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Abstract—With the increasing interest in neuromorphic com-
puting, designers of embedded systems face the challenge of
efficiently simulating such platforms to enable architecture design
exploration early in the development cycle. Executing artificial
neural network applications on neuromorphic systems which are
being simulated on virtual platforms (VPs) is an extremely de-
manding computational task. Nevertheless, it is a vital benchmark-
ing task for comparing different possible architectures. Therefore,
exploiting the multicore capabilities of the VP’s host system is
essential to achieve faster simulations. Hence, this paper presents
a parallel SystemC based VP for RISC-V multicore platforms
integrating multiple computing-in-memory neuromorphic acceler-
ators. In this paper, different VP segmentation architectures are
explored for the integration of neuromorphic accelerators and
are shown their corresponding speedup simulations compared to
conventional sequential SystemC execution.

Index Terms—Electronic System Level, Parallel SystemC Sim-
ulation, Neuromorphic Systems, Computing-in-Memory

I. INTRODUCTION

The limitations of the von Neumann model have forced
researchers to look into alternate computer architectures. The
von Neumann model fares poorly due to the energy spent in
data movements especially for machine learning applications in
embedded edge devices, where a huge amount of unstructured
data is to be processed [1]. Emerging non-volatile memory
technology such as resistive random access memory (ReRAM)
offers a unique advantage in-terms of computing-in-memory
features along with storage capabilities [2]. Such a feature
alleviates the need for data movement between a processor and
memory subsystem significantly, resulting in energy efficiency
and high-performance of a neuromorphic architecture. The
design and development of a neuromorphic platform requires
careful consideration of several architectural parameters [3]. In
addition, the software’s performance to be executed needs to be
tuned to attain the best possible performance at an early stage
in the design cycle.

A virtual platform (VP) offers the simulation of architectural
components to achieve the right balance between time to market
and the performance of the target product [4]. Especially for
complex platforms, VPs offer a unique advantage that the
software development can begin significantly earlier than the
hardware prototype’s availability [5].

The emergence of neuromorphic computing-in-memory
(CIM) architectures in the last decade has propelled research to
develop various simulation platforms for performance predic-
tion and early-stage software development. While some of these

simulators lack the required accuracy, others are extremely slow
due to the details involved in the simulation. Additionally, the
application benchmarks used in machine learning are extremely
demanding computational tasks, which mainly require vector-
matrix multiplication (VMM) operations that also have to be
executed within the VP. All this creates the need of a VP
capable of effectively using all computing power available to
its host system. So, it can speed up the simulations required to
perform investigation of neuromorphic architectures. To address
these issues related to neuromorphic VPs, this work introduces
a SystemC based VP that utilizes, since its conception, par-
allelization techniques to efficiently exploit all available CPU
resources in the host system. The major contributions of this
paper are as follows:

• A complete full system-level neuromorphic VP able to run
a heavy load of VMM benchmarks in a parallel simulation
environment.

• Simulation segmentation strategies to distribute simulation
load among multiple cores of the host system in a com-
prehensive method.

• Utilization of time-decoupled parallelization techniques to
further enhance the VP’s simulation speedup.

This paper is structured as follows: Section II provides re-
lated work and background. Section III introduces the structure
of the VP and its characteristics. Section IV summarizes the
used time-decoupled and parallel SystemC methodologies. In
section V, the significance of time-decoupled parallel SystemC
VP is demonstrated by using it to perform two different VP
segmentation strategies of multicore and multi-CIM systems. It
also presents benchmark results versus sequential simulations
for all analyzed cases. Finally, in section VI conclusions are
drawn and an outlook of future research is provided.

II. RELATED WORK

With the advancements in emerging non-volatile memory
technologies, various research groups have tried to explore the
technologies at the system level. On the other hand, for the
CMOS-based electronic systems, SystemC-based virtual pro-
totypes are extremely popular for early software development
and performance tuning. In this section, we first review various
simulators and then briefly discuss the relevant systemC-based
virtual prototypes.

A system-level simulation of a tiled neuromorphic archi-
tecture is presented in [13]. The authors have implemented a
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Fig. 1. Single-core System-level virtual platform. (a) VP high level architecture, (b) Neuromorphic computing-in-memory architecture: CIM-
Unit, (c) Memristor-based crossbar array.

TABLE I. Qualitative comparison of the simulators in the literature

Simulator Architecture-
level

System-
level

Circuit-
level

Exploration
possibility

Parallelization CIM
Support

Accelerator-
enabled

Time decoupling-
enabled

NVSim [6] 7 7 3 3 7 7 7 7
NVMain [7] 3 7 7 3 7 7 7 7
MNSim [8] 3 7 7 7 7 3 7 7
CorssSim [9] 7 7 3 3 7 3 7 7
NeuroSim [10] 7 7 3 3 7 3 7 7
NVM-SPICE [11] 7 7 3 3 7 7 7 7
AIHWKIT [12] 7 7 3 3 7 3 7 7
CIMSIM [13] 7 3 3 7 3 3 7 7
Lee et al. [14] 7 3 7 3 7 3 7 7
MultiPULPly [15] 7 3 7 3 3 3 7 7
Proposed work 3 3 3 3 3 3 3 3

micro-instruction set to perform the operations on analog/dig-
ital memristive crossbars. Along with the crossbars, each tile
consists of analog/digital converters, digital modulators, and
sample-hold mechanisms. The micro-instruction has three types
of functions: initialize, compute, and read. The system-level
simulator presented in [14] is built on similar principles.
NVMain [7] and NVMain 2.0 [16] are the simulators that can
simulate memory and memory interfaces. NVMain focuses on
memory-oriented simulations and requires significant engineer-
ing efforts in modeling and simulation of CIM.

The MNSIM [8] and MNSIM 2.0 [17] simulators use
behavioral models to estimate the worst case and accuracy.
The increased simulation speed comes at the cost of accuracy
in MNSIM. Apart from the system level and architecture
simulators, there are various simulators capable of performing
circuit-level simulations [6] [10]. While these simulators can
perform low-level simulations and provide better estimates of
the energy efficiency of the design, scaling to system-level is
not possible due to simulation complexity and run-time.

VPs commonly use SystemC as their underlying simulation
engine, which deploys a standard discrete event approach to
simulate the concurrency of multiprocessor systems. There are
several approaches for parallelization of SystemC [18]–[20].
A synchronous approach to parallel SystemC simulation is
presented in [20]. Synchronous techniques, however, are unable
to exploit the full parallelism of a simulation, given that they
enforce strict time synchronization among all threads. This
synchronous limitation can be overcome by applying a time-
decoupled technique as proposed in [21]. These techniques have
been applied in [22] to multicore VPs for specific workloads
like booting operating systems and for network intensive com-

munication applications. However for heavy VMM operations
needed in machine learning applications, that are executed in
a system-level VP with multiple neuromorphic accelerators
architecture, there is limited work available. Extensive work
on different simulators for neuromorphic architectures with
different abstraction levels is summarized in [1], where the
majority of simulators focus on circuit level. Only a few works
like [15], [23] have presented complete integration of neuro-
morphic accelerators into a full system. However, they have
not been explicitly developed to exploit the multicore nature
of their host systems. Therefore, this work presents a time-
decoupled parallel simulation framework that allows different
VP segmentation strategies of neuromorphic architectures. A
summary for several neuromorphic simulation frameworks is
captured in Table I where a qualitative comparison can be ob-
served. The proposed simulation framework has a few features
that are desired but absent in simulators found in the literature.

III. VIRTUAL PLATFORM

The proposed system-level VP consists of several SystemC
modules: a set of multicore processors, L1 instruction and
data caches, communication buses, a main memory module
and multiple memristor-based CIM neuromorphic accelerators.
Each SystemC module can work as a transaction initiator and
a transaction target depending on its current function or just
as a forwarder in the case of the bus modules. The modules
have their corresponding sockets for TLM2.0 transaction-based
communication where a tracing monitoring of each transaction
is being performed and stored for post-processing performance
analysis of the whole system. Fig. 1a depicts the VP high level
architecture and illustrates the tracing approach. By collecting



all the transactions, it is possible to have a histogram and the
total number of transactions that occurred during the execution
of any particular benchmark.

A. RISC-V

The VP uses RISC-V [24], an open-source instruction set
architecture, as the main processor of the multicore system. The
RISC-V core implemented in [25] using SystemC and TLM-2.0
is the one integrated into the VP. This implementation offers
a 32/64-bit RISC-V core supporting the IMAC instruction set.
By adding this SystemC RISC-V 64IMAC, the VP achieves a
significantly faster simulation compared to using an RTL imple-
mentation. The RISC-V processor is used to execute different
software applications that exploit the available neuromorphic
accelerator by offloading artificial neural network (ANN) main
operations, i.e. VMMs, meanwhile being free to perform other
computational tasks when necessary. It is important to point
out that the RISC-V core does not make use of any standard
extension instructions to offload operations to the neuromorphic
accelerator. It is the CIM unit that interprets and handles the
executions of the operations using its internal controller and
own set of micro-instructions as explained in next section.

B. Memristor-Based CIM-Unit

The VP integrates multiple CIM-Units of the one proposed in
[13], since it provides built-in interfaces that allow interaction
with SystemC based VPs in several abstraction levels. Each
CIM-Unit consists of two main parts: A calculator with its
digital surrounding and a micro-engine as shown in Fig. 1b.
The calculator is a simulator that not only replicates the
functional behavior of a memristor crossbar shown in Fig. 1c,
but also covers the operation of surrounding mixed-signal
circuitries, e.g., analog to digital converter (ADC), digital to
analog converter (DAC) and sample and hold (S+H) elements,
which are essential for driving the memristor crossbar. The
micro-engine comprises the digital components, e.g., controller,
registers files, and buffers, that are necessary for operating the
memristor crossbar. In addition to these, the CIM-Unit offers
a micro-instruction set that allows the unit to communicate
with the main processor or other functional units, in a coarse
grain reconfigurable architecture. Thus, it can be deployed as
an accelerator as it is the case in this work. For the CIM-Unit to
operate it needs first be supplied with configuration parameters,
e.g., size of the matrix that is to be mapped on the crossbar (a
fixed size of 256x256 was configured), I/O resolution as well
as others necessary parameters detailed in [13]. The controller
stores all these parameters which then are passed to the CIM-
Unit through instructions via the configuration register. As soon
as all the parameters are available, the controller, which is a
state-machine, transitions into the state IN signaling that is
ready to accept input data. It stays in IN until all the input data
is received. The number of cycles that it takes to be ready to
move to the next state depends on the width of the input ports,
the resolution of the input data, and the size of the input vector.
In the next state, OP, the controller executes the operation that is
specified in the configuration register. In the end, the controller
moves to the final state, OUT, where it sends out the processed

Fig. 2. SystemC parallel simulation overview.

information and goes back to the initial state, IDLE, as soon
as all the output is sent out.

C. Memory Modules

The main memory (DRAM), which works as a shared mod-
ule for all segments, and instruction and data cache (SRAM)
modules, from the work presented in [26], are the ones in-
tegrated in the VP. Since in addition to commonly modeling
memory in SystemC with a read and write access delay,
further delays for page switches and write-to-read switches are
introduced.

IV. PARALLEL SYSTEMC SIMULATION

This work implements time-decoupled parallel simulation
using techniques investigated in [27], and also presents different
segmentation methodologies. The segmentation process can be
used to explore effective exploitation configurations for parallel
execution of VMM benchmarks in a multicore system inte-
grating multiple neuromorphic accelerators. Aforementioned
implementation and methodologies are briefly summarized as
follows:

A. Parallel Simulation Architecture

A complete simulation consists of n segments, defined during
the segmentation process, that are interconnected via dedicated
communications channels. By organizing the simulation as
a list of segments each containing its own SystemC kernel,
parallel simulation becomes simple, since it is not necessary
to modify the internal discrete event simulation of each kernel.
As a result, each segment can be stepped independently and
is then parallelized by the host system. However, communi-
cation, time-decoupling and post-synchronization become key
procedures during the whole simulation execution. Therefore,
the simulation controller is used to advance the simulation
by stepping each segment and enforcing the sync mechanism.
The simulation flow that executes SystemC for the simulation
segments in parallel is shown in Fig. 2.

B. Time-Decoupled Simulation

Higher simulation speed can be achieved by deploying time-
decoupling between the segments [21]. This is achieved by
relaxing the synchronization requirement between segments
and allowing the simulation controller to let the simulation run
in parallel for a certain time before synchronization is enforced.
The controller organises instructions into quanta: a chunk of
N instructions that are grouped together and executed, before
simulation time is advanced by a corresponding amount. The
threads runtime are constructed based on three communication



Fig. 3. SytstemC sequential and time-decoupled parallel simulation quantum.

primitives: setup: loads the thread and sets quantum length to
N, exec: asynchronously executes the next N instructions, sync:
blocks until the thread has finished its current quantum. This
is illustrated in Fig. 3 for both cases, when parallel execution
is performed and when it is done sequentially by default in
SystemC.

Since each segment now operates in its own time zone
with a local time, inter-segment communication is assigned a
latency. Channel latency describes the amount of time allowed
to pass after putting a message into a channel before it must be
fetched by the receiver. It is used by the simulation controller
to determine the amount of time a segment may simulate ahead
of time before risking missing a channel message from a peer
segment. Hence, it is the task of the simulation controller to
make sure that no segment has advanced too far ahead in time.
Segments that have not reached their limit time are considered
in simulation, while others are considered waiting for their
peers to match time.

C. Segmentation
The segmentation process allows the designer to explore

different partition strategies of the VP architecture for the
integration of neuromorphic CIM-Units within a multicore
system. There are several parameters that can be considered
to build a complete system, e.g. the total number of CPUs,
the total number of CIM-Units and also the division of load
execution. In Fig. 4a the segmentation corresponds to an equal
number of CIM-Units accessible to each CPU, i.e. uniform VP
segmentation. It is as well possible to segment in a way that
one CPU is dedicated to manage all CIM-Units while other
CPUs are free to perform other tasks, i.e. load-oriented VP
segmentation as shown in Fig. 4b. Subsequently, the CIM-Units
can be allocated in parallel segments to speed up even further
the simulation. Segments form virtual sequential environments
which are allowed to share data using communication channels.
Segments are implemented as shared object files with unique
names. Hence, the system can easily be extended to a n-
core system by instantiating more segments and creating new
channel connections. Once the simulation starts, the controller
selects the first segment from the ready to simulate queue and
starts its execution each in its corresponding thread.

V. EXPERIMENTAL EVALUATION

To demonstrate the efficacy of the proposed approach, it
is evaluated in various experiments. The evaluation considers
VMM loads from well known ANN layers to assess the perfor-
mance benefits of the parallel simulation approach. Runtimes
for all workloads are analyzed using the conventional sequential
(sq) and the parallel simulation approach (pll).

A. Multicore and Multi-CIM Systems

The designs of the VP with uniform and load-oriented
segmentation, shown in Fig. 4a and Fig. 4b respectively, are
explored in this work. In the first case only two segments are
initialized, each is allocated with one RISC-V processor and
with only two CIM-Units. In the second case, four segments
are initialized, segment 0 contains a RISC-V processor and the
main shared memory. Segment 1 contains only one RISC-V
processor, meanwhile segment 2 and 3 each contains only two
CIM-Units. The VP components and their parameters are listed
in Table II as well as for the host machine.

B. Benchmarks

Convolutional layers from Googlenet [28], ImageNet [29],
and MobileNets [30] ANNs are selected as benchmarks that run
on the VP, these are heavy workloads that require acceleration
for the vector matrix multiplication operations. Due to the
multicore nature of the simulated VP, it is possible to run
the convolutional layers using one CPU and main memory
as well as running them by offloading the operation to the
available CIM-Units. The layers are listed in Table III, where
h and w are the matrix height and width respectively and p is
the number of vectors. The matrix and vector sizes varied to
assess different scenarios. Nonetheless, all matrices fit into the
configured crossbar inside the CIM-Units. A simple nested loop
algorithm for a VMM operations was implemented to obtain
the O matrix which is the dot product between matrices A
and B. The algorithm was used for the case of RISC-V plus
the shared main memory and also for the case when the host
system offloads the operations to the CIM-Units. However for
the latest case, the internal operation handling is left to the
micro-engine component of the CIM-Units. The nested loop
algorithm is described below:

1 // Simple VMM algorithm: O = A(h× w) ·B(w × p)
2 for ( i = 1 to h ) {
3 for ( j = 1 to p ) {
4 O(i, j) = 0
5 for ( k = 1 to w ) {
6 O(i, j) = O(i, j) +A(i, k) ·B(k, j)
7 } } }

C. Performance Results

Results of the simulation runtime of the complete VP systems
corresponding to the segmentation illustrated in Fig. 4a and
Fig. 4b are shown in Fig. 4c and in Fig. 4d respectively.
In both cases the VP is executing the benchmarks listed in
Table III, once using the conventional sequential (sq) approach



(a) (b)

(c) (d)

Fig. 4. (a) VP with uniform segmentation, (b) VP with load-oriented segmentation, (c) VMM benchmarks results for VP with uniform
segmentation, and (d) VMM benchmarks results for VP with load-oriented segmentation.

and once the parallel simulation (pll) approach. Additionally,
for the time-decouple technique the quanta of N instructions
was set to 10K after some experimentation. Since increasing
the quantum size results in a significant speedup but not
uniformly for all benchmarks. When the quantum exceeds
the above mentioned value the speed decreases due to the
higher number of synchronizations required by the execution
of the VMM operations in RISC-V plus main shared memory.
When a sync is needed all instructions inside the quantum will
remain in standby until that sync is performed and consequently
decreasing the achieved speedup. This effect is not seen when
the VMM operations are executed by the CIM-Units due to
their extremely low requirement to access new values inside the
main memory. Hence, confirming the fact that neuromorphic
computing, in this case: computing-in-memory, alleviates the

TABLE II. Multicore VP and Host System Components

VP Component Parameters
RISC-V processor 2 core 64bits; 1.7GHZ; in order
L1 I and D caches SRAM 16KB and 32KB

Main memory RAM DRAM 128MB
CIM-Unit 2 x Segment ; Crossbar size 256x256

Host Component Parameters
AMD Ryzen9 processor 12 core 64bits; 2.2GHZ

L1 I and D caches 512KB
Main memory RAM 61GB

von Neumann bottleneck.

From all cases analyzed for the uniform segmentation an
up to 2.3× speedup efficiency was registered for ImageNet-
conv1 and Googlenet-conv1 network layers. A fast analysis
shows that, the total sequential runtime is the sum of segment
0 and 1 individual runtimes as ilustrated in Fig. 3. Therefore
in this case, it is visible that the obtained speedup is directly
related to the number of system host threads performing the
simulation, i.e. two parallel segments yield at least 2× speedup,
when compared to sequential, and the rest speedup is attributed
to the utilization of the time-decoupled technique. Additionally,
from all cases for the load-oriented segmentation an up to
3.3× speedup efficiency was registered for ImageNet-conv1
and Mobilenets-conv1 network layers. However in this case,
the total speedup relation is not so evident. Again, the total
sequential runtime will be the sum of segment 0 to 3 runtimes.

TABLE III. Network Layer Benchmarks

Network Name Layer Type id h w p
Googlenet Conv 1 224 224 7
Googlenet Conv 2 56 56 3
ImageNet Conv 1 224 224 11
ImageNet Conv 2 207 207 5

MobileNets Conv 1 224 224 3
MobileNets Conv 2 112 112 3



Here, from a close examination at the performed load-oriented
segmentation, it is posssible to see that segment 1 does not
have a heavy load and therefore its contribution to the total
speedup is minimal. Nonetheless, the remaining three segments
redistribute the total load and yield more than 3× speedup in
all benchmarks.

VI. CONCLUSION

This work presented a parallel SystemC virtual platform that
enables fast simulations for the integration of neuromorphic
accelerators within a multicore system. Results show that the
utilized simulation approach improves simulation speed by up
to 2.3× when a uniform segmentation is performed and up
to 3.3× when it is load-oriented for analyzed workloads in
both cases respectively. Since current host computers offer
multicore computational power to drive several number of
threads, exploiting parallel SystemC simulation as a mean to
carry out investigation of VPs for neuromorphic systems is
shown to be an effective methodology.

Future work includes the development of automatic seg-
mentation mechanism when the load specifications for the
neuromorphic accelerators are known beforehand. Hence, it
will allow for a quick starting point to the designer.
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