJF after the

0.1 0.3 0.5 0.7 0.9
Job arrival rate

0

200

400

600

800

1000

1200

1400

A
ve

ra
g
e
 n

o
rm

a
liz

e
d
 e

n
e
rg

y-
d
e
la

y
 p

ro
d
u
ct

Deep-EAS
ESJF

Fig. 3. Comparison of Deep-EAS and ESJF at different job arrival
rates, when β = 0.5.

first 30 iterations and further improvement beyond that. For the
sake of reducing the time of training, in each training iteration,
we performed execution trajectories of each job sequence
in parallel on a platform with four 3.2 GHz Intel Core i7-
8700 CPUs and 64 GB RAM. On this platform, each training
iteration took about 97 seconds on average.

F. Analyzing Why Deep-EAS is Advantageous
The main advantage that Deep-EAS possess is that it can

develop nontrivial scheduling solutions during training, which
are not necessarily energy-delay conserving for every job, or
work conserving for every timestep. If a scheduling solution
is energy-delay conserving for every job, if it allocates a job
in a timestep to a machine, it allocates it to the one yielding
the minimum normalized energy-delay product for that job. If
a scheduling solution is work-conserving for every timestep,
it keeps allocating jobs from the waiting queue as long as
resources are available in a timestep. ESJF is a scheduling
solution which is both energy-delay conserving and work con-
serving. In general, since manually-tuned resource scheduler
solutions usually make decisions in each timestep based on a
predefined metric, they are mainly resource conserving [16].
However, Deep-EAS can potentially be both not energy-delay
conserving and not work conserving, if these decisions can
eventually cause the lower average normalized energy-delay
product over all the jobs. Particularly, for results shown in
Fig. 3, Deep-EAS is not energy-delay conserving for 13.11%
of jobs, and is not work conserving for 91.81% of timesteps.

To further analyze the scheduled jobs using Deep-EAS, for
the case in Fig. 3 where β = 0.5 and λ = 0.9 (a high job
arrival rate), we examine the cumulative distribution function
(CDF) plots of the µj,0 of the jobs Deep-EAS was not energy-
delay conserving for (shown with holde), alongside the jobs
Deep-EAS was not work conserving for (shown with holdw).
These CDF plots are shown in Fig. 5. As shown in this figure,
while β = 0.5 and thus the number of small jobs and long
jobs in a sequence are almost the same, we observe if Deep-
EAS does not act as an energy-delay conserving scheduler for
a job in a timestep, that job is a long job most of the times
(see holde in Fig. 5). The intuition behind this could be that
allocating long jobs to the machine with lower energy profile
(and thus resulting higher duration) could occupy that machine
for many timesteps, which can reduce the chance of allocating
a number of potentially arriving small jobs to that machine

0 200 400 600 800 1000
Iteration

600

850

1100

1350

1600

1850

A
ve

ra
g

e
 n

o
rm

a
liz

e
d

 e
n

e
rg

y
-d

e
la

y
 p

ro
d

u
ct

Deep-EAS

ESJF

Fig. 4. Deep-EAS learning curve indicating the policy improvement
over the training iterations.

and potentially increase the average normalized energy-delay
product over all the jobs. Hence, in a heavy load condition,
it can be eventually useful to not be energy-delay conserving
for some of the long jobs. Similarly, if Deep-EAS withholds
a job in a timestep, that job is most of the times a long job
(see holdw in Fig. 5). Almost the same argument mentioned
for holde can be presented as the intuition for holdw. In a
job arrival process with a high arrival rate, withholding a long
job can potentially pave the way for scheduling a number of
yet-to-arrive small jobs and eventually being advantageous in
reducing the average normalized energy-delay product over all
the jobs. Deep-EAS learns these solutions on its own.

G. Examining the effect of β and c

To evaluate the effect of β, for the case where the job arrival
rate is 0.7, we consider 3 cases: β = 0.8 (majority of the
jobs are short jobs), β = 0.5 (the number of small jobs and
long jobs are almost the same), and β = 0.2 (majority of
the jobs are long jobs). By evaluating Deep-EAS and ESJF
on 150 new jobsets (not seen during the training of Deep-
EAS), for these values of β, the average normalized energy-
delay product obtained by Deep-EAS are 45.29% ,35.10%,
and 11.94% lower compared to ESJF. This indicates that for
the job sequences where majority of jobs are small jobs, Deep-
EAS shows to be more advantageous.

To evaluate the effect of the workload estimator accuracy,
reflected by coefficient c mentioned in Section II-A, we
reproduce the results in Fig. 3, but assuming we have a
perfect workload estimator of incoming jobs. In other words,
for each job j we assume we have dj,k ∼ N (µj,k, 0)
or dj,k = µj,k. Using this perfect workload estimator, for
job arrival rates of 0.1, 0.3, 0.5, 0.7, and 0.9, the obtained
average normalized energy-delay product values via Deep-
EAS are 5.37%, 13.84%, 29.45%, 37.64%, and 45.47% lower,
respectively, compared to ESJF. Furthermore, the obtained
values for average normalized energy-delay products using the
perfect workload estimator showed to be lower for both Deep-
EAS and ESJF compared to values in Fig. 3. Therefore, using
a better workload estimator, it is again observed that Deep-
EAS shows to be considerably more advantageous in higher
arrival rates. However, in all job arrival rates, the gap between
values obtained by Deep-EAS and ESJF has been increased.

0 2 4 6 8 10 12 14 16

μ

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

holdw

holde

j,0
of jobs

Fig. 5. CDF plots of µj,0 of jobs Deep-EAS is not energy-delay
conserving for (holde), alongside the jobs Deep-EAS is not work
conserving for (holdw), when λ = 0.9 and β = 0.5.

IV. CONCLUSIONS AND FUTURE WORK

This paper addresses energy-aware scheduling in clusters
by proposing Deep-EAS, a scheduler designed with the aid of
deep RL. During the training, Deep-EAS starts from knowing
nothing about the scheduling task at hand, and develops
nontrivial scheduling solutions. We observe these solutions
outperform standard manually-tuned heuristics, especially in
heavy load conditions with high job arrival rates. For future
work, Deep-EAS can be potentially extended to learn more
complex strategies such as job-preemption, job-migration and
dynamic voltage and frequency scaling (DVFS), which can
increase its adaptability to various situations.

REFERENCES

[1] R. Garg, M. Mittal, and L. H. Son, “Reliability and energy efficient
workflow scheduling in cloud environment,” Cluster Comput., 2019.

[2] G. L. Stavrinides and H. D. Karatza, “Energy-aware scheduling of real-
time workflow applications in clouds utilizing DVFS and approximate
computations,” in FiCloud. IEEE, 2018.

[3] X. Zhu et al., “Adaptive energy-efficient scheduling for real-time tasks
on DVS-enabled heterogeneous clusters,” J. Parallel Distribut. Syst.,
2012.

[4] H. Mao et al., “Resource management with deep reinforcement learn-
ing,” in HotNets. ACM, 2016.

[5] K. Li et al., “Energy-aware scheduling algorithm for task execution
cycles with normal distribution on heterogeneous computing systems,”
in ICPP, 2012.

[6] Y. Zhang, Y. Wang, and X. Yuan, “Energy-aware task scheduling
on DVS-enabled heterogeneous clusters by iterated local search,” in
CSCWD, 2018.

[7] I. Bello et al., “Neural combinatorial optimization with reinforcement
learning,” arXiv preprint arXiv:1611.09940, 2016.

[8] A. Mirhoseini et al., “Device placement optimization with reinforcement
learning,” in ICML, 2017.

[9] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[10] ——, “Human-level control through deep reinforcement learning,” Na-
ture, 2015.

[11] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, 1992.

[12] J. Schulman et al., “Trust region policy optimization,” in ICML, 2015.
[13] A. Esmaili, M. Nazemi, and M. Pedram, “Modeling processor idle

times in MPSoC platforms to enable integrated DPM, DVFS, and task
scheduling subject to a hard deadline,” in ASP-DAC, 2019.

[14] J. Zhou et al., “Energy-adaptive scheduling of imprecise computation
tasks for QoS optimization in real-time MPSoC systems,” in DATE,
2017.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[16] R. Grandl et al., “Multi-resource packing for cluster schedulers,” ACM
SIGCOMM CCR, 2015.

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1412.6980

	I Introduction
	II Method
	II-A Cluster Model and the Objective Function
	II-B Deep RL Formulation for Deep-EAS Agent
	II-B1 State Space
	II-B2 Action Space
	II-B3 Rewards Function

	II-C Training Deep-EAS

	III Evaluation
	III-A Cluster Setup
	III-B Energy Model
	III-C Deep-EAS Training Setup and Overhead Analysis
	III-D Results
	III-E Deep-EAS Training Curve
	III-F Analyzing Why Deep-EAS is Advantageous
	III-G Examining the effect of and c

	IV Conclusions and Future Work
	References

