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Abstract—While the role of Deep Neural Networks (DNNs) in a
wide range of safety-critical applications is expanding, emerging
DNNs experience massive growth in terms of computation power.
It raises the necessity of improving the reliability of DNN accel-
erators yet reducing the computational burden on the hardware
platforms, i.e. reducing the energy consumption and execution
time as well as increasing the efficiency of DNN accelerators.
Therefore, the trade-off between hardware performance, i.e. area,
power and delay, and the reliability of the DNN accelerator
implementation becomes critical and requires tools for analysis.

In this paper, we propose a framework DeepAxe for design
space exploration for FPGA-based implementation of DNNs by
considering the trilateral impact of applying functional approxi-
mation on accuracy, reliability and hardware performance. The
framework enables selective approximation of reliability-critical
DNNs, providing a set of Pareto-optimal DNN implementation de-
sign space points for the target resource utilization requirements.
The design flow starts with a pre-trained network in Keras,
uses an innovative high-level synthesis environment DeepHLS
and results in a set of Pareto-optimal design space points as a
guide for the designer. The framework is demonstrated on a case
study of custom and state-of-the-art DNNs and datasets.

Index Terms—deep neural networks, approximate computing,
fault simulation, reliability, resiliency assessment

I. INTRODUCTION

In the past decades, Deep Neural Networks (DNNs) demon-
strated a significant improvement in accuracy by adopting
intense parameterized models [1]. As a consequence, the size
of these models has drastically increased imposing challenges
in deploying them on resource-constrained platforms [2].
FPGAs are a widely used solution for flexible and efficient
DNN accelerator implementations and have shown superior
hardware performance in terms of latency and power [3].

In practice, deployment of a DNN accelerator for the safety-
and mission-critical applications (e.g., autonomous driving)
requires addressing the trade-off between different design
parameters of hardware performance, e.g., area, power, delay,
and reliability. A compromise between conflicting require-
ments can be achieved by simplifying the implementation to
sacrifice the precision of results but benefiting from lower
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resource utilization, energy consumption, and higher system
efficiency. Approximation Computing (AxC) is one of such
concepts in hardware design [4].

Moreover, the assessment of the reliability of DNN accel-
erators is a challenging issue by itself. Reliability of DNNs
concerns DNN accelerators’ ability to execute correctly in
the presence of faults [5] originating from either the envi-
ronment (e.g., soft errors, electromagnetic effects, temperature
variations) or from inside of the chip (e.g., manufacturing
defects, process variations, aging effects) [6]. The ability to
tolerate the impact of faults on the output accuracy is called
fault resiliency and, in practice, it is one of the contributors
to the DNN accelerators’ reliability [7]. DNNs are known
to be inherently fault-resilient due to the high number of
learning process iterations and also several parallel neurons
with multiple computation units. Nevertheless, faults may
impact the output accuracy of DNNs drastically [8], and in
case of resource-constrained critical applications, DNNs’ fault
resiliency is required to be evaluated and guaranteed [9] [10].

The complexity of such evaluation motivates an automated
tool-chain with AxC and resiliency analysis to support Design
Space Exploration (DSE) for DNN accelerators already at the
early design stage, i.e. starting from a high-level description.

High-Level Synthesis (HLS) tools bridge high-level pro-
gramming and hardware implementation and allow overcom-
ing the complexity of the process and reducing the design
time. Recently, DNN-tailored HLS tools were proposed, e.g.,
CNN2gate [11], fpgaConvNet [11] and DeepHLS [12]. Such
tools are capable of providing a synthesizable C implementa-
tion of DNNs for FPGAs from a high-level description in a
language such as e.g., Keras.

This paper presents a novel framework and a fully auto-
mated tool-chain DeepAxe to provide a design space explo-
ration for FPGA-based implementation of DNN accelerators
by analyzing approximation and soft-error reliability trade-
offs. To the best of our knowledge, this is the first framework
that holistically considers both the transient fault resiliency
and hardware performance of DNN accelerators as design
parameters. DeepAxe is empowered by techniques for quantiz-
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ing the networks and providing the capability of substituting
the exact computing (ExC) units of the network with AxC
units and identifying the optimal design points for selective
approximation.

DeepAxe uses the Keras description of a DNN as the input
and is capable of providing an FPGA-ready approximated
and transient-fault-resilient inference implementation of the
network based on the design parameters selected based on
the DSE results. The main contributions in this work are as
follows:

• A methodology for selective approximation of reliability-
critical DNNs providing a set of Pareto-optimal DNN im-
plementation design space points for the target resource
utilization requirements.

• A framework DeepAxe for holistic exploration of ap-
proximation and reliability trade-offs in DNN accelerator
FPGA-based implementation that enables assessing the
trilateral impact of approximation on accuracy, reliability,
and hardware performance.

• Integration of the fully automated DeepAxe tool-chain
into the DeepHLS environment.

• Demonstration and validation of the framework on repre-
sentative custom and state-of-the-art DNNs and datasets.

The rest of the paper is organized as follows. Related works
are discussed in Section II, the DeepAxe methodology and
framework are presented in Section III, the experimental setup
and results are provided in Section IV, and finally, the work
is concluded in Section V.

II. RELATED WORKS

The advantages of implementing and deploying DNNs on
FPGAs are advocated in several recent works. The exist-
ing FPGA-based tool-chains to map Convolutional Neural
Networks (CNNs) are presented in the surveys [13]–[16].
The FINN framework [17] is released by Xilinx for the
exploration of quantized CNNs’ inference on FPGAs that also
provides customized data-flow architectures for each network.
Research works [3] and [18] provide Register-Transfer Level
(RTL) models using conventional synthesis tools, e.g., Vivado
HLS, where the outputs can be directly synthesized on an
FPGA. Heterogeneous systems are also another design strategy
in the automated tool-chains that propose hardware-software
co-design [18]–[20]. In these designs, computational units,
e.g., addition, or multiplication, are mainly implemented on
Processing Logic (PL) that is controlled by a control unit in
a CPU using a dedicated framework, e.g., OpenCL [21].

Using Fixed-point (FxP) data type instead of Floating Point
(FP) is becoming more popular due to the lesser resource
utilization while keeping the output accuracy degradation at
an acceptable level [18], [22], [23]. Throughout the literature,
comprehensive simulations exist that prove that merely an 8-bit
data type for MAC operations in DNN execution is sufficient
to provide a practical accuracy along with favorable resource
utilization [24], [25]. In this work, we considered 8-bit as the
base data type for the simulations and implementations.

A number of works in the literature explore the reliability
of the DNNs [26], [27]. Some works examine the impact of
different fault models on the basis of a number of layers in
DNNs and different data types [28]. Studying the significant
impact of transient faults vs permanent faults is also done
by [29]. The fault analysis of exact DNNs has drawn a lot of
attention in the state-of-the-art research [30], and only recently,
researchers have started to investigate also the reliability of
approximated DNN accelerators (AxDNNs) [10]. A somewhat
expected conclusion in [27] is that the error induced by
approximation, along with the faults in the DNN structure, are
not evenly propagated. The impact of a fault may differ based
on different parameters, like fault type, fault location, the
approximation error resiliency for each layer, etc. To the best
of our knowledge, none of these works explored the impact of
using different combinations of approximated layers of a DNN
in the presence of transient faults on the reliability, accuracy
and delay/resource utilization of the target DNN accelerator.

The approach proposed in this paper goes beyond the
state of the art by establishing a fully automated tool for
enabling efficient AxC in FPGA-based DNN accelerators
aimed at reliability-critical applications. The proposed Deep-
Axe framework is integrated into DeepHLS environment [12],
which is capable of providing completely synthesizable code
for efficient FPGA implementations. In particular, this work
extends DeepHLS with fault simulation, resiliency analysis
and also the use of AxC. The new features allow providing
the designers a guideline to choose optimal configurations
based on specific requirements for latency, accuracy, resource
utilization, and fault resiliency.

III. PROPOSED METHODOLOGY

Fig. 1 illustrates the methodology flow established in the
DeepAxe tool-chain for reliability and hardware performance
analysis of approximated DNN hardware accelerators. Deep-
Axe is a framework taking the DNNs’ Pre-trained Keras model
description as the input. Then, DeepAxe feeds the extracted
model parameters through the flow to apply the initialization
needed before creating the C code. The design, training and
test of the DNNs are performed in Python, the Preprocessing
step is seamlessly integrated into the same environment and is
responsible for extracting the required data for the next step.

DeepAxe also supports quantizing the network down to 8-
bit INT as a part of the preprocessing step. For this purpose,
a full quantization is implemented, targeting all activations,
weights and biases. The framework first takes the description
of the network in Keras, and then uses the TFlite library to
generate a training-aware quantized network. The user can
replace their preferred Keras-based quantization library to the
tool-chain for this step. The main output of this step is the
quantized network’s parameters (i.e., weight/bias) and also the
files containing the memory dump of the test data. Specifically,
the Keras to C step implies converting all the above-mentioned
parameters to multidimensional arrays in C format. The output
accuracy of the generated network is also provided at this
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Fig. 1: DeepAxe methodology flow

step and is kept as a baseline for the further steps of the
methodology.

Reliability analysis relies on a fault injection (FI) in C,
assuming the single bit-flip faults in the network’s activa-
tion layers for resiliency assessment. While the multiple-
bit fault model is more accurate, it requires a prohibitively
large number of fault combinations to be considered (3n − 1
combinations, where n is the number of bits). Fortunately, it
has been shown that high fault coverage obtained using the
single-bit model results in a high fault coverage of multiple-
bit faults [31]. Therefore, a vast majority of practical FI and
test methods are based on the single-bit fault assumption.

The reliability analysis step applies the accuracy drop com-
parison of the network-under-test as the assessment metric.
Approximate design (see the yellow region in Fig. 1) refers
to the selective approximation of DNNs by layers provided
by DeepAxe. It instruments the user with the flexibility
of choosing between a) different AxC models provided by
any library of approximate computing units, such as AxC
multipliers in EvoApproxLib, and b) the subset of layers,
for setting up different configurations of the network. As an
example, in a network with n computing layers (containing
both convolutional and fully connected layers), the user has
2n combinations for exploring the exact and approximate
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Fig. 2: DeepAxe flowchart

implementations for each layer individually.
After choosing the preferred approximation configuration,

the designer can go through the fault injector provided for
the resiliency evaluation of the AxDNN. Eventually, the final
design can be fed to the HLS implementation step for DNN
hardware accelerator generation process by the HLS tool.

To illustrate the DeepAxe methodology, the flowchart pro-
vided in Fig. 2 shows the step-by-step process from the
beginning to the end of DeepAxe tool-chain. After providing
the Keras description of the network in Step 1, the user
can decide if they need to quantize the network. Then, the
preprocessing step can be performed, enabling the user to
apply a pre-analysis on the network to extract a sufficient
number of faults for the reliability assessment, considering
the number of its neurons.

Steps 3 and 4 in Fig. 2 show an iterative process to examine
different approximated DNN combinations and, accordingly,
their fault resiliency analysis to build the DSE. By enabling
the fault simulation process in Step 4, the user can follow the



impact of their chosen AxC model and also the approximation
configuration on the resiliency of the network compared to the
other AxC model/configurations and also to the exact model.
Finally, the selected design and its configuration are fed into
the HLS tool for implementation.

It is noteworthy that all steps in the yellow box of Fig. 1
can be iterative, and the user can repeat these steps to find
the optimal point based on their requirements. For instance,
the user might decide to analyze an assumed approximation
configuration, i.e. AxC model for the multiplier and also
the layers to approximate. If, after applying approximation,
the accuracy check does not satisfy the user, they can try
another approximation configuration. Once the requirements
are satisfied, it is possible to proceed to the fault vulnerability
analysis. If, after applying the fault injection, the resiliency of
the network is also satisfying, the next step is generating the
DNN accelerator based on the selected configuration.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

First, all DNNs are implemented, trained and tested in
Keras. The required data for further steps of DeepAxe are also
generated in the same environment. In the DeepAxe flowchart
(Fig. 2), the green parts, including steps 1 and 2, refer to
the steps of the framework implemented in this high-level
environment. Both a three-layer MLP and LeNet-5, trained
on the MNIST dataset, and AlexNet, trained on the CIFAR-
10 dataset, are representative DNNs and efficient to perform
the validation of the proposed methodology and framework.
All networks use ReLu as an activation function.

All networks are quantized down to 8-bit INT data type,
including all activations, weights, and biases, by using the
TFlite [32] library in Python. The yellow parts in Fig. 2
are implemented in C. Simulations are performed on 2 x
Intel Xeon Gold 6148 2.40 GHz (40 cores, 80 threads per
node) with 96GB RAM. To speed up the simulation process,
DeepAxe supports multi-thread parallelism, and users can
benefit from this feature based on the number of cores their
CPU provides.

All implementations in C are synthesizable by DeepHLS.
The approximate multipliers in the C implementation of the
network (referring to step 3 in Fig. 2) are adopted from
the C codes provided by EvoApproxLib library [33]. In this
paper, three 8-bit INT approximate multipliers are picked from
EvoApproxLib with different error, area, and power character-
istics reported in Table I. The error parameters reported in this
table are as follows:

• MAE - Mean Absolute Error (Mean Error Magnitude)
• WCE - Worst-Case Absolute Error (Error Magnitude /

Error Significance)
• MRE - Mean Relative Error (Mean Relative Error Dis-

tance)
• EP - Error Probability (Error Rate)

Power (power consumption in mW ) and area (area on the chip
in µm2) are also reported as the design parameters in the last

TABLE I: Exact and approximate multipliers used in this paper
and their parameters

Circuit name MAE WCE MRE EP Power Area
Exact multiplier 0.00 0.00 0.00 0.00 0.425 729.8

mul8s 1KVP 0.051 0.21 2.73 74.80 0.363 635.0
mul8s 1KV9 0.0064 0.026 0.90 68.75 0.410 685.2
mul8s 1KV8 0.0018 0.0076 0.28 50.00 0.422 711.0

TABLE II: Networks trained and quantized down to 8-bit INT
for evaluation of this work

Network Dataset Accuracy
8-bit quantized network

3-layer MLP MNIST 80.40%
LeNet-5 MNIST 85.80%
AlexNet CIFAR-10 78.50%

two columns of the table. To show the hardware characteristics
of the output AxDNN, the Lookup Table (LUT) and Flip Flop
(FF) utilization, as well as the number of required clock cycles
for a one-time execution of the output AxDNN accelerator,
are reported as the results based on the reports produced by
Xilinx Vivado HLS tool on a Xilinx Spartan-7 FPGA with
part number xc7s100-fgga676-1 and 100 MHz frequency.

B. Fault simulator

The fault simulator that is used in step 4 in Fig. 2 is
implemented in the automated tool-flow of DeepAxe in a way
that users can select the sufficient number of faults they need
for their resiliency analysis. AxDNNs generated by step 3 in
Fig. 2 are validated by means of fault injection over the test
set.

Random Fault Injection. According to the adopted fault
model, a random single bit-flip is injected into a random
neuron in a random layer of the network, and the whole test
set is fed to the network to obtain the accuracy of the network.
This process is repeated several times to reach an acceptable
confidence level which depends on the number of neurons and
data representation bit length based on [34].

To find the required number of repetitions for the fault
simulation experiments, [34] provides an equation to reach
95% confidence level and 1% error margin. However, it can
pessimistically obtain a larger number, and the execution time
of the iterative fault simulation experiments would be very
long. Therefore, we have performed a fault simulation for each
neural network to find a smaller number of experiments in a
way that the difference of the average accuracy is less than
0.1% in comparison with the average accuracy of the network
achieved using the statistical fault injection approach [34]. As
a result, we have selected for injection 600, 800, and 1000
random single bit-flip faults for 3-layer MLP, LeNet-5, and
AlexNet fault simulation, respectively.

C. Validation Results

The proposed methodology is validated on three networks,
i.e. a 3-layer MLP, LeNet-5 and AlexNet, trained on two repre-
sentative datasets MNIST and Cifar-10. Each network is fully
quantized down to 8-bit INT as a part of the preprocessing step



Fig. 3: (a) Resource utilization of the approximate implementation vs. accuracy drop when the approximate implementation is
fault-simulated (b) Approximation configuration of each point on the Pareto frontier

TABLE III: The impact of approximation configuration and fault injection for MLP, LeNet-5, and AlexNet.

DNN
dataset Multiplier Layer configuration Base

accuracy (%)

Accuracy drop (%)
[Exact network -

AxDNN]

AxDNN accuracy drop (%)
[AxDNN -

FI on AxDNN]

Latency
(#of clk cycles)

Resource utilization (%)
#of[FF + LUT] /

Total #of[FF + LUT]

MLP
MNIST

mul8s 1KVP 111 5.8 7.62 206644 0.72
mul8s 1KVP 101 2.5 11.62 272180 0.81
mul8s 1KV9 101 80.40 1.5 12.78 274740 0.87
mul8s 1KV9 100 0.4 14.03 274740 0.90
mul8s 1KV8 001 0.3 14.72 285010 0.95

LeNet-5
MNIST

mul8s 1KVP 1-1–111 10.6 2.82 164864 6.27
mul8s 1KVP 1-1–011 8.8 4.67 195584 6.51
mul8s 1KV9 0-1–111 85.80 1.7 12.70 206408 7.93
mul8s 1KV9 0-1–101 1.0 13.66 206504 8.19
mul8s 1KV8 0-1–111 0.7 13.23 175784 9.12

AlexNet
CIFAR-10

mul8s 1KVP 0-0-11-0–011 16.0 9.12 19933514 11.75
mul8s 1KVP 0-0-11-0–100 17.0 10.41 20324170 11.84
mul8s 1KVP 0-0-00-0–001 2.0 11.10 20467530 12.35
mul8s 1KV9 0-1-11-1–111 18.5 9.58 19799882 11.04
mul8s 1KV9 0-1-11-1–110 17.5 11.80 19945802 11.93
mul8s 1KV9 0-0-00-0–001 3.0 12.60 20470090 12.45
mul8s 1KV8 1-1-11-1–110 78.50 6.5 10.90 20470090 12.18
mul8s 1KV8 0-1-11-1–111 6.0 11.70 20470090 12.19
mul8s 1KV8 0-1-11-1–110 4.5 12.00 20470090 12.21
mul8s 1KV8 0-0-11-0–011 3.5 12.00 20470090 12.35
mul8s 1KV8 0-0-11-0–100 2.5 12.15 20470090 12.33
mul8s 1KV8 0-0-00-0–001 0.0 12.64 20470090 12.43

of the methodology. The accuracy results for the quantized
networks are reported in Table II. Further, all possible com-
binations of approximate layers in the network are tested for
selective approximation. For each experiment, three different
multipliers reported in Table I are examined separately for
efficiency to substitute the original exact multipliers.

The fault injection procedure is performed for all different
configurations, and the accuracy drop, due to approximation
and fault injection, is profiled. Further, the HLS synthesis
results of all configurations are generated, and the resource
utilization in the number of FF, LUTs as well as the num-
ber of clock cycles required for processing one image for
each network, are collected. A Pareto frontier for resource
utilization and accuracy drop due to applying FI on different
approximation configurations is plotted, and the results for
LeNet-5 are reported in Fig. 3(a).

Fig. 3(b) shows the points on the Pareto frontier. The first
column is the accuracy drop due to performing fault injection
on that particular AxDNN configuration, the second column is
resource utilization of the AxDNN in percentage, and finally,
the last column is the selected approximate multiplier (AxM)
and order of layers in ad-hoc (ones means that particular layer
is approximated and dashes represent the non-computational
layers like maxpooling). The coloured rows are some extreme
and mid-range points of the Pareto chart. The same experiment
is repeated for MLP and AlexNet networks, and the results for
some extreme and mid-range points of their pareto charts are
presented in Table III.

It can be observed from this table that, generally, by
approximating more layers, the latency and resource utilization
are less. It is also noteworthy that the fault vulnerability of
the network, which can be defined as the accuracy drop of



Fig. 4: Reports of accuracy drop (due to approximation for different configurations), fault vulnerability, and resource utilization
of (a) 3-layer MLP network, (b) LeNet-5 and (c) AlexNet

the AxDNN due to applying FI, also becomes less. Fault vulnerability is opposite to fault resiliency and means the



TABLE IV: Case study: the impact of full approximation on three different MLP architectures

Network
MNIST dataset

Exact network
accuracy (%)

Normalized
resource

utilization (%)
[exact network]

AxM Accuracy drop
(%)

Fault
vulnerability

Normalized
latency

Normalized
resource

utilization (%)

7-layer
MLP 98.80 100

mul8s 1KV8 0.2 2.45 1.00 96
mul8s 1KV9 1.4 1.03 1.00 90
mul8s 1KVP 0.9 1.33 0.75 76

5-layer
MLP 86.30 69

mul8s 1KV8 0.0 3.33 1.00 96
mul8s 1KV9 1.9 2.12 1.00 89
mul8s 1KVP 3.1 3.84 0.78 76

3-layer
MLP 80.40 36

mul8s 1KV8 0.4 14.14 1.00 95
mul8s 1KV9 4.6 7.62 1.00 88
mul8s 1KVP 5.8 9.54 0.76 74

more the accuracy of an AxDNN drops due to applying FI,
the more vulnerable the network is against faults. Generally,
by increasing the level of approximation, the network shows
better resiliency to faults. Still, there are several configurations
that do not follow this trend and a tailored analysis using a
framework such as DeepAxe is necessary for higher confi-
dence.

Fig. 4 depicts the impact of different approximation units on
the case-study DNNs’ accuracy, resource utilization and fault
vulnerability. For each network, three approximation units are
chosen. For approximating the networks, the same configura-
tions are picked to observe the impact of different AxM on
the networks. Then all approximation units are applied, and
the accuracy drop, fault vulnerability and resource utilization
are reported. The correlation between the AxM error metrics
reported in Table I, their area overhead, and the accuracy drop
of the AxDNN impacted by AxMs lead us toward a conclusion
that the network accuracy is generally impacted by a) the level
of approximation and the configuration of the layers that are
substituted by AxM; b) the error metrics of the AxM that is
used as a substitution of ExC unit.

D. Approximate multipliers case-study

As a case study, three MLP networks with different archi-
tectures on the basis of a number of layers are selected. The
base accuracy for each quantized network is 98.80% for the
network with 7 layers, 86.30% for a network containing 5
layers and 80.40% for 3-layer MLP network. The results for
full approximation of the MLP networks with each case-study
approximate multiplier (AxM) are reported in Table IV.

All the values in the table are normalized to the correspond-
ing values of the ExC networks.

For the 7-layer MLP, it is shown that the multiplier
mult8s KVP is the best option for full approximation, in the
sense that the accuracy of the network drops only 0.9%, and
yet, latency and resource utilization of the network are better
than for the other two multipliers. Therefore, based on the
application of the network, if the designer can sacrifice the
accuracy for 0.9%, they can gain 25% improvement in network
latency and 24% improvement in resource utilization of the
implemented network on FPGA.

The situation is different for the 5-layer MLP network.
Based on the results of Table IV, the best multiplier can be

mult8s KV9 since the accuracy does not drop dramatically
and yet, it gains a better resiliency than the other two mul-
tipliers. Similarly, in the 3-layer MLP, the best candidate for
full approximation of the network is mult8s KV9 multiplier
since it shows the best resiliency with a little accuracy drop
and still, provides 12% improvement in resource utilization
compared to the exact design.

In summary, this case study shows the importance of ex-
ploring different AxMs for optimal implementation, i.e. not to
compromise the accuracy of the network and, at the same time,
to improve the network resiliency and hardware performance
of the target design.

V. CONCLUSION

In this paper, we proposed a framework DeepAxe for design
space exploration for FPGA-based implementation of DNNs
by considering the trilateral impact of applying functional
approximation on accuracy, reliability and hardware perfor-
mance. The framework enables selective approximation of
reliability-critical DNNs, providing a set of Pareto-optimal
DNN implementation design space points for the target re-
source utilization requirements The design flow starts with a
pre-trained network in Keras, uses an innovative high-level
synthesis environment DeepHLS and results in a set of Pareto-
optimal design space points as a guide for the designer. The
framework is demonstrated on a case study of custom and
state-of-the-art DNNs and datasets.
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