
NN-PARS: A Parallelized Neural Network Based
Circuit Simulation Framework

Mohammad Saeed Abrishami, Hao Ge, Justin F. Calderon, Massoud Pedram, and Shahin Nazarian
Ming Hsieh Department of Electrical and Computer Engineering
Viterbi School of Engineering, University of Southern California

Los Angeles, CA 90089
{abri442, haoge, jfcalder, pedram, shahin.nazarian}@usc.edu

Abstract—The shrinking of transistor geometries as well as
the increasing complexity of integrated circuits, significantly
aggravate nonlinear design behavior. This demands accurate and
fast circuit simulation to meet the design quality and time-to-
market constraints. The existing circuit simulators which utilize
lookup tables and/or closed-form expressions are either slow or
inaccurate in analyzing the nonlinear behavior of designs with
billions of transistors. To address these shortcomings, we present
NN-PARS, a neural network (NN) based and parallelized circuit
simulation framework with optimized event-driven scheduling
of simulation tasks to maximize concurrency, according to
the underlying GPU parallel processing capabilities. NN-PARS
replaces the required memory queries in traditional techniques
with parallelized NN-based computation tasks. Experimental
results show that compared to a state-of-the-art current-based
simulation method, NN-PARS reduces the simulation time by
over two orders of magnitude in large circuits. NN-PARS also
provides high accuracy levels in signal waveform calculations,
with less than 2% error compared to HSPICE.

Index Terms—Current Source Model (CSM), Logic Circuit
Simulation, Parallel Computation, Neural Network

I. INTRODUCTION

As the CMOS transistor technologies test the limits of
Moore’s Law [1], the design flow of VLSI circuits demand
increasingly more complex analysis, transformation, and veri-
fication iterations, to validate the correctness of functionality,
and quality of design in terms of performance, power and
signal integrity. The design flow steps need to also validate var-
ious process-voltage-temperature (PVT) corners and operating
modes such as low-power (LP) and high-performance (HP)
that involve increasingly nonlinear effects. Fast and accurate
simulation is therefore crucial to help lower the number of
design iterations, speed up convergence, and consequently
shorten the design turnaround time [2].

SPICE simulators are the de facto standard tools for accurate
analysis and sign-off, however they are very slow for billion-
transistor circuits [3], [4]. Therefore, higher levels of circuit
abstraction using approximation have been used to speed
up simulation steps. Abstraction models are generally based
on look-up-tables (LUTs), closed-form formulations, factors
or their combinations. The traditional voltage based models,
namely nonlinear delay model (NLDM), nonlinear power
model (NLPM), effective current source model (ECSM [5]),
and composite current source model (CCSM [6]) utilize LUTs
for storing delay, noise or power as nonlinear functions w.r.t.
physical, structural, and environmental parameters, and depend

on voltage modeling more than current modeling. Voltage
based models are intuitively better choices when compared
to simple closed-form formulation of nonlinear functions,
however, it tends to be increasingly inaccurate in capturing
signal integrity and short channel effects with the down-
scaling of technologies [7]. Alternatively, current based models
such as Current Source Models (CSMs) [8]–[16] use voltage-
dependent components to model logic cells. In addition to
higher accuracy, another advantage of current based models
over voltage based models is the ability to simulate realis-
tic output waveforms for arbitrary input signals. The major
shortcoming of LUT-based approaches is the high latency for
memory queries.

In this work, we present NN-PARS, a neural network (NN)
based PARallelized circuit Simulation framework that replaces
current based CSM LUT queries with NN computations and
exploits the architecture of graphical processing units (GPUs)
for concurrent simulation. By following our proposed method,
various gates in the circuit can be simulated in parallel. An
event-driven scheduling engine is embedded that selects gates
for computation based on characteristics of the underlying
GPU platform and the input netlist to minimize the total
circuit simulation time. The major novelties of our NN-PARS
framework are as follows:

• NN-PARS accelerates the CSM simulation of complex
integrated circuits using optimized NN structures consid-
ering the underlying GPU computational capabilities.

• Considering the iterative nature of output signal wave-
form calculation based on CSM, NN-PARS embeds a
simple event-driven scheduling methodology to further
maximize simulation concurrency by performing calcu-
lation steps for many logic cells in the circuit in parallel,
hence disentangling logic cell simulation from the order
of cells in the circuit topology.

The remainder of our paper is organized as follows. Section II
presents a brief background on CSM simulation. Sections III
and IV elaborate our NN-PARS framework and experimental
results, respectively. Section V concludes the paper.

II. BACKGROUND

Although our NN-PARS framework can be utilized to
enhance any LUT based circuit simulation technique, we
choose CSM as the method of comparison. CSM technique

1

ar
X

iv
:2

00
2.

05
29

2v
1

 [
ee

ss
.S

P]
 1

3
Fe

b
20

20

Year

G
FL

O
Ps

100

500
1000

5000
1000

5000

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Intel Xeon CPUs NVIDIA Tesla GPUs

Fig. 1: The evolution of computational capabilities of CPUs and
GPUs in terms of peak single precision floating point operations per
second (FLOPS). Vertical axis is depicted in logarithm scale.

models each logic cell with voltage-dependent current sources,
as well as input, miller, and output capacitors [8], [15],
[16]. In the case of a simple INV gate, CSM components
are only dependent on input (VI) and output (VO) voltages.
However, for logic cells with multiple numbers of inputs, these
components depend on a larger number of variables, i.e voltage
of inputs and internal nodes [12]. Consequently, the size of
CSM LUTs grow exponentially with the number of variables.

Despite the recent advances in computational capabilities of
CPUs, such as process parallelization by introducing many-
core processors with dedicated cache memory, they still lack
high efficiency when processing tasks with a large number
of parallel computational sub-tasks. GPUs are specifically
designed to outperform CPUs for such tasks with capability of
higher order parallel computation. Moreover, these devices are
also known as an efficient hardware platform for training and
inference of NN [17]. This is partly because of two levels of
parallelized processing units in GPUs: several multiprocessors
(MPs), and several stream processors (SPs, also referred as
cores) that run the actual computation for each multiprocessor.
Each core is equipped with arithmetic units, register files, and
designated cache. The superiority of GPUs can be observed
by comparing the evolution of GPUs and CPUs in terms of
number of floating-point operations per second (FLOPS) as
shown in Fig. 1.

As suggested in [18], high dimensional CSM-LUTs with
large sizes can only fit in DRAM of CPUs or GPUs, while low-
dimensional V-LUT tables can easily fit into L1 caches. The
major shortcoming in data retrieval from DRAM is the high
latency. As an example, specification of a 24-core Intel pro-
cessor with Broadwell microarchitecture [19] given in Table I
shows that the memory access in DRAM is about 2 orders of
magnitude slower than that of L1 cache. Another disadvantage
of memory query is that in contrast to the dedicated caches
for each core in multi-core processors and GPUs, the main
memory is shared. However, the number of parallel reads
from DRAM to processors, referred to as memory-channel,
is limited and is much lower than the number of cores. As an
example, the 24-core processor in Table I has only 4 memory

TABLE I: Latency values for information retrieval from different
hierarchy levels of memory and hardware specifications of Intel Xeon
E7-8894 v4 server processor with Intel Broadwell microarchitecture.
The computational capability of the processor is given in Giga
floating point operations per seconds (GFLOPs).

Intel Broadwell Microarchitecture
Memory Size (KByte) Latency (Clock Cycle)
L1 Data Cache 32 per core 4-5
L2 Cache 256 11-12
L3 Cache 60,000 38-42
DRAM - ≈ 250

Intel Xeon Processor E7-8894 v4
Cores 24
Base Frequency 2.40 GHz
Theoretical Peak Computation 920 GFLOPs

channels.
Dependency on memory drastically increases the total

circuit simulation time and specially prevents accurate ap-
proaches such as CSM to be practical. To mitigate this
shortcoming, semi-analytical methods [20] suggest combining
nonlinear analytical models and low-dimensional CSM lookup
tables to simultaneously achieve high modeling accuracy in
addition to low time and space complexity. On the other hand,
[18] (referred to as CSM-NN method throughout the paper)
proposed complete removal of the long memory queries by
approximating CSM component values using simple NNs.
While this method improved the simulation time of simple
gates, it did not touch upon on how it can be scaled up
to the level of circuit simulation, especially using parallel
computation capabilities of GPUs.

In the following two sections, we present how our NN-
PARS parallelizes simulation of logic cells in a circuit, while
avoiding high latency memory retrievals needed in LUT based
simulators, and further speeds up the simulation process by
scheduling the concurrent tasks according to the GPU pro-
cessing capabilities.

III. NN-PARS FRAMEWORK

The characterization in this method is the same as con-
ventional CSM-LUT. We followed the same training flow,
i.e. choice of network architecture, optimization algorithm,
preprocessing, and evaluation as in CSM-NN. The following
section explains modeling the CSM of standard cells with NN,
required resources for parallel computation of NNs and latency
on GPU platform, and finally the flow of circuit simulation,
including the event-driven scheduling of NN-PARS.

A. NN Architecture
We followed the same approach as in CSM-NN to substitute

memory retrieval with NN computation for simple logic cells.
Every logic cell in the library is modeled by a NN with one
single hidden layer.

It is very important to note that while accuracy of NNs in
predicting CSM component values is important, the accuracy
should ultimately be reported based on the quality of the
output waveforms, and not just a certain measurement such

2

as logic cell delay. This coincides with the functionality of
CSM in regenerating circuit voltage waveforms. Therefore,
similar to [18] and [21], we use the expected waveform simi-
larity (Esim) as a figure of merit for the simulation accuracy
measurements. In this work, Esim is defined as the mean
of the absolute difference between precise HSPICE and NN-
PARS simulations relative to the supply voltage value of the
technology as shown in Eq. 1.

Esim =
1

T×VDD

∫ T

0

|VSPICE −VNN−PARS| (1)

In addition to a measurement for reporting the accuracy of
the results, we used Esim to find the architecture of NNs. The
smallest number of neurons such that the model can pass a pre-
defined accuracy threshold in terms of Esim when stimulated
with set of noisy inputs is selected for the NN implementation
of the logic cell.

B. Computational resources and latency analysis
The main advantage of this proposed method is the high par-

allelizability and consequently very low latency in simulation
of circuits when computed on GPU platforms. Therefore, a
detailed analysis of the latency and the number of required
computation resources of the CSM-NN is necessary. The
main computational operations of a single-hidden-layer NN
are multiplication (MUL) and addition (ADD). GPU cores
are designed to perform one MUL and one ADD in a single
cycle [22]. Considering the number of inputs and size of
the hidden layer as D and H respectively, there are D × H
multiplications in the first layer. It is very important to note
that there are no dependencies among MUL operations in
one specific layer, therefore they can all be computed in
parallel using D×H cores within a single cycle. We occupied
these initial cores in this cycle, but they can be reused in
the next cycles. To calculate the output of each of the H
hidden neurons, D values should be accumulated to generate
the output. This can be efficiently parallelized by using tree-
structures within dlog2(D+1)e cycles. The number of required
cores in the first cycle is D+1

2 , which is less than the number of
initial cores, thus no further core allocation is required and the
computation can be done on initial ones. Following the same
approach for the output layer, we can conclude that single-
hidden-layer NN can be computed with D ×H cores within
latency given in Eq. 2.

Latency = 1 + dlog2(D + 1)e+ 1 + dlog2(H + 1)e (2)

By implementing a trained NN with fixed parameters on a
GPU, the weights of each operation can be stored in register
files, therefore, there is no need to retrieve data from memory.

C. Concurrent simulation of gates in CSM
In CSM simulation, voltage waveform calculation is per-

formed in a series of short time intervals (dT) in an iterative
process. Considering the voltage values (VIs) and input slews
(∆VI) are known for all gates in one interval (Ti), the
change in voltage can be calculated for the next interval

TABLE II: NVIDIA TESLA V100 GPU Specifications.

Streaming Processors (SM) 80
32bit FP CUDA core (per SM/total) 64/5120
64bit FP CUDA core (per SM/total) 32/2560
Register files per SM 256/4 KB
L1 cache / shared memory (per SM/core) 128/2 KB
L1 cache hit latency: 28
Base clock frequency 1450 MHz
Single precision FLOPS 14.8 TFLOPS

(Ti+1 = Ti+dT). In other words, the change in output voltage
of a driver gate DG in one time interval (∆V

(D)
O (ti)), is the

input voltage change of the load gate (L) in the next time
interval (∆V L

I (ti+1)). Following this approach, the simulation
of gates in a single interval are not dependent to each other
and can potentially be done in parallel. On the other hand,
voltage based simulation calculates the delay and output slew
of a single gate based on the input slew, i.e. output slew of
the driver gate, and the capacitive load. The dependency of
delay calculation of load gates to simulation of their driver
gates, prevents voltage based methods to simulate gates from
different levels of the circuit in parallel.

D. NN-PARS circuit simulation flow

To better illustrate the steps of our NN-PARS, we use C7552
netlist from ISCAS85 [23] benchmark as an example circuit
and the GPU platform introduced in Table II as an example
processor. To further simplify our description, we limit the
standard cells to INV, NAND2, and NOR2. First, NN-PARS
identifies the count of gates from each standard cell in the
circuit netlist. For example, there are 2625 NAND2, 799 INV,
and 401 NOR2 gates in C7552. Based on the relative ratio
of these counts, we dedicate GPU cores to model the cells as
shown in Fig. 2. Now that all the computational cores of GPU
are dedicated, we can start the circuit simulation. A simple
event driven simulation scheduler is designed that schedules
the steps of simulation. According to the number of models
on GPU for each cell, random gates in the circuit are selected
for simulation. Due to independency at each interval, CSM
simulation can be performed in parallel for many gates. Thus,
at each time interval, NN-PARS selects a subset of gates to
run on GPU and simulate.

In our example, at each time frame, 52, 20 and 8 NAND2,
INV and NOR2 gates of the circuit can be simulated in parallel
(c.f. Fig. 2). Similar to this subset, all other gates are simulated
for this time interval. This means that for C7552, it takes GPU
3825/80 iterations to simulate the circuit for one time interval.

Although CSM simulation of a logic cell at a certain time
interval does not depend on that of other logic cells in that
time interval, random selection of logic cells as a subset
to be simulated on the GPU may not be optimal. This is
because, in fairly large circuits, a large number of cells do not
require any simulation in one time interval as their voltage
levels for different nodes were not changed in the previous
one. Therefore, the event driven simulation scheduler of NN-
PARS neglects the unnecessary gate simulations. The NN-
PARS scheduler assigns the logic cells with voltage values

3

× 52

× 20

× 8

GPU

Fig. 2: Number of NN models implemented on Tesla V100 GPU
(Table II) from each cell in the library (INV, NAND2 and NOR2)
for optimal NN-PARS simulation of C7552 circuit in FinFET-7nm
technology.

changed beyond a threshold to the active set so they will be
simulated in the next time frame. On the other hand, the logic
cells with no changes in any of their voltage nodes are removed
from the active set.

IV. EXPERIMENTS AND SIMULATION RESULTS

We implemented the simulator and the flow of our NN-
PARS framework in Python. Our implementation is technology
independent and can characterize, and create NN models with
flexible configurable setups, for various logic cells. More im-
portantly, the simulator can exploit GPU in order to parallelize
the simulation of the given combinational circuit netlist. NN
implementation and training are based on the Scikit-learn [24]
package.

CPU and GPU devices that are used as platforms for
CSM and NN-PARS are introduced in Table I and Table II
respectively. Hardware platforms are comparable to each other
in terms of cost (about 8,000 USD) and the production year
(2017) in order to have a fair comparison.

A. Selected Technologies

For better evaluation of our NN-PARS and its technology
independence characteristics, we performed our experiments
on both MOSFET (16nm) and FinFET (7nm) devices from
Predictive Technology Model (PTM) [25] packages. Two
device types namely low-standby power (LP) and high per-
formance (HP) are used in our experiments [26].

B. Training for logic cells

The total number of generated data points by characteriza-
tion is 500 samples per gate. The data was randomly split into
training (90%) and test (10%) datasets. The exponential range
of the IO values (from pA to µA) is not optimal for training
nonlinear regression models. Therefore, we trained our models
on logIO values. The normalization of data in regression
problems would help the solvers with faster convergence and
better numerical stability. This process is implemented inside
our solver [24]. To select the optimal size of the hidden layer
for each model, we repeated the training process for various
neuron numbers in the range of 5 − 40. Each of the trained

TABLE III: Choice of NN hidden layer size for single and two input
logic cells.

INV NAND2 NOR2
MOSFET-HP 16nm 9 18 18
MOSFET-LP 16nm 8 17 17
FinFET-HP 7nm 10 20 20
FinFET-LP 7nm 10 21 21

A

B

Cin

Cout

S

Fig. 3: Gate level schematic of the full adder circuit used in our
experiments.

models was tested by applying a set of noisy input signals.
The model with the minimum size of the hidden layer that met
Esim < 1% threshold is chosen as the NN-PARS architecture
for the logic cell. The complete results for the choice of
architecture for INV, NAND2, and NOR2 NN-PARS models
are given in Table III.

C. Circuit Simulation

In this work we evaluated our NN-PARS framework by
simulating a full adder (FA) circuit with schematic shown in
Fig. 3. In addition, we analysed the performance improvement
achieved by NN-PARS compared to NN-LUT for real combi-
national circuits from ISCAS85 benchmarks [23].

CSM-LUT method is considered to be computed on the
CPU platform as it does not benefit from GPU parallelization.
The required computation resources and latencies for GPU
implementation of NN-PARS are calculated using equations
in Section III-A. Comparing the output waveforms of SPICE,
CSM-LUT, and NN-PARS methods in Fig. 4 confirm the
simulation accuracy of NN-PARS. We also measured Esim by
comparing output waveforms of HSPICE as the baseline with
those of NN-PARS simulations. Results in Table IV suggest
that Esim is limited to 2%.

As we can see in Table IV, the improvement achieved by
NN-PARS is the same for different devices as all the gates of
the FA can be modeled on our GPU in parallel. The limited

TABLE IV: CSM simulation results of a full adder circuit in both Fin-
FET and MOSFET technologies. The simulation time improvements
is the ratio of the time required for CSM simulation over the one for
NN-PARS. The hardware platform specs are reported in Table I and
Table II. Esim is the measure of accuracy introduced in Eq. 1.

Technology MOSFET 16nm FinFET 7nm
Device HP LP HP LP
Esim 1.64% 1.27% 1.81% 1.77%

Improvement 30.4

4

0 50 100 150 200 250 300
Time (ps)

0.0

0.2

0.4

0.6

0.8
Vo

lta
ge

 (V
) input

SPICE
CSM-NN
CSM-LUT

Fig. 4: Waveform of full adder simulation with SPICE, CSM-LUT
and NN-PARS.

TABLE V: Improvement of simulation time in NN-PARS for com-
binational circuits from ISCAS85 benchmarks [23]

- # gates MOSFET FinFET
c880 383 92× 81×

c1355 546 120× 124×
c7552 3825 134× 134×

number of gates in the FA circuit does not reveal the full
performance increase of NN-PARS. Therefore bigger circuits
with thousands of gates were analyzed. The results are reported
in Table V.

V. CONCLUSIONS

Our goal in this work was to resolve the accuracy and
latency issues of existing simulation methodologies that heav-
ily depend on memory queries. Our NN-PARS framework
replaces long memory queries with efficient and parallelizable
NN based computations and employs an optimized event-
driven scheduling engine that concurrently runs the simulation
events of logic cells in the circuits.

The simulation latency of NN-PARS was evaluated in
multiple MOSFET and FinFET technologies based on predic-
tive technology models. The results confirm that NN-PARS
improves the simulation speed by up to 134× compared to a
state-of-the-art current based CSM baseline in large circuits.
Furthermore the high accuracy of NN-PARS in terms of
waveform similarity was evaluated w.r.t. HSPICE. We expect
the application of NN-PARS in analysis and optimization of
advanced VLSI circuits such as system-on-chips (SoCs) will
significantly improve the quality of results.

ACKNOWLEDGEMENT

This research was sponsored in part by a grant from the
Software and Hardware Foundations (SHF) program of the
National Science Foundation (NSF).

REFERENCES

[1] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, p. 114, Sep. 1965.

[2] A. B. Kahng, U. Mallappa, and L. Saul, “Using machine learning to
predict path-based slack from graph-based timing analysis,” in Interna-
tional Conference on Computer Design (ICCD), 2018, pp. 603–612.

[3] M. Pedram and S. Nazarian, “Thermal modeling, analysis, and man-
agement in VLSI circuits: Principles and methods,” Proceedings of the
IEEE, vol. 94, no. 8, pp. 1487–1501, Aug 2006.

[4] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system-level dynamic power management,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3,
pp. 299–316, June 2000.

[5] Cadence Inc., San Jose, California, U.S. Ca-
dence encounter library characterization datasheet. [Online].
Available: https://www.cadence.com/content/cadence-www/en{ }US/
documents/Archive/Archive1/library{ }characterizer{ }ds.pdf

[6] Synopsys Inc., Mountain View, California, U.S. PrimeTime datasheet.
[Online]. Available: https://www.synopsys.com/content/dam/synopsys/
implementation{&}signoff/datasheets/primetime-ds.pdf

[7] S. V. Amit Goel, “Current source based standard cell model for accurate
signal integrity and timing analysis,” Design, Automation and Test in
Europe (DATE), pp. 574–579, 2008.

[8] J. F. Croix and D. F. Wong, “Blade and razor: cell and interconnect delay
analysis using current-based models,” in Design Automation Conference
(DAC), 2003, pp. 386–389.

[9] R. Goyal and N. Kumar, “Current based delay models: A must for
nanometer timing,” Cadence Live Conference (CDNLive), 2005.

[10] I. Keller, Ken Tseng, and N. Verghese, “A robust cell-level crosstalk
delay change analysis,” in International Conference on Computer-Aided
Design (ICCAD), 2004, pp. 147–154.

[11] A. Goel and S. Vrudhula, “Statistical waveform and current source based
standard cell models for accurate timing analysis,” in Design Automation
Conference (DAC), 2008, pp. 227–230.

[12] B. Amelifard, S. Hatami, H. Fatemi, and M. Pedram, “A current source
model for CMOS logic cells considering multiple input switching and
stack effect,” in Design, Automation and Test in Europe (DATE), 2008,
pp. 568–573.

[13] C. Knoth, H. Jedda, and U. Schlichtmann, “Current source modeling
for power and timing analysis at different supply voltages,” in Design,
Automation Test in Europe (DATE), 2012, pp. 923–928.

[14] S. Nazarian, H. Fatemi, and M. Pedram, “Accurate timing and noise
analysis of combinational and sequential logic cells using current source
modeling,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 1, pp. 92–103, Jan 2011.

[15] H. Fatemi, S. Nazarian, and M. Pedram, “Statistical logic cell delay
analysis using a current-based model,” in Design Automation Conference
(DAC), 2006, pp. 253–256.

[16] H. Fatemi, S. Nazarian, and M. Pedram, “A current-based method for
short circuit power calculation under noisy input waveforms,” in Asia
and South Pacific Design Automation Conference (ASP-DAC), 2007, pp.
774–779.

[17] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in International Conference on
Machine Learning (ICML), 2009, pp. 873–880.

[18] M. S. Abrishami, M. Pedram, and S. Nazarian, “CSM-NN: Current
source model based logic circuit simulation - a neural network ap-
proach,” in International Conference on Computer Design (ICCD), 2019.

[19] Intel broadwell (2018) CPU microarchitecture specification. [Online].
Available: https://www.7-cpu.com/cpu/Broadwell.html

[20] T. Cui, Y. Wang, X. Lin, S. Nazarian, and M. Pedram, “Semi-analytical
current source modeling of FinFET devices operating in near/sub-
threshold regime with independent gate control and considering process
variation,” in Asia and South Pacific Design Automation Conference
(ASP-DAC), 2014, pp. 167–172.

[21] D. Sinha, V. Zolotov, S. K. Raghunathan, M. H. Wood, and K. Kalafala,
“Practical statistical static timing analysis with current source models,”
in Design Automation Conference (DAC), 2016, pp. 113:1–113:6.

[22] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008.

[23] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the iscas-85
benchmarks: A case study in reverse engineering,” IEEE Des. Test,
vol. 16, no. 3, pp. 72–80, Jul. 1999.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, Nov. 2011.

[25] “Predictive Technology Model from arizona state university,” http://ptm.
asu.edu/, accessed: 2019-05-20.

[26] M. S. Abrishami, A. Shafaei, Y. Wang, and M. Pedram, “Optimal
choice of FinFET devices for energy minimization in deeply-scaled
technologies,” in International Symposium on Quality Electronic Design
(ISQED), 2015, pp. 234–238.

5

https://www.cadence.com/content/cadence-www/en{_}US/documents/Archive/Archive1/library{_}characterizer{_}ds.pdf
https://www.cadence.com/content/cadence-www/en{_}US/documents/Archive/Archive1/library{_}characterizer{_}ds.pdf
https://www.synopsys.com/content/dam/synopsys/ implementation{&}signoff/datasheets/primetime-ds.pdf
https://www.synopsys.com/content/dam/synopsys/ implementation{&}signoff/datasheets/primetime-ds.pdf
https://www.7-cpu.com/cpu/Broadwell.html
http://ptm.asu.edu/
http://ptm.asu.edu/

	I Introduction
	II Background
	III NN-PARS Framework
	III-A NN Architecture
	III-B Computational resources and latency analysis
	III-C Concurrent simulation of gates in CSM
	III-D NN-PARS circuit simulation flow

	IV Experiments and Simulation Results
	IV-A Selected Technologies
	IV-B Training for logic cells
	IV-C Circuit Simulation

	V Conclusions
	References

